You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

623 lines
25 KiB

/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <android-base/logging.h>
#include <android-base/properties.h>
#include <android-base/unique_fd.h>
#include <ftw.h>
#include <gtest/gtest.h>
#include <unistd.h>
#include <algorithm>
#include <cassert>
#include <cmath>
#include <fstream>
#include <iostream>
#include <map>
#include <memory>
#include <random>
#include <set>
#include <string>
#include <thread>
#include <utility>
#include <vector>
#include "GeneratedTestUtils.h"
#include "SupportLibraryTestUtils.h"
#include "SupportLibraryWrapper.h"
// Systrace is not available from CTS tests due to platform layering
// constraints. We reuse the NNTEST_ONLY_PUBLIC_API flag, as that should also be
// the case for CTS (public APIs only).
#ifndef NNTEST_ONLY_PUBLIC_API
#include <Tracing.h>
#else
#define NNTRACE_FULL_RAW(...)
#define NNTRACE_APP(...)
#define NNTRACE_APP_SWITCH(...)
#endif
extern std::string SUPPORT_LIBRARY_NAME;
namespace android::nn::generated_tests {
using namespace sl_wrapper;
using namespace test_helper;
class GeneratedTests : public GeneratedTestBase {
protected:
void SetUp() override;
void TearDown() override;
bool shouldSkipTest();
ANeuralNetworksMemory* createDeviceMemoryForInput(const Compilation& compilation,
uint32_t index);
ANeuralNetworksMemory* createDeviceMemoryForOutput(const Compilation& compilation,
uint32_t index);
void computeWithDeviceMemories(const Compilation& compilation, const TestModel& testModel,
Execution* execution, Execution::ComputeMode computeMode,
Result* result, std::vector<TestBuffer>* outputs);
bool checkSupported(const Model& model, ANeuralNetworksDevice* device);
std::optional<Compilation> compileModel(const Model& model, ANeuralNetworksDevice* device);
void executeWithCompilation(const Compilation& compilation, const TestModel& testModel);
void executeOnce(const Model& model, const TestModel& testModel);
void executeMultithreadedOwnCompilation(const Model& model, const TestModel& testModel);
void executeMultithreadedSharedCompilation(const Model& model, const TestModel& testModel);
// Test driver for those generated from ml/nn/runtime/test/spec
void execute(const TestModel& testModel);
// VNDK version of the device under test.
static int mVndkVersion;
std::string mCacheDir;
std::vector<uint8_t> mToken;
bool mTestCompilationCaching = false;
bool mTestDynamicOutputShape = false;
bool mExpectFailure = false;
bool mTestQuantizationCoupling = false;
bool mTestDeviceMemory = false;
Execution::ComputeMode mComputeMode = Execution::getComputeMode();
std::unique_ptr<const NnApiSupportLibrary> mNnApi =
loadNnApiSupportLibrary(SUPPORT_LIBRARY_NAME);
};
int GeneratedTests::mVndkVersion = __ANDROID_API_FUTURE__;
// Tag for the dynamic output shape tests
class DynamicOutputShapeTest : public GeneratedTests {
protected:
DynamicOutputShapeTest() { mTestDynamicOutputShape = true; }
};
// Tag for the fenced execute tests
class FencedComputeTest : public GeneratedTests {};
// Tag for the generated validation tests
class GeneratedValidationTests : public GeneratedTests {
protected:
GeneratedValidationTests() { mExpectFailure = true; }
};
class QuantizationCouplingTest : public GeneratedTests {
protected:
QuantizationCouplingTest() { mTestQuantizationCoupling = true; }
};
class DeviceMemoryTest : public GeneratedTests {
protected:
DeviceMemoryTest() { mTestDeviceMemory = true; }
};
bool GeneratedTests::checkSupported(const Model& model, ANeuralNetworksDevice* device) {
constexpr static int MAX_NUM_OPS = 256;
std::array<bool, MAX_NUM_OPS> supportedOps;
for (int i = 0; i < MAX_NUM_OPS; ++i) {
supportedOps[i] = true;
}
EXPECT_EQ(mNnApi->ANeuralNetworksModel_getSupportedOperationsForDevices(
model.getHandle(), &device, /*numDevices=*/1, supportedOps.data()),
ANEURALNETWORKS_NO_ERROR);
const bool fullySupportedModel =
std::all_of(supportedOps.begin(), supportedOps.end(), [](bool v) { return v; });
return fullySupportedModel;
}
static std::vector<base::unique_fd> createCacheFds(const std::vector<std::string>& files) {
std::vector<base::unique_fd> fds;
fds.reserve(files.size());
for (const auto& file : files) {
auto fd = base::unique_fd(open(file.c_str(), O_RDWR | O_CREAT, S_IRUSR | S_IWUSR));
if (fd.get() == -1) {
[] { FAIL(); }();
return {};
}
fds.push_back(std::move(fd));
}
return fds;
}
std::optional<Compilation> GeneratedTests::compileModel(const Model& model,
ANeuralNetworksDevice* device) {
NNTRACE_APP(NNTRACE_PHASE_COMPILATION, "compileModel");
if (mTestCompilationCaching) {
// Compile the model twice with the same token, so that compilation caching will be
// exercised if supported by the driver.
// No invalid model will be passed to this branch.
EXPECT_FALSE(mExpectFailure);
std::string mode = ::android::base::GetProperty("debug.nn.slts.caching", "random");
bool useSetCachingFromFds;
if (mode == "path") {
useSetCachingFromFds = false;
} else if (mode == "fds") {
useSetCachingFromFds = true;
} else if (mode == "random") {
std::string testName = ::testing::UnitTest::GetInstance()->current_test_info()->name();
std::seed_seq seq(testName.begin(), testName.end());
std::mt19937 gen(seq);
std::bernoulli_distribution d(0.5);
useSetCachingFromFds = d(gen);
} else {
[&mode] {
FAIL() << "System property debug.nn.slts.caching should be one of \"path\", "
"\"fds\", or \"random\"; got \""
<< mode << "\"";
}();
return {};
}
SCOPED_TRACE("Use setCachingFromFds = " + std::to_string(useSetCachingFromFds) + " (" +
mode + ")");
std::cout << "\nUse setCachingFromFds = " << std::boolalpha << useSetCachingFromFds << " ("
<< mode << ")" << std::endl;
std::vector<std::string> modelCacheFilenames, dataCacheFilenames;
if (useSetCachingFromFds) {
uint32_t numModelCacheFiles, numDataCacheFiles;
EXPECT_EQ(mNnApi->SL_ANeuralNetworksDevice_getNumberOfCacheFilesNeeded(
device, &numModelCacheFiles, &numDataCacheFiles),
ANEURALNETWORKS_NO_ERROR);
for (uint32_t i = 0; i < numModelCacheFiles; i++) {
modelCacheFilenames.push_back({mCacheDir + "/model" + std::to_string(i)});
}
for (uint32_t i = 0; i < numDataCacheFiles; i++) {
dataCacheFilenames.push_back({mCacheDir + "/data" + std::to_string(i)});
}
}
auto resultCompilation1 = Compilation::createForDevice(mNnApi.get(), &model, device);
EXPECT_EQ(resultCompilation1.first, Result::NO_ERROR);
auto compilation1 = std::move(resultCompilation1.second);
if (useSetCachingFromFds) {
auto modelCacheFds = createCacheFds(modelCacheFilenames);
auto dataCacheFds = createCacheFds(dataCacheFilenames);
EXPECT_EQ(compilation1.setCachingFromFds(modelCacheFds, dataCacheFds, mToken),
Result::NO_ERROR);
} else {
EXPECT_EQ(compilation1.setCaching(mCacheDir, mToken), Result::NO_ERROR);
}
EXPECT_EQ(compilation1.finish(), Result::NO_ERROR);
auto resultCompilation2 = Compilation::createForDevice(mNnApi.get(), &model, device);
EXPECT_EQ(resultCompilation2.first, Result::NO_ERROR);
auto compilation2 = std::move(resultCompilation2.second);
if (useSetCachingFromFds) {
auto modelCacheFds = createCacheFds(modelCacheFilenames);
auto dataCacheFds = createCacheFds(dataCacheFilenames);
EXPECT_EQ(compilation2.setCachingFromFds(modelCacheFds, dataCacheFds, mToken),
Result::NO_ERROR);
} else {
EXPECT_EQ(compilation2.setCaching(mCacheDir, mToken), Result::NO_ERROR);
}
EXPECT_EQ(compilation2.finish(), Result::NO_ERROR);
return compilation2;
} else {
auto resultCompilation = Compilation::createForDevice(mNnApi.get(), &model, device);
EXPECT_EQ(resultCompilation.first, Result::NO_ERROR);
auto compilation = std::move(resultCompilation.second);
Result result = compilation.finish();
// For valid model, we check the compilation result == NO_ERROR.
// For invalid model, the driver may fail at compilation or execution, so any result code is
// permitted at this point.
if (mExpectFailure && result != Result::NO_ERROR) return std::nullopt;
EXPECT_EQ(result, Result::NO_ERROR);
return compilation;
}
}
void computeWithPtrs(const TestModel& testModel, Execution* execution,
Execution::ComputeMode computeMode, Result* result,
std::vector<TestBuffer>* outputs) {
{
NNTRACE_APP(NNTRACE_PHASE_INPUTS_AND_OUTPUTS, "computeWithPtrs example");
createRequest(testModel, execution, outputs);
}
*result = execution->compute(computeMode);
}
ANeuralNetworksMemory* GeneratedTests::createDeviceMemoryForInput(const Compilation& compilation,
uint32_t index) {
ANeuralNetworksMemoryDesc* desc = nullptr;
EXPECT_EQ(mNnApi->ANeuralNetworksMemoryDesc_create(&desc), ANEURALNETWORKS_NO_ERROR);
EXPECT_EQ(mNnApi->ANeuralNetworksMemoryDesc_addInputRole(desc, compilation.getHandle(), index,
1.0f),
ANEURALNETWORKS_NO_ERROR);
EXPECT_EQ(mNnApi->ANeuralNetworksMemoryDesc_finish(desc), ANEURALNETWORKS_NO_ERROR);
ANeuralNetworksMemory* memory = nullptr;
mNnApi->ANeuralNetworksMemory_createFromDesc(desc, &memory);
mNnApi->ANeuralNetworksMemoryDesc_free(desc);
return memory;
}
ANeuralNetworksMemory* GeneratedTests::createDeviceMemoryForOutput(const Compilation& compilation,
uint32_t index) {
ANeuralNetworksMemoryDesc* desc = nullptr;
EXPECT_EQ(mNnApi->ANeuralNetworksMemoryDesc_create(&desc), ANEURALNETWORKS_NO_ERROR);
EXPECT_EQ(mNnApi->ANeuralNetworksMemoryDesc_addOutputRole(desc, compilation.getHandle(), index,
1.0f),
ANEURALNETWORKS_NO_ERROR);
EXPECT_EQ(mNnApi->ANeuralNetworksMemoryDesc_finish(desc), ANEURALNETWORKS_NO_ERROR);
ANeuralNetworksMemory* memory = nullptr;
mNnApi->ANeuralNetworksMemory_createFromDesc(desc, &memory);
mNnApi->ANeuralNetworksMemoryDesc_free(desc);
return memory;
}
// Set result = Result::NO_ERROR and outputs = {} if the test should be skipped.
void GeneratedTests::computeWithDeviceMemories(const Compilation& compilation,
const TestModel& testModel, Execution* execution,
Execution::ComputeMode computeMode, Result* result,
std::vector<TestBuffer>* outputs) {
ASSERT_NE(execution, nullptr);
ASSERT_NE(result, nullptr);
ASSERT_NE(outputs, nullptr);
outputs->clear();
std::vector<Memory> inputMemories, outputMemories;
{
NNTRACE_APP(NNTRACE_PHASE_INPUTS_AND_OUTPUTS, "computeWithDeviceMemories example");
// Model inputs.
for (uint32_t i = 0; i < testModel.main.inputIndexes.size(); i++) {
SCOPED_TRACE("Input index: " + std::to_string(i));
const auto& operand = testModel.main.operands[testModel.main.inputIndexes[i]];
// Omitted input.
if (operand.data.size() == 0) {
ASSERT_EQ(Result::NO_ERROR, execution->setInput(i, nullptr, 0));
continue;
}
// Create device memory.
ANeuralNetworksMemory* memory = createDeviceMemoryForInput(compilation, i);
ASSERT_NE(memory, nullptr);
auto& wrapperMemory = inputMemories.emplace_back(Memory(mNnApi.get(), memory));
// Copy data from TestBuffer to device memory.
auto ashmem = TestAshmem::createFrom(mNnApi.get(), operand.data);
ASSERT_NE(ashmem, nullptr);
ASSERT_EQ(mNnApi->ANeuralNetworksMemory_copy(ashmem->get()->get(), memory),
ANEURALNETWORKS_NO_ERROR);
ASSERT_EQ(Result::NO_ERROR, execution->setInputFromMemory(i, &wrapperMemory, 0, 0));
}
// Model outputs.
for (uint32_t i = 0; i < testModel.main.outputIndexes.size(); i++) {
SCOPED_TRACE("Output index: " + std::to_string(i));
ANeuralNetworksMemory* memory = createDeviceMemoryForOutput(compilation, i);
ASSERT_NE(memory, nullptr);
auto& wrapperMemory = outputMemories.emplace_back(Memory(mNnApi.get(), memory));
ASSERT_EQ(Result::NO_ERROR, execution->setOutputFromMemory(i, &wrapperMemory, 0, 0));
}
}
*result = execution->compute(computeMode);
// Copy out output results.
for (uint32_t i = 0; i < testModel.main.outputIndexes.size(); i++) {
SCOPED_TRACE("Output index: " + std::to_string(i));
const auto& operand = testModel.main.operands[testModel.main.outputIndexes[i]];
const size_t bufferSize = operand.data.size();
auto& output = outputs->emplace_back(bufferSize);
auto ashmem = TestAshmem::createFrom(mNnApi.get(), output);
ASSERT_NE(ashmem, nullptr);
ASSERT_EQ(mNnApi->ANeuralNetworksMemory_copy(outputMemories[i].get(), ashmem->get()->get()),
ANEURALNETWORKS_NO_ERROR);
std::copy(ashmem->dataAs<uint8_t>(), ashmem->dataAs<uint8_t>() + bufferSize,
output.getMutable<uint8_t>());
}
}
void GeneratedTests::executeWithCompilation(const Compilation& compilation,
const TestModel& testModel) {
NNTRACE_APP(NNTRACE_PHASE_EXECUTION, "executeWithCompilation example");
Execution execution(mNnApi.get(), &compilation);
Result result;
std::vector<TestBuffer> outputs;
if (mTestDeviceMemory) {
computeWithDeviceMemories(compilation, testModel, &execution, mComputeMode, &result,
&outputs);
} else {
computeWithPtrs(testModel, &execution, mComputeMode, &result, &outputs);
}
if (result == Result::NO_ERROR && outputs.empty()) {
return;
}
{
NNTRACE_APP(NNTRACE_PHASE_RESULTS, "executeWithCompilation example");
if (mExpectFailure) {
ASSERT_NE(result, Result::NO_ERROR);
return;
} else {
ASSERT_EQ(result, Result::NO_ERROR);
}
// Check output dimensions.
for (uint32_t i = 0; i < testModel.main.outputIndexes.size(); i++) {
SCOPED_TRACE("Output index: " + std::to_string(i));
const auto& output = testModel.main.operands[testModel.main.outputIndexes[i]];
if (output.isIgnored) continue;
std::vector<uint32_t> actualDimensions;
ASSERT_EQ(Result::NO_ERROR, execution.getOutputOperandDimensions(i, &actualDimensions));
ASSERT_EQ(output.dimensions, actualDimensions);
}
checkResults(testModel, outputs);
}
}
void GeneratedTests::executeOnce(const Model& model, const TestModel& testModel) {
NNTRACE_APP(NNTRACE_PHASE_OVERALL, "executeOnce");
uint32_t numDevices = 0;
mNnApi->ANeuralNetworks_getDeviceCount(&numDevices);
bool modelSupported = false;
for (uint32_t i = 0; i < numDevices; ++i) {
ANeuralNetworksDevice* device = nullptr;
mNnApi->ANeuralNetworks_getDevice(i, &device);
const char* deviceName = nullptr;
mNnApi->ANeuralNetworksDevice_getName(device, &deviceName);
SCOPED_TRACE("Device = " + std::string(deviceName));
std::cout << "\nDevice = " << deviceName << std::endl;
if (!checkSupported(model, device)) {
std::cout << "\nModel not supported by device " << deviceName << ". Skipping"
<< std::endl;
continue;
}
modelSupported = true;
std::cout << "\nModel supported" << std::endl;
std::optional<Compilation> compilation = compileModel(model, device);
// Early return if compilation fails. The compilation result code is
// checked in compileModel.
if (!compilation) return;
executeWithCompilation(compilation.value(), testModel);
std::cout << "\nExecution completed" << std::endl;
}
if (!modelSupported) {
std::cout << "\nModel not supported by any device\n"
<< "SKIPPED" << std::endl;
}
}
void GeneratedTests::executeMultithreadedOwnCompilation(const Model& model,
const TestModel& testModel) {
NNTRACE_APP(NNTRACE_PHASE_OVERALL, "executeMultithreadedOwnCompilation");
SCOPED_TRACE("MultithreadedOwnCompilation");
std::cout << "\nMultithreadedOwnCompilation" << std::endl;
std::vector<std::thread> threads;
for (int i = 0; i < 10; i++) {
threads.push_back(std::thread([&]() { executeOnce(model, testModel); }));
}
std::for_each(threads.begin(), threads.end(), [](std::thread& t) { t.join(); });
}
void GeneratedTests::executeMultithreadedSharedCompilation(const Model& model,
const TestModel& testModel) {
NNTRACE_APP(NNTRACE_PHASE_OVERALL, "executeMultithreadedSharedCompilation");
SCOPED_TRACE("MultithreadedSharedCompilation");
std::cout << "\nMultithreadedSharedCompilation" << std::endl;
uint32_t numDevices = 0;
mNnApi->ANeuralNetworks_getDeviceCount(&numDevices);
bool modelSupported = false;
for (uint32_t i = 0; i < numDevices; ++i) {
ANeuralNetworksDevice* device = nullptr;
mNnApi->ANeuralNetworks_getDevice(i, &device);
const char* deviceName = nullptr;
mNnApi->ANeuralNetworksDevice_getName(device, &deviceName);
SCOPED_TRACE("Device = " + std::string(deviceName));
std::cout << "\nDevice = " << deviceName << std::endl;
if (!checkSupported(model, device)) {
std::cout << "\nModel not supported by device " << deviceName << ". Skipping"
<< std::endl;
continue;
}
modelSupported = true;
std::cout << "\nModel supported" << std::endl;
std::optional<Compilation> compilation = compileModel(model, device);
// Early return if compilation fails. The ompilation result code is
// checked in compileModel.
if (!compilation) return;
std::vector<std::thread> threads;
for (int i = 0; i < 10; i++) {
threads.push_back(
std::thread([&]() { executeWithCompilation(compilation.value(), testModel); }));
}
std::for_each(threads.begin(), threads.end(), [](std::thread& t) { t.join(); });
std::cout << "\nExecution completed" << std::endl;
}
if (!modelSupported) {
std::cout << "\nModel not supported by any device\n"
<< "SKIPPED" << std::endl;
}
}
// Test driver for those generated from ml/nn/runtime/test/spec
void GeneratedTests::execute(const TestModel& testModel) {
NNTRACE_APP(NNTRACE_PHASE_OVERALL, "execute");
GeneratedModel model(mNnApi.get());
createModel(mNnApi.get(), testModel, mTestDynamicOutputShape, &model);
if (testModel.expectFailure && !model.isValid()) {
return;
}
ASSERT_EQ(model.finish(), Result::NO_ERROR);
ASSERT_TRUE(model.isValid());
auto executeInternal = [&testModel, &model, this]() {
SCOPED_TRACE("TestCompilationCaching = " + std::to_string(mTestCompilationCaching));
std::cout << "\nCompilationCaching = " << std::boolalpha << mTestCompilationCaching
<< std::endl;
#ifndef NNTEST_MULTITHREADED
executeOnce(model, testModel);
#else // defined(NNTEST_MULTITHREADED)
executeMultithreadedOwnCompilation(model, testModel);
executeMultithreadedSharedCompilation(model, testModel);
#endif // !defined(NNTEST_MULTITHREADED)
};
mTestCompilationCaching = false;
executeInternal();
if (!mExpectFailure) {
mTestCompilationCaching = true;
executeInternal();
}
}
bool GeneratedTests::shouldSkipTest() {
// A map of {min VNDK version -> tests that should be skipped with earlier VNDK versions}.
// The listed tests are added in a later release, but exercising old APIs. They should be
// skipped if the device has a mixed build of system and vendor partitions.
static const std::map<int, std::set<std::string>> kMapOfMinVndkVersionToTests = {
{
__ANDROID_API_R__,
{
"add_broadcast_quant8_all_inputs_as_internal",
},
},
};
for (const auto& [minVersion, names] : kMapOfMinVndkVersionToTests) {
if (mVndkVersion < minVersion && names.count(kTestName) > 0) {
return true;
}
}
return false;
}
void GeneratedTests::SetUp() {
GeneratedTestBase::SetUp();
mVndkVersion = ::android::base::GetIntProperty("ro.vndk.version", __ANDROID_API_FUTURE__);
if (shouldSkipTest()) {
GTEST_SKIP();
return;
}
char cacheDirTemp[] = "/data/local/tmp/TestCompilationCachingXXXXXX";
char* cacheDir = mkdtemp(cacheDirTemp);
ASSERT_NE(cacheDir, nullptr);
mCacheDir = cacheDir;
mToken = std::vector<uint8_t>(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
}
void GeneratedTests::TearDown() {
mNnApi.reset(nullptr);
if (!::testing::Test::HasFailure()) {
// TODO: Switch to std::filesystem::remove_all once libc++fs is made available in CTS.
// Remove the cache directory specified by path recursively.
auto callback = [](const char* child, const struct stat*, int, struct FTW*) {
return remove(child);
};
nftw(mCacheDir.c_str(), callback, 128, FTW_DEPTH | FTW_MOUNT | FTW_PHYS);
}
GeneratedTestBase::TearDown();
}
#ifdef NNTEST_COMPUTE_MODE
TEST_P(GeneratedTests, Sync) {
std::cout << "\nComputeMode = SYNC" << std::endl;
mComputeMode = Execution::ComputeMode::SYNC;
execute(testModel);
}
TEST_P(GeneratedTests, Burst) {
std::cout << "\nComputeMode = BURST" << std::endl;
mComputeMode = Execution::ComputeMode::BURST;
execute(testModel);
}
#else
TEST_P(GeneratedTests, Test) {
execute(testModel);
}
#endif
TEST_P(DynamicOutputShapeTest, Test) {
execute(testModel);
}
TEST_P(GeneratedValidationTests, Test) {
execute(testModel);
}
TEST_P(QuantizationCouplingTest, Test) {
execute(convertQuant8AsymmOperandsToSigned(testModel));
}
TEST_P(DeviceMemoryTest, Test) {
execute(testModel);
}
TEST_P(FencedComputeTest, Test) {
mComputeMode = Execution::ComputeMode::FENCED;
execute(testModel);
}
INSTANTIATE_GENERATED_TEST(GeneratedTests,
[](const TestModel& testModel) { return !testModel.expectFailure; });
INSTANTIATE_GENERATED_TEST(DynamicOutputShapeTest, [](const TestModel& testModel) {
return !testModel.expectFailure && !testModel.hasScalarOutputs();
});
INSTANTIATE_GENERATED_TEST(GeneratedValidationTests, [](const TestModel& testModel) {
return testModel.expectFailure && !testModel.isInfiniteLoopTimeoutTest();
});
INSTANTIATE_GENERATED_TEST(QuantizationCouplingTest, [](const TestModel& testModel) {
return !testModel.expectFailure && testModel.main.operations.size() == 1 &&
testModel.referenced.size() == 0 && testModel.hasQuant8CoupledOperands();
});
INSTANTIATE_GENERATED_TEST(DeviceMemoryTest, [](const TestModel& testModel) {
return !testModel.expectFailure &&
std::all_of(testModel.main.outputIndexes.begin(), testModel.main.outputIndexes.end(),
[&testModel](uint32_t index) {
return testModel.main.operands[index].data.size() > 0;
});
});
INSTANTIATE_GENERATED_TEST(FencedComputeTest, [](const TestModel& testModel) {
return !testModel.expectFailure &&
std::all_of(testModel.main.outputIndexes.begin(), testModel.main.outputIndexes.end(),
[&testModel](uint32_t index) {
return testModel.main.operands[index].data.size() > 0;
});
});
} // namespace android::nn::generated_tests