You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1446 lines
65 KiB

/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <HalInterfaces.h>
#include <SampleDriver.h>
#include <ValidateHal.h>
#include <android-base/logging.h>
#include <android/hardware/neuralnetworks/1.0/ADevice.h>
#include <android/hardware/neuralnetworks/1.1/ADevice.h>
#include <android/hardware/neuralnetworks/1.2/ADevice.h>
#include <gtest/gtest.h>
#include <unistd.h>
#include <algorithm>
#include <cassert>
#include <cstdio>
#include <iterator>
#include <map>
#include <memory>
#include <random>
#include <set>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
#include "CompilationBuilder.h"
#include "HalUtils.h"
#include "Manager.h"
#include "ModelBuilder.h"
#include "NeuralNetworks.h"
#include "TestNeuralNetworksWrapper.h"
// Uncomment the following line to generate some debugging output that
// may be useful when analyzing failures:
//
// #define VERBOSE VERBOSE
// Uncomment the following line to generate some debugging output that
// may be useful to determine test coverage for support of dynamic
// temporaries (http://b/132458982):
//
// #define TRACE_DYNTEMP TRACE_DYNTEMP
// We randomly generate tests (model + input data) at runtime, and verify
// that we get the same results whether we do partitioned compilation/execution
// or non partitioned compilation/execution. We perform a test as follows:
//
// (1) Randomly generate a model (graph and weights), randomly generate input
// data, randomly assign inputs and outputs to CPU memory or to shared
// memory.
//
// Randomly leaves dimensions unset for intermediate operands.
//
// (2) Randomly generate drivers based on the sample driver, each of which
// executes models on the CPU. They differ according to which operations
// they support.
//
// (3) Compile and execute without partitioning, saving off the results.
//
// (4) Compile and execute with partitioning.
//
// (5) Verify that the saved results from (3) match the results from (4).
//
// For simplicity, all data (model inputs, model outputs, weights,
// temps) are of the same type: a 2-D TENSOR_FLOAT32 where the two
// dimensions are fixed throughout a particular test case (and
// randomly determined). This prevents us from having to find a
// mechanism to "resize" data (e.g., if ADD#a operates on data of size
// 2x2, ADD#b operates on data of size 3x3, and the outputs of ADD#a
// and ADD#b become inputs of ADD#c, do we need to insert one or more
// operations between (say) ADD#a and ADD#c to convert ADD#2's data
// from size 2x2 to size 3x3 in order to match ADD#b). In the few
// cases where an operand cannot be of this type, it is a constant
// (e.g., activation functions and RNN bias).
//
// Each operation we generate has a signature (described in more
// detail later). The randomly generated drivers decide which
// operations they can execute by checking operation signatures. Once
// we have built the model and know the set of signatures, we randomly
// assign each signature to a driver. No signature is supported by
// multiple drivers -- we're not testing the logic that the
// partitioning algorithm uses to select the best driver for an
// operation.
namespace android {
namespace V1_0 = ::android::hardware::neuralnetworks::V1_0;
namespace V1_1 = ::android::hardware::neuralnetworks::V1_1;
namespace V1_2 = ::android::hardware::neuralnetworks::V1_2;
namespace V1_3 = ::android::hardware::neuralnetworks::V1_3;
using CompilationBuilder = nn::CompilationBuilder;
using DeviceManager = nn::DeviceManager;
using Device = nn::Device;
using SharedDevice = nn::SharedDevice;
using ExecutionPlan = nn::ExecutionPlan;
using ExecutionStep = nn::ExecutionStep;
using HalCacheToken = nn::HalCacheToken;
using HalVersion = nn::HalVersion;
using HidlModel = V1_3::Model;
using LogicalStep = nn::LogicalStep;
using ModelBuilder = nn::ModelBuilder;
using Result = nn::test_wrapper::Result;
using SampleDriver = nn::sample_driver::SampleDriver;
using WrapperCompilation = nn::test_wrapper::Compilation;
using WrapperExecution = nn::test_wrapper::Execution;
using WrapperMemory = nn::test_wrapper::Memory;
using WrapperModel = nn::test_wrapper::Model;
using WrapperOperandType = nn::test_wrapper::OperandType;
using WrapperType = nn::test_wrapper::Type;
namespace {
/// Configure test size //////////////////////////////////////////////////////////
// We may exceed this in order to connect otherwise disjoint subgraphs.
static const unsigned kMaxNumOperations = 100;
// We build models to process 2-D square tensors up to this size in each dimension;
// note that the API promotes by-value weights larger than 128 to by-reference,
// so we want to ensure that we can pick both types that exceed and types that do
// not exceed this size.
static const unsigned kMaxProblemSize = 8;
// First seed for pseudorandom test generation.
static const unsigned kFirstSeed = 0;
// Number of test cases.
static const unsigned kNumTestCases = 225;
// Force all graph weights into a single pool (as we recommend to users)
// or allow them to be distributed across multiple pools (more stress
// on the partitioning algorithm and the rest of the runtime)?
// Forcing all graph weights into a single pool may be necessary to
// prevent large graphs from running up against http://b/70302693
// "NNAPI overuses (?) fds".
static const bool kAllWeightsInOnePool = false;
//////////////////////////////////////////////////////////////////////////////////
// The signature of an operation consists of the operation type (e.g.,
// ADD) and the activation function (use -1 in the case of an
// operation type for which the activation function is inapplicable).
typedef std::pair<ANeuralNetworksOperationType, int> Signature;
// This class adds some simple utilities on top of WrapperModel. For example,
// it provides access to certain features from ModelBuilder that are not exposed
// by the base class (such as inputCount() and operation index).
class TestModel : public WrapperModel {
public:
uint32_t addOperation(ANeuralNetworksOperationType type, const std::vector<uint32_t>& inputs,
const std::vector<uint32_t>& outputs) {
const uint32_t operationIndex = operationCount();
mOperations.push_back(outputs);
WrapperModel::addOperation(type, inputs, outputs);
return operationIndex;
}
uint32_t operationCount() const { return mOperations.size(); }
uint32_t inputCount() const { return builder()->inputCount(); }
uint32_t outputCount() const { return builder()->outputCount(); }
const std::vector<uint32_t>& getOperationOutputs(uint32_t index) const {
CHECK(index < mOperations.size());
return mOperations[index];
}
// All values are immediately copied into the model (we need to do
// this ourselves in cases where the underlying NNAPI does not).
void setOperandValue(uint32_t index, const std::vector<float>& value) {
const size_t length = value.size() * sizeof(float);
if (length <= ANEURALNETWORKS_MAX_SIZE_OF_IMMEDIATELY_COPIED_VALUES) {
WrapperModel::setOperandValue(index, value.data(), length);
} else {
mOperandValues.push_back(value);
WrapperModel::setOperandValue(index, mOperandValues.back().data(), length);
}
}
void setOperandValue(uint32_t index, const std::vector<int32_t>& value) {
const size_t length = value.size() * sizeof(int32_t);
CHECK(length <= ANEURALNETWORKS_MAX_SIZE_OF_IMMEDIATELY_COPIED_VALUES);
WrapperModel::setOperandValue(index, value.data(), length);
}
void setOperandValue(uint32_t index, int32_t value) {
CHECK(sizeof(value) <= ANEURALNETWORKS_MAX_SIZE_OF_IMMEDIATELY_COPIED_VALUES);
WrapperModel::setOperandValue(index, &value, sizeof(value));
}
private:
const ModelBuilder* builder() const {
return reinterpret_cast<const ModelBuilder*>(getHandle());
}
// Representation of operations: vector index is operation number,
// vector value is operation's output operands.
std::vector<std::vector<uint32_t>> mOperations;
// Large operand values -- not immediately copied into the
// WrapperModel, so remembered here instead.
std::vector<std::vector<float>> mOperandValues;
};
// This class adds some simple utilities on top of WrapperCompilation in order
// to provide access to certain features from CompilationBuilder that are not
// exposed by the base class.
class TestCompilation : public WrapperCompilation {
public:
TestCompilation(const WrapperModel* model) : WrapperCompilation(model) {}
TestCompilation(const WrapperModel* model, std::vector<std::shared_ptr<Device>> devices) {
ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model->getHandle());
CompilationBuilder* c = nullptr;
int result = m->createCompilation(&c, devices);
EXPECT_EQ(result, 0);
mCompilation = reinterpret_cast<ANeuralNetworksCompilation*>(c);
}
using WrapperCompilation::finish;
Result setPartitioning(uint32_t partitioning) {
return static_cast<Result>(builder()->forTest_setPartitioning(partitioning));
}
const ExecutionPlan& getExecutionPlan() const { return builder()->forTest_getExecutionPlan(); }
private:
const CompilationBuilder* builder() const {
return reinterpret_cast<const CompilationBuilder*>(getHandle());
}
CompilationBuilder* builder() { return reinterpret_cast<CompilationBuilder*>(getHandle()); }
};
// This class is used to manage a collection of memory regions,
// disjoint windows onto a set of Memory instances, each of which is
// associated with a single shared memory region. Each region and
// Memory instance is assigned a number. The usage pattern is as
// follows:
// - Call addMemory() and addRegion() as many times as needed to
// declare (but not define) Memory instances and declare region
// instances.
// - Call layout() to define the Memory instances.
// - Call getRegion() as many times as needed to get the details
// of memory regions (such as address, or Memory/offset/length).
// The Memory instances created by layout() are owned by the
// TestMemories instance, and are destroyed when the TestMemories
// instance is destroyed.
class TestMemories {
public:
TestMemories() = default;
TestMemories(const TestMemories&) = delete;
TestMemories& operator=(const TestMemories&) = delete;
unsigned addMemory() {
CHECK(!mLayoutDone);
mMemorySizes.push_back(0);
return memoryCount() - 1;
}
unsigned memoryCount() const { return mMemorySizes.size(); }
unsigned addRegion(unsigned memoryIndex, uint32_t length) {
CHECK(!mLayoutDone);
CHECK(memoryIndex < memoryCount());
uint32_t& memorySize = mMemorySizes[memoryIndex];
auto desc = std::make_tuple(memoryIndex, (uint32_t)memorySize, length);
mRegions.push_back(desc);
memorySize += length;
return regionCount() - 1;
}
unsigned regionCount() const { return mRegions.size(); }
void layout();
void* getRegion(unsigned regionIndex, const WrapperMemory** pMemory, uint32_t* pOffset,
uint32_t* pLength) {
CHECK(mLayoutDone);
CHECK(regionIndex < regionCount());
const auto& regionDescriptor = mRegions[regionIndex];
const WrapperMemory* memory = &mMemories[std::get<0>(regionDescriptor)];
uint32_t offset = std::get<1>(regionDescriptor);
uint32_t length = std::get<2>(regionDescriptor);
uint8_t* buffer = reinterpret_cast<nn::MemoryAshmem*>(memory->get())->getPointer();
CHECK(buffer != nullptr);
if (pMemory) *pMemory = memory;
if (pOffset) *pOffset = offset;
if (pLength) *pLength = length;
return buffer + offset;
}
void* getRegion(unsigned regionIndex) {
return getRegion(regionIndex, nullptr, nullptr, nullptr);
}
private:
// Index is the memory index; value is the size of the memory
// (aggregate size of all regions in the memory).
std::vector<uint32_t> mMemorySizes;
// Index is the memory index.
std::vector<WrapperMemory> mMemories;
// Index is the region index; tuple represents memory index,
// region offset within memory, region length.
std::vector<std::tuple<unsigned, uint32_t, uint32_t>> mRegions;
// For validity checking.
bool mLayoutDone = false;
};
void TestMemories::layout() {
CHECK(!mLayoutDone);
for (uint32_t memorySize : mMemorySizes) {
auto [n, ashmem] = nn::MemoryAshmem::create(memorySize);
CHECK_EQ(n, ANEURALNETWORKS_NO_ERROR);
CHECK(ashmem != nullptr);
ANeuralNetworksMemory* memory = reinterpret_cast<ANeuralNetworksMemory*>(ashmem.release());
mMemories.emplace_back(memory);
}
mLayoutDone = true;
}
class RandomPartitioningTest : public ::testing::TestWithParam<unsigned> {
public:
RandomPartitioningTest() : mRandNumEng(GetParam() /* seed */), mRandNumUnitDist(0.0, 1.0) {}
static Signature getSignature(const HidlModel& model, const V1_3::Operation& operation);
protected:
static SharedDevice makeTestDriver(HalVersion version, const char* name,
std::set<Signature> signatures);
static HalVersion getMinHalVersion(ANeuralNetworksOperationType type);
static std::string to_string(HalVersion version);
bool randBool() { return randUInt(2) == 1; }
double randFrac() { // [0.0, 1.0)
return mRandNumUnitDist(mRandNumEng);
}
unsigned randUInt(unsigned limit) { // [0, limit)
return unsigned(randFrac() * limit);
}
// Represents an operation in which every input and output operand
// is a TENSOR_FLOAT32 of dimensions [problemSize, problemSize] except:
// - One input operand may be an activation function.
// - Any number of input operands may be "special" in some other way
// (and in this implementation, not produced by any other operation).
// We require that:
// - There be at least one input operand that is neither an
// activation function nor "special".
struct OperationPattern {
HalVersion mMinHalVersion;
int mOperationType;
unsigned mNumInputs;
unsigned mNumOutputs;
int mActivationFunctionInputIndex; // <0 if none
// Returns operand index, or <0 if input is normal (must not
// be called for an activation function operand). Function
// should have the following prototype:
//
// int makeSpecialInput(unsigned problemSize, TestModel* model, unsigned inputIndex);
//
int (RandomPartitioningTest::*mMakeSpecialInput)(unsigned, TestModel*, unsigned);
};
static const OperationPattern kOperationPatterns[];
// See OperationPattern::mMakeSpecialInput. This function is used to
// manufacture an ELU input operand that doesn't fit the general operand
// pattern known to the graph generator infrastructure.
int makeEluSpecialInput([[maybe_unused]] unsigned problemSize, TestModel* model,
unsigned inputIndex) {
if (inputIndex != 1) {
return -1;
}
// input operand 1 is alpha, a scalar
const WrapperOperandType alphaType(WrapperType::FLOAT32, {});
return int(model->addConstantOperand(&alphaType, 1.0f));
}
// See OperationPattern::mMakeSpecialInput. This function is used to
// manufacture an RNN input operand that doesn't fit the general operand
// pattern known to the graph generator infrastructure.
int makeRnnSpecialInput(unsigned problemSize, TestModel* model, unsigned inputIndex) {
if (inputIndex != 3) {
return -1;
}
// input operand 3 is bias, a 1-D tensor
const WrapperOperandType biasType(WrapperType::TENSOR_FLOAT32, {problemSize});
const uint32_t operandIndex = model->addOperand(&biasType);
std::vector<float> biasValue(problemSize);
std::generate(biasValue.begin(), biasValue.end(), [this] { return randFrac(); });
model->setOperandValue(operandIndex, biasValue);
return int(operandIndex);
}
// See OperationPattern::mMakeSpecialInput. This function is used to
// manufacture a TRANSPOSE input operand that doesn't fit the general operand
// pattern known to the graph generator infrastructure.
int makeTransposeSpecialInput(unsigned /* problemSize */, TestModel* model,
unsigned inputIndex) {
if (inputIndex != 1) {
return -1;
}
// input operand 1 is perm, a 1-D tensor
const WrapperOperandType permType(WrapperType::TENSOR_INT32, {2});
const uint32_t operandIndex = model->addOperand(&permType);
std::vector<int32_t> permValue = {1, 0};
model->setOperandValue(operandIndex, permValue);
return int(operandIndex);
}
#ifdef VERBOSE
class ModelStats {
public:
ModelStats(const ModelBuilder* model) : mBuilder(model) {}
ModelStats(const WrapperModel* model)
: mBuilder(reinterpret_cast<const ModelBuilder*>(model->getHandle())) {}
friend std::ostream& operator<<(std::ostream& out, const ModelStats& stats) {
const uint32_t operandCount = stats.mBuilder->operandCount();
const uint32_t inputCount = stats.mBuilder->inputCount();
const uint32_t outputCount = stats.mBuilder->outputCount();
out << "operationCount = " << stats.mBuilder->operationCount()
<< ", operandCount = " << operandCount << ", inputCount = " << inputCount << " ("
<< (double(inputCount) / operandCount) << ")"
<< ", outputCount = " << outputCount << " (" << (double(outputCount) / operandCount)
<< ")";
return out;
}
private:
const ModelBuilder* mBuilder;
};
template <typename T_iterator>
static void dump(T_iterator I, T_iterator E) {
std::cout << "{";
for (; I != E; I++) {
std::cout << " " << *I;
}
std::cout << " }" << std::endl;
}
#endif
std::mt19937 mRandNumEng;
private:
std::uniform_real_distribution<double> mRandNumUnitDist;
};
const RandomPartitioningTest::OperationPattern RandomPartitioningTest::kOperationPatterns[] = {
{HalVersion::V1_0, ANEURALNETWORKS_ADD, 3, 1, 2, nullptr},
{HalVersion::V1_0, ANEURALNETWORKS_LOGISTIC, 1, 1, -1, nullptr},
{HalVersion::V1_0, ANEURALNETWORKS_MUL, 3, 1, 2, nullptr},
{HalVersion::V1_0, ANEURALNETWORKS_RNN, 6, 2, 5,
&RandomPartitioningTest::makeRnnSpecialInput},
{HalVersion::V1_0, ANEURALNETWORKS_TANH, 1, 1, -1, nullptr},
{HalVersion::V1_1, ANEURALNETWORKS_SUB, 3, 1, 2, nullptr},
{HalVersion::V1_1, ANEURALNETWORKS_TRANSPOSE, 2, 1, -1,
&RandomPartitioningTest::makeTransposeSpecialInput},
{HalVersion::V1_2, ANEURALNETWORKS_MAXIMUM, 2, 1, -1, nullptr},
{HalVersion::V1_2, ANEURALNETWORKS_NEG, 1, 1, -1, nullptr},
{HalVersion::V1_2, ANEURALNETWORKS_SIN, 1, 1, -1, nullptr},
{HalVersion::V1_3, ANEURALNETWORKS_ELU, 2, 1, -1,
&RandomPartitioningTest::makeEluSpecialInput},
{HalVersion::V1_3, ANEURALNETWORKS_HARD_SWISH, 1, 1, -1, nullptr},
};
HalVersion RandomPartitioningTest::getMinHalVersion(ANeuralNetworksOperationType type) {
static const auto kOperationToVersion = [] {
std::map<ANeuralNetworksOperationType, HalVersion> result;
for (const auto& pattern : kOperationPatterns) {
result[pattern.mOperationType] = pattern.mMinHalVersion;
}
return result;
}();
return kOperationToVersion.at(type);
}
Signature RandomPartitioningTest::getSignature(const HidlModel& model,
const V1_3::Operation& operation) {
static const auto kOperationToActivation = [] {
std::map<ANeuralNetworksOperationType, int> result;
for (const auto& pattern : kOperationPatterns) {
result[pattern.mOperationType] = pattern.mActivationFunctionInputIndex;
}
return result;
}();
const ANeuralNetworksOperationType operationType =
static_cast<ANeuralNetworksOperationType>(operation.type);
const int activationFunctionInputIndex = kOperationToActivation.at(operationType);
if (activationFunctionInputIndex < 0) {
return Signature(operationType, -1);
}
const V1_3::Operand& operand =
model.main.operands[operation.inputs[activationFunctionInputIndex]];
CHECK(operand.lifetime == V1_3::OperandLifeTime::CONSTANT_COPY);
CHECK(operand.type == V1_3::OperandType::INT32);
int32_t value;
memcpy(&value, &model.operandValues[operand.location.offset], operand.location.length);
return Signature(operationType, value);
}
std::string RandomPartitioningTest::to_string(HalVersion version) {
switch (version) {
case HalVersion::V1_0:
return "V1_0";
case HalVersion::V1_1:
return "V1_1";
case HalVersion::V1_2:
return "V1_2";
case HalVersion::V1_3:
return "V1_3";
default:
return "V_UNKNOWN";
}
};
class TestDriver : public SampleDriver {
public:
// Behaves like SampleDriver, except that it only supports
// operations with the specified signatures.
TestDriver(const char* name, std::set<Signature> signatures)
: SampleDriver(name), mSignatures(std::move(signatures)) {}
hardware::Return<void> getCapabilities_1_3(getCapabilities_1_3_cb _hidl_cb) override {
android::nn::initVLogMask();
const V1_0::PerformanceInfo kPerf = {.execTime = 0.75f, .powerUsage = 0.75f};
V1_3::Capabilities capabilities = {
.relaxedFloat32toFloat16PerformanceScalar = kPerf,
.relaxedFloat32toFloat16PerformanceTensor = kPerf,
.operandPerformance = nn::nonExtensionOperandPerformance<HalVersion::V1_3>(kPerf),
.ifPerformance = kPerf,
.whilePerformance = kPerf};
_hidl_cb(V1_3::ErrorStatus::NONE, capabilities);
return hardware::Void();
}
hardware::Return<void> getSupportedOperations_1_3(const HidlModel& model,
getSupportedOperations_1_3_cb cb) override {
if (nn::validateModel(model)) {
const size_t count = model.main.operations.size();
std::vector<bool> supported(count);
for (size_t i = 0; i < count; i++) {
supported[i] = (mSignatures.count(RandomPartitioningTest::getSignature(
model, model.main.operations[i])) != 0);
}
cb(V1_3::ErrorStatus::NONE, supported);
} else {
cb(V1_3::ErrorStatus::INVALID_ARGUMENT, {});
}
return hardware::Void();
}
hardware::Return<V1_3::ErrorStatus> prepareModel_1_3(
const HidlModel& model, V1_1::ExecutionPreference preference, V1_3::Priority priority,
const V1_3::OptionalTimePoint& deadline,
const hardware::hidl_vec<hardware::hidl_handle>& modelCache,
const hardware::hidl_vec<hardware::hidl_handle>& dataCache, const HalCacheToken& token,
const sp<V1_3::IPreparedModelCallback>& callback) override {
// NOTE: We verify that all operations in the model are supported.
V1_3::ErrorStatus outStatus = V1_3::ErrorStatus::INVALID_ARGUMENT;
auto ret = getSupportedOperations_1_3(
model, [&outStatus](V1_3::ErrorStatus inStatus,
const hardware::hidl_vec<bool>& supportedOperations) {
if (inStatus == V1_3::ErrorStatus::NONE) {
if (std::all_of(supportedOperations.begin(), supportedOperations.end(),
[](bool v) { return v; })) {
outStatus = V1_3::ErrorStatus::NONE;
}
}
});
if (ret.isOk() && (outStatus == V1_3::ErrorStatus::NONE)) {
return SampleDriver::prepareModel_1_3(model, preference, priority, deadline, modelCache,
dataCache, token, callback);
} else {
callback->notify_1_3(V1_3::ErrorStatus::INVALID_ARGUMENT, nullptr);
return V1_3::ErrorStatus::INVALID_ARGUMENT;
}
}
private:
const std::set<Signature> mSignatures;
};
class TestDriverV1_2 : public V1_2::ADevice {
public:
TestDriverV1_2(const char* name, std::set<Signature> signatures)
: V1_2::ADevice(new TestDriver(name, std::move(signatures))) {}
};
class TestDriverV1_1 : public V1_1::ADevice {
public:
TestDriverV1_1(const char* name, std::set<Signature> signatures)
: V1_1::ADevice(new TestDriver(name, std::move(signatures))) {}
};
class TestDriverV1_0 : public V1_0::ADevice {
public:
TestDriverV1_0(const char* name, std::set<Signature> signatures)
: V1_0::ADevice(new TestDriver(name, std::move(signatures))) {}
};
SharedDevice RandomPartitioningTest::makeTestDriver(HalVersion version, const char* name,
std::set<Signature> signatures) {
switch (version) {
case HalVersion::V1_0:
return nn::makeSharedDevice(name, new TestDriverV1_0(name, std::move(signatures)));
case HalVersion::V1_1:
return nn::makeSharedDevice(name, new TestDriverV1_1(name, std::move(signatures)));
case HalVersion::V1_2:
return nn::makeSharedDevice(name, new TestDriverV1_2(name, std::move(signatures)));
case HalVersion::V1_3:
return nn::makeSharedDevice(name, new TestDriver(name, std::move(signatures)));
default:
ADD_FAILURE() << "Unexpected HalVersion " << static_cast<int32_t>(version);
return nullptr;
}
}
INSTANTIATE_TEST_SUITE_P(Seed, RandomPartitioningTest,
::testing::Range(kFirstSeed, kFirstSeed + kNumTestCases));
TEST_P(RandomPartitioningTest, Test) {
LOG(INFO) << "RandomPartitioningTest: GetParam() = " << GetParam();
#ifdef VERBOSE
std::cout << std::setprecision(2) << std::fixed << std::setw(4);
#endif
const unsigned problemSize = 1 + randUInt(kMaxProblemSize);
const WrapperOperandType problemType(WrapperType::TENSOR_FLOAT32, {problemSize, problemSize});
const WrapperOperandType unknownDimensionsTypes[] = {
{WrapperType::TENSOR_FLOAT32, {}},
{WrapperType::TENSOR_FLOAT32, {0, 0}},
{WrapperType::TENSOR_FLOAT32, {0, problemSize}},
{WrapperType::TENSOR_FLOAT32, {problemSize, 0}},
};
const unsigned kUnknownDimensionsTypesCount =
sizeof(unknownDimensionsTypes) / sizeof(unknownDimensionsTypes[0]);
static const WrapperOperandType activationFunctionType(WrapperType::INT32, {});
const unsigned numOperations = 2 + randUInt(kMaxNumOperations - 1);
const bool allowDeadOperations = (randFrac() < 0.2);
const bool allowUnknownDimensions = (randFrac() < 0.25);
// TODO: The current algorithm builds the graph in a forward
// direction (i.e., later-generated operations consume outputs
// from earlier-generated operations). In order to get more
// variation in graph topology, perhaps we should also create an
// algorithm to build the graph in a backward direction (i.e.,
// later-generated operations produce outputs to be consumed by
// earlier-generated operations).
[[maybe_unused]] const bool buildForward = randBool();
// TODO: Add a form of forced connectivity that operates by
// joining disjoint subgraphs rather than by forcing a root.
const bool forceCommonRoot = (randFrac() < 0.75);
auto computeMode = WrapperExecution::getComputeMode();
// We check randFrac() independent of compute mode, because we don't want
// the random number sequence to change depending on compute mode: Compute
// mode should only affect how we perform the inference, not how we build the
// Model, the Compilation, or the Execution.
if (randFrac() < 0.5 && computeMode == WrapperExecution::ComputeMode::ASYNC) {
computeMode = WrapperExecution::ComputeMode::FENCED;
}
TestModel model;
std::vector<uint32_t> modelInputs;
std::vector<uint32_t> modelOutputs;
std::set<uint32_t> operandsWithUnknownDimensions;
// Each region in weights is a problem-sized 2-D TENSOR_FLOAT32.
TestMemories weights;
// Keep track of all normal (i.e., not activation function and not
// "special") operands that are values (from setOperandValue*()).
// .first: operand index
// .second: if the operand is already defined (via setOperandValue*()) then ~0U;
// otherwise, the operand has yet to be defined, and this is the corresponding
// region index in "weights"
std::vector<std::pair<uint32_t, unsigned>> valueOperands;
// An operand is "dead" if it is not consumed by another operation
// and is not a model output. Key is operand index; value is
// operation index.
std::map<uint32_t, uint32_t> deadOperands;
// An operation is "dead" if all of its outputs are dead.
std::set<uint32_t> deadOperations;
// Collect the signatures of operations in this model.
std::set<Signature> signatures;
// For reporting purposes, keep track of the number of root
// operations (those that do not consume results produced by other
// operations).
unsigned rootOperationCount = 0;
// Track whether we added operands with unknown dimensions. In this case,
// partitioned compilation will fail if such an operand is read in a
// different partition than it is written, and the partition that does the
// writing is scheduled on a pre-HAL 1.2 (pre-Android Q) device.
bool hasUnknownDimensions = false;
// Generate operations.
for (unsigned i = 0; i < numOperations; i++) {
const unsigned operationPatternIndex = randUInt(std::size(kOperationPatterns));
const auto& operationPattern = kOperationPatterns[operationPatternIndex];
// INPUTS //////////////////////////////////////////////////////////////////////////////////
std::vector<uint32_t> operationInputs(operationPattern.mNumInputs, ~0U);
// First, process activation function and special inputs, and
// keep track of which inputs remain.
std::vector<uint32_t> normalOperationInputIndexes;
int32_t activationFunction = -1;
for (unsigned operationInputIndex = 0; operationInputIndex < operationPattern.mNumInputs;
operationInputIndex++) {
if (int(operationInputIndex) == operationPattern.mActivationFunctionInputIndex) {
const uint32_t operandIndex = model.addOperand(&activationFunctionType);
activationFunction = randUInt(4);
if (activationFunction == ANEURALNETWORKS_FUSED_RELU1) {
// workaround for http://b/69011131
activationFunction = ANEURALNETWORKS_FUSED_NONE;
}
model.setOperandValue(operandIndex, activationFunction);
operationInputs[operationInputIndex] = operandIndex;
continue;
}
if (operationPattern.mMakeSpecialInput != nullptr) {
const int operandIndex = (this->*(operationPattern.mMakeSpecialInput))(
problemSize, &model, operationInputIndex);
if (operandIndex >= 0) {
operationInputs[operationInputIndex] = operandIndex;
continue;
}
}
normalOperationInputIndexes.push_back(operationInputIndex);
}
CHECK(!normalOperationInputIndexes.empty());
signatures.insert(Signature(operationPattern.mOperationType, activationFunction));
// A (normal) operation input can be one of:
// - a new or existing model input
// - an output of an existing operation
// - an OperandValue
// - an OperandValueFromMemory
// Some guidelines:
// - We generally don't want all of an operation's inputs to be values (constants)
const unsigned normalOperationInputCount = normalOperationInputIndexes.size();
// How many of this operation's inputs are constants?
unsigned normalOperationInputConstantCount = 0;
// How many of this operation's inputs are model inputs?
unsigned normalOperationInputModelInputCount = 0;
// We begin by deciding what kind of input each (normal) operation will be; we don't
// actually pick input operand indexes at this time, because we might override this
// decision later.
enum InputKind { IK_SUBGRAPH_INPUT, IK_OPERATION_OUTPUT, IK_VALUE };
std::vector<InputKind> normalOperationInputKinds(normalOperationInputCount);
std::generate(
normalOperationInputKinds.begin(), normalOperationInputKinds.end(),
[this, &model, numOperations, normalOperationInputCount,
&normalOperationInputConstantCount,
&normalOperationInputModelInputCount]() -> InputKind {
// Constant? Becomes less likely the more
// constants we already have as inputs to
// this operation.
if (randFrac() < 0.3 * (1 - double(normalOperationInputConstantCount) /
normalOperationInputCount)) {
normalOperationInputConstantCount++;
return IK_VALUE;
}
// Model input? Becomes less likely the
// more model inputs we already have as
// inputs to this operation, and the further
// along we are in generating this model
// (i.e., the more operations we have
// generated).
if ((model.operationCount() == 0) ||
(randFrac() < 0.5 *
(1 - double(normalOperationInputModelInputCount) /
normalOperationInputCount) *
std::min(0.3, (1 - double(model.operationCount()) /
numOperations)))) {
normalOperationInputModelInputCount++;
return IK_SUBGRAPH_INPUT;
}
// Else output of an existing operation.
return IK_OPERATION_OUTPUT;
});
// Now force common root or model input, if necessary. (A
// model must have at least one input.)
auto force = [this, &normalOperationInputKinds,
normalOperationInputCount](InputKind forceKind) {
if (std::none_of(normalOperationInputKinds.begin(), normalOperationInputKinds.end(),
[forceKind](InputKind kind) { return kind == forceKind; })) {
normalOperationInputKinds[randUInt(normalOperationInputCount)] = forceKind;
}
};
if (forceCommonRoot && (model.operationCount() != 0)) {
force(IK_OPERATION_OUTPUT);
}
if (modelInputs.empty()) {
CHECK(model.operationCount() == 0);
force(IK_SUBGRAPH_INPUT);
}
// Finally create the normal inputs.
bool isRootOperation = true;
for (unsigned i = 0; i < normalOperationInputCount; i++) {
uint32_t operandIndex = ~0U;
switch (normalOperationInputKinds[i]) {
case IK_SUBGRAPH_INPUT: {
if (!modelInputs.empty() && (randFrac() < 0.5)) {
operandIndex = modelInputs[randUInt(modelInputs.size())];
} else {
operandIndex = model.addOperand(&problemType);
modelInputs.push_back(operandIndex);
}
break;
}
case IK_OPERATION_OUTPUT: {
decltype(deadOperands.begin()) deadOperandI;
if (!deadOperands.empty() && (randFrac() < 0.5)) {
deadOperandI = deadOperands.begin();
std::advance(deadOperandI, randUInt(deadOperands.size()));
operandIndex = deadOperandI->first;
} else {
const uint32_t existingOperationIndex = randUInt(model.operationCount());
const auto& existingOperationOutputs =
model.getOperationOutputs(existingOperationIndex);
operandIndex =
existingOperationOutputs[randUInt(existingOperationOutputs.size())];
deadOperandI = deadOperands.find(operandIndex);
CHECK(deadOperandI == deadOperands.end() ||
deadOperandI->second == existingOperationIndex);
}
if (deadOperandI != deadOperands.end()) {
const uint32_t correspondingOperation = deadOperandI->second;
deadOperands.erase(deadOperandI);
auto deadOperationI = deadOperations.find(correspondingOperation);
if (deadOperationI != deadOperations.end()) {
deadOperations.erase(deadOperationI);
}
}
isRootOperation = false;
break;
}
case IK_VALUE: {
if (!valueOperands.empty() && (randFrac() < 0.25)) {
operandIndex = valueOperands[randUInt(valueOperands.size())].first;
} else {
operandIndex = model.addOperand(&problemType);
if (randFrac() < 0.5) {
std::vector<float> value(problemSize * problemSize);
std::generate(value.begin(), value.end(),
[this] { return randFrac(); });
model.setOperandValue(operandIndex, value);
valueOperands.push_back(std::make_pair(operandIndex, ~0U));
} else {
unsigned memoryIndex = ~0U;
if ((weights.memoryCount() != 0) &&
(kAllWeightsInOnePool || (randFrac() < 0.5))) {
memoryIndex = randUInt(weights.memoryCount());
} else {
memoryIndex = weights.addMemory();
}
const size_t length = problemSize * problemSize * sizeof(float);
const unsigned regionIndex = weights.addRegion(memoryIndex, length);
valueOperands.push_back(std::make_pair(operandIndex, regionIndex));
}
}
break;
}
default:
FAIL();
}
operationInputs[normalOperationInputIndexes[i]] = operandIndex;
}
if (isRootOperation) {
rootOperationCount++;
}
// OUTPUTS /////////////////////////////////////////////////////////////////////////////////
std::vector<uint32_t> operationOutputs(operationPattern.mNumOutputs);
std::generate(
operationOutputs.begin(), operationOutputs.end(),
[&operandsWithUnknownDimensions, &model, &problemType, &unknownDimensionsTypes,
&hasUnknownDimensions, allowUnknownDimensions, this] {
// Before the fix for http://b/132458982, 3% unknowns causes
// ~35% of partitionings to fail. After the fix, 3%
// unknowns causes ~3% of partitionings to fail. (This is
// determined by removing the fallback code and noting the
// number of failures.)
if (allowUnknownDimensions && randFrac() < 0.03) {
hasUnknownDimensions = true;
uint32_t opndIdx = model.addOperand(
&unknownDimensionsTypes[randUInt(kUnknownDimensionsTypesCount)]);
operandsWithUnknownDimensions.insert(opndIdx);
return opndIdx;
} else {
return model.addOperand(&problemType);
}
});
// OPERATION ///////////////////////////////////////////////////////////////////////////////
const uint32_t operationIndex = model.addOperation(operationPattern.mOperationType,
operationInputs, operationOutputs);
deadOperations.insert(operationIndex);
std::for_each(operationOutputs.begin(), operationOutputs.end(),
[&deadOperands, operationIndex](uint32_t operandIndex) {
deadOperands.insert(std::make_pair(operandIndex, operationIndex));
});
}
// Now finalize the weights.
weights.layout();
for (const auto& valueOperand : valueOperands) {
const uint32_t operandIndex = valueOperand.first;
const unsigned regionIndex = valueOperand.second;
if (regionIndex == ~0U) {
continue;
}
const WrapperMemory* memory;
uint32_t offset, length;
float* region =
static_cast<float*>(weights.getRegion(regionIndex, &memory, &offset, &length));
CHECK(length == problemSize * problemSize * sizeof(float));
std::generate(region, region + problemSize * problemSize, [this] { return randFrac(); });
model.setOperandValueFromMemory(operandIndex, memory, offset, length);
}
// Now select model outputs.
for (uint32_t operationIdx = 0, operationCount = model.operationCount();
operationIdx < operationCount; operationIdx++) {
const auto& outputs = model.getOperationOutputs(operationIdx);
for (uint32_t outputIdx = 0, outputCount = outputs.size(); outputIdx < outputCount;
outputIdx++) {
bool modelOutput = false;
const uint32_t operandIndex = outputs[outputIdx];
const auto deadOperandI = deadOperands.find(operandIndex);
if (deadOperandI != deadOperands.end()) {
// This is not consumed within the model, so unless we
// make it an output of the model, it's dead. The
// further along we are in generating this model
// (i.e., the more operations we have generated), the
// more likely we are to classify this operation
// output as a model output.
const double probabilityOfModelOutput =
0.50 * [](double x) { return x * x; }((operationIdx + 1) / operationCount);
modelOutput = (randFrac() < probabilityOfModelOutput);
} else {
// This is consumed within the model, so we'll rarely
// make it an output of the model.
modelOutput = (randFrac() < 0.05);
}
if (!modelOutput) {
continue;
}
modelOutputs.push_back(operandIndex);
if (deadOperandI != deadOperands.end()) {
deadOperands.erase(deadOperandI);
const auto deadOperationI = deadOperations.find(operationIdx);
if (deadOperationI != deadOperations.end()) {
deadOperations.erase(deadOperationI);
}
}
}
}
if (!allowDeadOperations) {
// For each dead operation, pick a random output to become a model output.
for (uint32_t deadOperationIndex : deadOperations) {
const auto& deadOperationOutputs = model.getOperationOutputs(deadOperationIndex);
const uint32_t deadOperandIndex =
deadOperationOutputs[randUInt(deadOperationOutputs.size())];
modelOutputs.push_back(deadOperandIndex);
}
}
// A model must have at least one output.
if (modelOutputs.empty()) {
const auto& outputs = model.getOperationOutputs(randUInt(model.operationCount()));
modelOutputs.push_back(outputs[randUInt(outputs.size())]);
}
if (computeMode == WrapperExecution::ComputeMode::FENCED) {
if (std::any_of(modelOutputs.begin(), modelOutputs.end(),
[&operandsWithUnknownDimensions](uint32_t opndIdx) {
return operandsWithUnknownDimensions.count(opndIdx) != 0;
})) {
// Workaround for http://b/162980246: Fenced execution is documented
// as requiring model outputs to have fully specified dimensions,
// either from Model or from Execution, but its implementation
// requires this to come from Model. This test only guarantees that
// they have fully specified dimensions from Execution. So in the
// case of a Model where some output does not have fully specified
// dimensions, perform asynchronous execution instead.
computeMode = WrapperExecution::ComputeMode::ASYNC;
}
}
model.identifyInputsAndOutputs(modelInputs, modelOutputs);
#ifdef VERBOSE
{
std::cout << "Original model: " << ModelStats(&model) << std::endl;
std::cout << "rootOperationCount = " << rootOperationCount << ", deadOperations = ";
if (allowDeadOperations) {
std::cout << deadOperations.size();
} else {
std::cout << "forbidden (converted " << deadOperations.size() << ")";
}
std::cout << std::endl;
}
#endif
ASSERT_EQ(model.finish(), Result::NO_ERROR);
// Non-partitioned compilation.
TestCompilation c(&model);
ASSERT_EQ(c.setPartitioning(DeviceManager::kPartitioningNo), Result::NO_ERROR);
ASSERT_EQ(c.finish(), Result::NO_ERROR);
// Create some drivers for partitioned compilation.
CHECK(!signatures.empty());
std::vector<std::set<Signature>> signaturesForDriver(signatures.size());
// First assign each signature to a random driver (a driver is
// just represented as an entry in the signaturesForDriver
// vector).
for (Signature signature : signatures) {
signaturesForDriver[randUInt(signatures.size())].insert(signature);
}
// Now remove each entry that has no signatures.
auto firstExtra =
std::remove_if(signaturesForDriver.begin(), signaturesForDriver.end(),
[](const std::set<Signature>& sigSet) { return sigSet.empty(); });
if (firstExtra != signaturesForDriver.end()) {
signaturesForDriver.erase(firstExtra, signaturesForDriver.end());
}
// Now actually create the drivers.
std::vector<std::shared_ptr<Device>> devices;
for (unsigned i = 0; i < signaturesForDriver.size(); i++) {
const auto& signaturesForThisDriver = signaturesForDriver[i];
// Minimum HAL version for this driver is highest minimum HAL version of
// any operation supported by this driver.
const HalVersion minHalVersion = getMinHalVersion(
std::max_element(signaturesForThisDriver.begin(), signaturesForThisDriver.end(),
[](const Signature& a, const Signature& b) {
return getMinHalVersion(a.first) < getMinHalVersion(b.first);
})
->first);
const HalVersion actualHalVersion =
static_cast<HalVersion>(static_cast<int32_t>(minHalVersion) +
randUInt(static_cast<int32_t>(HalVersion::LATEST) -
static_cast<int32_t>(minHalVersion) + 1));
const std::string name =
"TestDriver(" + std::to_string(i) + "){" + to_string(actualHalVersion) + "}";
#ifdef VERBOSE
std::cout << "Creating " + name + " for collection of signatures that requires HAL " +
to_string(minHalVersion)
<< std::endl;
#endif
auto device = DeviceManager::forTest_makeDriverDevice(
makeTestDriver(actualHalVersion, name.c_str(), signaturesForThisDriver));
devices.push_back(device);
}
// CPU fallback device
devices.push_back(DeviceManager::getCpuDevice());
// Partitioned compilation.
//
// If a test case has both (a) unknown intermediate operand sizes and
// (b) partitions scheduled on pre-HAL 1.2 (pre-Android Q) devices, fallback
// is needed if the non-fallback partitioning fails.
//
// The issue is that prior to HAL 1.2, an output operand must have a known
// size provided either in the Model or in the Request; and in the case of
// partitioning, an intermediate operand of the original model that becomes
// an output operand of a partition won't have a known size provided in the
// Request.
//
// If a test case has a step model with no inputs or no outputs, fallback is needed.
// This is because our HAL specification requires a model to have at least one
// input and one output.
//
// If a fallback is needed, we retry the compilation with a fallback and require
// the fallback to succeed. Otherwise, we require the partitioning to succeed
// without CPU fallback.
TestCompilation cNoFallback(&model, devices);
TestCompilation cWithFallback(&model, devices);
ASSERT_EQ(cNoFallback.setPartitioning(DeviceManager::kPartitioningWithoutFallback),
Result::NO_ERROR);
auto compilationResult = cNoFallback.finish();
const bool fallbackNeededForDynamicTemporaries =
compilationResult == Result::OP_FAILED && hasUnknownDimensions &&
cNoFallback.getExecutionPlan().hasDynamicTemporaries() &&
std::any_of(devices.begin(), devices.end(), [](const std::shared_ptr<Device>& device) {
return device->getFeatureLevel() < nn::kHalVersionV1_2ToApi.featureLevel;
});
const bool fallbackNeededForStepModelWithNoInputsOrNoOutputs =
cNoFallback.getExecutionPlan().forTest_hasStepModelWithNoInputsOrNoOutputs();
const bool fallbackNeeded = fallbackNeededForDynamicTemporaries ||
fallbackNeededForStepModelWithNoInputsOrNoOutputs;
if (fallbackNeeded) {
ASSERT_EQ(compilationResult, Result::OP_FAILED);
ASSERT_EQ(cWithFallback.setPartitioning(DeviceManager::kPartitioningWithFallback),
Result::NO_ERROR);
compilationResult = cWithFallback.finish();
ASSERT_EQ(compilationResult, Result::NO_ERROR);
ASSERT_EQ(cWithFallback.getExecutionPlan().forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
ASSERT_EQ(cWithFallback.getExecutionPlan().forTest_simpleGetDevice(),
DeviceManager::getCpuDevice());
} else {
ASSERT_EQ(compilationResult, Result::NO_ERROR);
const ExecutionPlan& plan = cNoFallback.getExecutionPlan();
if (signaturesForDriver.size() == 1) {
ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
ASSERT_TRUE(plan.forTest_simpleGetDevice() != DeviceManager::getCpuDevice());
} else {
ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::COMPOUND);
auto stepToDeviceId = [](const std::shared_ptr<LogicalStep>& step) {
return step->executionStep()->getDevice();
};
std::set<decltype(stepToDeviceId(plan.forTest_compoundGetSteps()[0]))> deviceSet;
for (const auto& step : plan.forTest_compoundGetSteps()) {
deviceSet.insert(stepToDeviceId(step));
}
// TODO(b/178517567): Figure out why we sometimes have 1 more
// signature than we have devices -- this means that we've scheduled
// one or more operations onto the CPU fallback device, which is not
// something we ever expect to do.
ASSERT_TRUE(deviceSet.size() == signaturesForDriver.size() ||
deviceSet.size() == signaturesForDriver.size() + 1);
}
}
TestCompilation& c2 = (fallbackNeeded ? cWithFallback : cNoFallback);
#ifdef TRACE_DYNTEMP
{
const ExecutionPlan& plan = c2.getExecutionPlan();
const size_t dynamicTemporaryCount = plan.forTest_flatGetDynamicTemporaries().size();
std::cout << "TRACE_DYNTEMP: dynamic temporary count = " << dynamicTemporaryCount
<< std::endl;
if (plan.forTest_getKind() == ExecutionPlan::Kind::COMPOUND) {
size_t stepsWithModelOutputsThatAreDownstreamInputs = 0;
size_t countOfModelOutputsThatAreDownstreamInputs = 0;
for (const auto& step : plan.forTest_compoundGetSteps()) {
if (const size_t count = step->executionStep()
->getModelOutputsThatAreDownstreamInputs()
.size()) {
++stepsWithModelOutputsThatAreDownstreamInputs;
countOfModelOutputsThatAreDownstreamInputs += count;
}
}
if (countOfModelOutputsThatAreDownstreamInputs != 0) {
std::cout << "TRACE_DYNTEMP: model outputs that are downstream inputs: "
<< countOfModelOutputsThatAreDownstreamInputs << " / "
<< modelOutputs.size() << ", over "
<< stepsWithModelOutputsThatAreDownstreamInputs << " / "
<< plan.forTest_compoundGetSteps().size() << " steps" << std::endl;
EXPECT_LE(countOfModelOutputsThatAreDownstreamInputs, modelOutputs.size());
}
} else {
EXPECT_EQ(dynamicTemporaryCount, size_t(0))
<< "Only COMPOUND plan should have dynamic temporaries";
}
}
#endif
#ifdef VERBOSE
{
std::cout << "signatures = " << signatures.size() << ", devices = " << devices.size()
<< std::endl;
// TODO: When dumping steps, include non-ExecutionSteps.
const ExecutionPlan& plan = c2.getExecutionPlan();
switch (plan.forTest_getKind()) {
case ExecutionPlan::Kind::SIMPLE:
std::cout << "plan: simple" << std::endl;
break;
case ExecutionPlan::Kind::COMPOUND: {
const auto& steps = plan.forTest_compoundGetSteps();
std::set<const Device*> devicesInPlan;
for (const auto& step : steps) {
if (const auto* executionStep = step->tryExecutionStep()) {
devicesInPlan.insert(executionStep->getDevice().get());
}
}
std::cout << "plan: compound, " << steps.size() << " steps over "
<< devicesInPlan.size() << " devices" << std::endl;
for (unsigned i = 0; i < steps.size(); i++) {
if (const auto executionStep = steps[i]->tryExecutionStep()) {
std::cout << "Step " << i << ": "
<< ModelStats(executionStep->getStepModel())
<< ", device = " << executionStep->getDevice()->getName()
<< std::endl;
}
}
break;
}
default:
std::cout << "Unexpected plan kind: "
<< static_cast<unsigned>(plan.forTest_getKind());
break;
}
}
#endif
// For execution:
// - create golden inputs (one long vector) and golden output value
// - golden inputs will be copied to actual inputs before each
// of the two executions
// - golden output will be used to fill actual outputs before each
// of the two executions
// - create actual inputs and outputs
// - first execution (non-partitioned)
// - initialize inputs and (to avoid unrelated oddities) outputs
// - execute
// - copy outputs to a save area (one long vector)
// - second execution (partitioned)
// - (to avoid unrelated oddities) initialize inputs and outputs
// - execute
// - compare outputs to save area
// If the runtime and drivers are working properly, execution
// should not change the inputs. Nonetheless, we reinitialize the
// inputs for each execution, so as to avoid unrelated problems
// appearing to be problems related to unpartitioned execution
// versus partitioned execution. Similarly, execution behavior
// should not be dependent on the outputs; but we'll initialize the
// outputs anyway.
std::vector<float> goldenInputs(problemSize * problemSize * model.inputCount());
std::generate(goldenInputs.begin(), goldenInputs.end(), [this] { return randFrac(); });
#ifdef VERBOSE
{
std::cout << "flat inputs = ";
dump(goldenInputs.begin(), goldenInputs.end());
}
#endif
const float goldenOutput = randFrac();
// Create the memory for the actual inputs and outputs.
struct InputOutputDescriptor {
enum Kind { INPUT, OUTPUT };
Kind mKind;
// The input or output either resides in a local buffer
// (mVector, in which case mMemoryRegion is ignored); or in a
// shared memory region within a TestMemories instance
// (mMemoryRegion, in which case mVector is ignored).
enum Location { VECTOR, REGION };
Location getLocation() const { return !mVector.empty() ? VECTOR : REGION; }
std::vector<float> mVector;
unsigned mMemoryRegion;
};
std::vector<InputOutputDescriptor> ioDescriptors(model.inputCount() + model.outputCount());
for (unsigned i = 0; i < ioDescriptors.size(); i++) {
ioDescriptors[i].mKind = (i < model.inputCount() ? InputOutputDescriptor::INPUT
: InputOutputDescriptor::OUTPUT);
}
// We randomly interleave inputs and outputs in creation
// order, because when we we create memory regions in a
// TestMemories instance, the order in which regions are
// created within a single Memory is the order they'll be laid
// out in that memory; and when we have inputs and outputs
// within the same Memory, we want the possibility that
// they'll be interleaved.
std::shuffle(ioDescriptors.begin(), ioDescriptors.end(), mRandNumEng);
TestMemories ioMemories;
for (auto& desc : ioDescriptors) {
if (randFrac() < 0.5) {
desc.mVector.resize(problemSize * problemSize);
} else {
// TODO: common this with the way we create IK_VALUE inputs?
unsigned memoryIndex = ~0U;
if ((ioMemories.memoryCount() != 0) && (randFrac() < 0.5)) {
memoryIndex = randUInt(ioMemories.memoryCount());
} else {
memoryIndex = ioMemories.addMemory();
}
const size_t length = problemSize * problemSize * sizeof(float);
desc.mMemoryRegion = ioMemories.addRegion(memoryIndex, length);
}
}
ioMemories.layout();
// Function to set up actual inputs and outputs (initializing them
// and telling the WrapperExecution about them).
auto prepareForExecution = [&model, &ioDescriptors, &ioMemories, &goldenInputs, &goldenOutput,
problemSize, &problemType](WrapperExecution* e) {
uint32_t inputIndex = 0, outputIndex = 0;
for (auto& desc : ioDescriptors) {
if (desc.getLocation() == InputOutputDescriptor::VECTOR) {
if (desc.mKind == InputOutputDescriptor::INPUT) {
const size_t inputOffset = inputIndex * problemSize * problemSize;
std::copy(goldenInputs.begin() + inputOffset,
goldenInputs.begin() + inputOffset + problemSize * problemSize,
desc.mVector.begin());
e->setInput(inputIndex++, desc.mVector.data(),
desc.mVector.size() * sizeof(float));
} else {
std::fill(desc.mVector.begin(),
desc.mVector.begin() + problemSize * problemSize, goldenOutput);
e->setOutput(outputIndex++, desc.mVector.data(),
desc.mVector.size() * sizeof(float), &problemType.operandType);
}
} else {
const WrapperMemory* memory;
uint32_t offset, length;
float* region = static_cast<float*>(
ioMemories.getRegion(desc.mMemoryRegion, &memory, &offset, &length));
CHECK(length == problemSize * problemSize * sizeof(float));
if (desc.mKind == InputOutputDescriptor::INPUT) {
const size_t inputOffset = inputIndex * problemSize * problemSize;
std::copy(goldenInputs.begin() + inputOffset,
goldenInputs.begin() + inputOffset + problemSize * problemSize,
region);
e->setInputFromMemory(inputIndex++, memory, offset, length);
} else {
std::fill(region, region + problemSize * problemSize, goldenOutput);
e->setOutputFromMemory(outputIndex++, memory, offset, length,
&problemType.operandType);
}
}
};
CHECK(inputIndex == model.inputCount());
CHECK(outputIndex == model.outputCount());
};
// Non-partitioned execution.
WrapperExecution e(&c);
ASSERT_NO_FATAL_FAILURE(prepareForExecution(&e));
ASSERT_EQ(e.compute(computeMode), Result::NO_ERROR);
// Copy the outputs of the non-partitioned execution to a save area.
std::vector<float> nonPartitionedOutputs(problemSize * problemSize * model.outputCount());
{
uint32_t outputIndex = 0;
for (const auto& desc : ioDescriptors) {
if (desc.mKind != InputOutputDescriptor::OUTPUT) {
continue;
}
const size_t outputOffset = outputIndex * problemSize * problemSize;
if (desc.getLocation() == InputOutputDescriptor::VECTOR) {
std::copy(desc.mVector.begin(), desc.mVector.end(),
nonPartitionedOutputs.begin() + outputOffset);
} else {
float* region = static_cast<float*>(ioMemories.getRegion(desc.mMemoryRegion));
std::copy(region, region + problemSize * problemSize,
nonPartitionedOutputs.begin() + outputOffset);
}
#ifdef VERBOSE
{
std::cout << "nonpartitioned output[" << outputIndex << "] = ";
dump(nonPartitionedOutputs.begin() + outputOffset,
nonPartitionedOutputs.begin() + outputOffset + problemSize * problemSize);
}
#endif
outputIndex++;
}
}
// Partitioned execution.
WrapperExecution e2(&c2);
ASSERT_NO_FATAL_FAILURE(prepareForExecution(&e2));
ASSERT_EQ(e2.compute(computeMode), Result::NO_ERROR);
// Compare the outputs of the partitioned execution to the save
// area containing the outpus of the non-partitioned execution.
{
uint32_t outputIndex = 0;
for (const auto& desc : ioDescriptors) {
if (desc.mKind != InputOutputDescriptor::OUTPUT) {
continue;
}
SCOPED_TRACE(outputIndex);
const size_t outputOffset = outputIndex * problemSize * problemSize;
if (desc.getLocation() == InputOutputDescriptor::VECTOR) {
#ifdef VERBOSE
std::cout << " partitioned output[" << outputIndex << "] = ";
dump(desc.mVector.begin(), desc.mVector.end());
#endif
ASSERT_TRUE(std::equal(desc.mVector.begin(), desc.mVector.end(),
nonPartitionedOutputs.begin() + outputOffset));
} else {
float* region = static_cast<float*>(ioMemories.getRegion(desc.mMemoryRegion));
#ifdef VERBOSE
std::cout << "part output[" << outputIndex << "] = ";
dump(region, region + problemSize * problemSize);
#endif
ASSERT_TRUE(std::equal(region, region + problemSize * problemSize,
nonPartitionedOutputs.begin() + outputOffset));
}
outputIndex++;
}
}
}
} // namespace
} // namespace android