You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
632 lines
22 KiB
632 lines
22 KiB
/*
|
|
* Copyright (C) 2018 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "RecordReadThread.h"
|
|
|
|
#include <sys/resource.h>
|
|
#include <unistd.h>
|
|
|
|
#include <algorithm>
|
|
#include <unordered_map>
|
|
|
|
#include "environment.h"
|
|
#include "event_type.h"
|
|
#include "record.h"
|
|
#include "utils.h"
|
|
|
|
namespace simpleperf {
|
|
|
|
static constexpr size_t kDefaultLowBufferLevel = 10 * 1024 * 1024u;
|
|
static constexpr size_t kDefaultCriticalBufferLevel = 5 * 1024 * 1024u;
|
|
|
|
RecordBuffer::RecordBuffer(size_t buffer_size)
|
|
: read_head_(0), write_head_(0), buffer_size_(buffer_size), buffer_(new char[buffer_size]) {}
|
|
|
|
size_t RecordBuffer::GetFreeSize() const {
|
|
size_t write_head = write_head_.load(std::memory_order_relaxed);
|
|
size_t read_head = read_head_.load(std::memory_order_relaxed);
|
|
size_t write_tail = read_head > 0 ? read_head - 1 : buffer_size_ - 1;
|
|
if (write_head <= write_tail) {
|
|
return write_tail - write_head;
|
|
}
|
|
return buffer_size_ - write_head + write_tail;
|
|
}
|
|
|
|
char* RecordBuffer::AllocWriteSpace(size_t record_size) {
|
|
size_t write_head = write_head_.load(std::memory_order_relaxed);
|
|
size_t read_head = read_head_.load(std::memory_order_acquire);
|
|
size_t write_tail = read_head > 0 ? read_head - 1 : buffer_size_ - 1;
|
|
cur_write_record_size_ = record_size;
|
|
if (write_head < write_tail) {
|
|
if (write_head + record_size > write_tail) {
|
|
return nullptr;
|
|
}
|
|
} else if (write_head + record_size > buffer_size_) {
|
|
// Not enough space at the end of the buffer, need to wrap to the start of the buffer.
|
|
if (write_tail < record_size) {
|
|
return nullptr;
|
|
}
|
|
if (buffer_size_ - write_head >= sizeof(perf_event_header)) {
|
|
// Set the size field in perf_event_header to 0. So GetCurrentRecord() can wrap to the start
|
|
// of the buffer when size is 0.
|
|
memset(buffer_.get() + write_head, 0, sizeof(perf_event_header));
|
|
}
|
|
cur_write_record_size_ += buffer_size_ - write_head;
|
|
write_head = 0;
|
|
}
|
|
return buffer_.get() + write_head;
|
|
}
|
|
|
|
void RecordBuffer::FinishWrite() {
|
|
size_t write_head = write_head_.load(std::memory_order_relaxed);
|
|
write_head = (write_head + cur_write_record_size_) % buffer_size_;
|
|
write_head_.store(write_head, std::memory_order_release);
|
|
}
|
|
|
|
char* RecordBuffer::GetCurrentRecord() {
|
|
size_t write_head = write_head_.load(std::memory_order_acquire);
|
|
size_t read_head = read_head_.load(std::memory_order_relaxed);
|
|
if (read_head == write_head) {
|
|
return nullptr;
|
|
}
|
|
perf_event_header header;
|
|
if (read_head > write_head) {
|
|
if (buffer_size_ - read_head < sizeof(header) ||
|
|
(memcpy(&header, buffer_.get() + read_head, sizeof(header)) && header.size == 0)) {
|
|
// Need to wrap to the start of the buffer.
|
|
cur_read_record_size_ += buffer_size_ - read_head;
|
|
read_head = 0;
|
|
memcpy(&header, buffer_.get(), sizeof(header));
|
|
}
|
|
} else {
|
|
memcpy(&header, buffer_.get() + read_head, sizeof(header));
|
|
}
|
|
cur_read_record_size_ += header.size;
|
|
return buffer_.get() + read_head;
|
|
}
|
|
|
|
void RecordBuffer::MoveToNextRecord() {
|
|
size_t read_head = read_head_.load(std::memory_order_relaxed);
|
|
read_head = (read_head + cur_read_record_size_) % buffer_size_;
|
|
read_head_.store(read_head, std::memory_order_release);
|
|
cur_read_record_size_ = 0;
|
|
}
|
|
|
|
RecordParser::RecordParser(const perf_event_attr& attr)
|
|
: sample_type_(attr.sample_type),
|
|
sample_regs_count_(__builtin_popcountll(attr.sample_regs_user)) {
|
|
size_t pos = sizeof(perf_event_header);
|
|
uint64_t mask = PERF_SAMPLE_IDENTIFIER | PERF_SAMPLE_IP;
|
|
pos += __builtin_popcountll(sample_type_ & mask) * sizeof(uint64_t);
|
|
if (sample_type_ & PERF_SAMPLE_TID) {
|
|
pid_pos_in_sample_records_ = pos;
|
|
pos += sizeof(uint64_t);
|
|
}
|
|
if (sample_type_ & PERF_SAMPLE_TIME) {
|
|
time_pos_in_sample_records_ = pos;
|
|
pos += sizeof(uint64_t);
|
|
}
|
|
mask = PERF_SAMPLE_ADDR | PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | PERF_SAMPLE_CPU |
|
|
PERF_SAMPLE_PERIOD;
|
|
pos += __builtin_popcountll(sample_type_ & mask) * sizeof(uint64_t);
|
|
callchain_pos_in_sample_records_ = pos;
|
|
if ((sample_type_ & PERF_SAMPLE_TIME) && attr.sample_id_all) {
|
|
mask = PERF_SAMPLE_IDENTIFIER | PERF_SAMPLE_CPU | PERF_SAMPLE_STREAM_ID | PERF_SAMPLE_ID;
|
|
time_rpos_in_non_sample_records_ =
|
|
(__builtin_popcountll(sample_type_ & mask) + 1) * sizeof(uint64_t);
|
|
}
|
|
}
|
|
|
|
size_t RecordParser::GetTimePos(const perf_event_header& header) const {
|
|
if (header.type == PERF_RECORD_SAMPLE) {
|
|
return time_pos_in_sample_records_;
|
|
}
|
|
if (time_rpos_in_non_sample_records_ != 0u &&
|
|
time_rpos_in_non_sample_records_ < header.size - sizeof(perf_event_header)) {
|
|
return header.size - time_rpos_in_non_sample_records_;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
size_t RecordParser::GetStackSizePos(
|
|
const std::function<void(size_t, size_t, void*)>& read_record_fn) const {
|
|
size_t pos = callchain_pos_in_sample_records_;
|
|
if (sample_type_ & PERF_SAMPLE_CALLCHAIN) {
|
|
uint64_t ip_nr;
|
|
read_record_fn(pos, sizeof(ip_nr), &ip_nr);
|
|
pos += (ip_nr + 1) * sizeof(uint64_t);
|
|
}
|
|
if (sample_type_ & PERF_SAMPLE_RAW) {
|
|
uint32_t size;
|
|
read_record_fn(pos, sizeof(size), &size);
|
|
pos += size + sizeof(uint32_t);
|
|
}
|
|
if (sample_type_ & PERF_SAMPLE_BRANCH_STACK) {
|
|
uint64_t stack_nr;
|
|
read_record_fn(pos, sizeof(stack_nr), &stack_nr);
|
|
pos += sizeof(uint64_t) + stack_nr * sizeof(BranchStackItemType);
|
|
}
|
|
if (sample_type_ & PERF_SAMPLE_REGS_USER) {
|
|
uint64_t abi;
|
|
read_record_fn(pos, sizeof(abi), &abi);
|
|
pos += (1 + (abi == 0 ? 0 : sample_regs_count_)) * sizeof(uint64_t);
|
|
}
|
|
return (sample_type_ & PERF_SAMPLE_STACK_USER) ? pos : 0;
|
|
}
|
|
|
|
KernelRecordReader::KernelRecordReader(EventFd* event_fd) : event_fd_(event_fd) {
|
|
size_t buffer_size;
|
|
buffer_ = event_fd_->GetMappedBuffer(buffer_size);
|
|
buffer_mask_ = buffer_size - 1;
|
|
}
|
|
|
|
bool KernelRecordReader::GetDataFromKernelBuffer() {
|
|
data_size_ = event_fd_->GetAvailableMmapDataSize(data_pos_);
|
|
if (data_size_ == 0) {
|
|
return false;
|
|
}
|
|
init_data_size_ = data_size_;
|
|
record_header_.size = 0;
|
|
return true;
|
|
}
|
|
|
|
void KernelRecordReader::ReadRecord(size_t pos, size_t size, void* dest) {
|
|
pos = (pos + data_pos_) & buffer_mask_;
|
|
size_t copy_size = std::min(size, buffer_mask_ + 1 - pos);
|
|
memcpy(dest, buffer_ + pos, copy_size);
|
|
if (copy_size < size) {
|
|
memcpy(static_cast<char*>(dest) + copy_size, buffer_, size - copy_size);
|
|
}
|
|
}
|
|
|
|
bool KernelRecordReader::MoveToNextRecord(const RecordParser& parser) {
|
|
data_pos_ = (data_pos_ + record_header_.size) & buffer_mask_;
|
|
data_size_ -= record_header_.size;
|
|
if (data_size_ == 0) {
|
|
event_fd_->DiscardMmapData(init_data_size_);
|
|
init_data_size_ = 0;
|
|
return false;
|
|
}
|
|
ReadRecord(0, sizeof(record_header_), &record_header_);
|
|
size_t time_pos = parser.GetTimePos(record_header_);
|
|
if (time_pos != 0) {
|
|
ReadRecord(time_pos, sizeof(record_time_), &record_time_);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
RecordReadThread::RecordReadThread(size_t record_buffer_size, const perf_event_attr& attr,
|
|
size_t min_mmap_pages, size_t max_mmap_pages,
|
|
size_t aux_buffer_size, bool allow_cutting_samples,
|
|
bool exclude_perf)
|
|
: record_buffer_(record_buffer_size),
|
|
record_parser_(attr),
|
|
attr_(attr),
|
|
min_mmap_pages_(min_mmap_pages),
|
|
max_mmap_pages_(max_mmap_pages),
|
|
aux_buffer_size_(aux_buffer_size) {
|
|
if (attr.sample_type & PERF_SAMPLE_STACK_USER) {
|
|
stack_size_in_sample_record_ = attr.sample_stack_user;
|
|
}
|
|
record_buffer_low_level_ = std::min(record_buffer_size / 4, kDefaultLowBufferLevel);
|
|
record_buffer_critical_level_ = std::min(record_buffer_size / 6, kDefaultCriticalBufferLevel);
|
|
if (!allow_cutting_samples) {
|
|
record_buffer_low_level_ = record_buffer_critical_level_;
|
|
}
|
|
if (exclude_perf) {
|
|
exclude_pid_ = getpid();
|
|
}
|
|
}
|
|
|
|
RecordReadThread::~RecordReadThread() {
|
|
if (read_thread_) {
|
|
StopReadThread();
|
|
}
|
|
}
|
|
|
|
bool RecordReadThread::RegisterDataCallback(IOEventLoop& loop,
|
|
const std::function<bool()>& data_callback) {
|
|
int cmd_fd[2];
|
|
int data_fd[2];
|
|
if (pipe2(cmd_fd, O_CLOEXEC) != 0 || pipe2(data_fd, O_CLOEXEC) != 0) {
|
|
PLOG(ERROR) << "pipe2";
|
|
return false;
|
|
}
|
|
read_cmd_fd_.reset(cmd_fd[0]);
|
|
write_cmd_fd_.reset(cmd_fd[1]);
|
|
cmd_ = NO_CMD;
|
|
read_data_fd_.reset(data_fd[0]);
|
|
write_data_fd_.reset(data_fd[1]);
|
|
has_data_notification_ = false;
|
|
if (!loop.AddReadEvent(read_data_fd_, data_callback)) {
|
|
return false;
|
|
}
|
|
read_thread_.reset(new std::thread([&]() { RunReadThread(); }));
|
|
return true;
|
|
}
|
|
|
|
bool RecordReadThread::AddEventFds(const std::vector<EventFd*>& event_fds) {
|
|
return SendCmdToReadThread(CMD_ADD_EVENT_FDS, const_cast<std::vector<EventFd*>*>(&event_fds));
|
|
}
|
|
|
|
bool RecordReadThread::RemoveEventFds(const std::vector<EventFd*>& event_fds) {
|
|
return SendCmdToReadThread(CMD_REMOVE_EVENT_FDS, const_cast<std::vector<EventFd*>*>(&event_fds));
|
|
}
|
|
|
|
bool RecordReadThread::SyncKernelBuffer() {
|
|
return SendCmdToReadThread(CMD_SYNC_KERNEL_BUFFER, nullptr);
|
|
}
|
|
|
|
bool RecordReadThread::StopReadThread() {
|
|
bool result = true;
|
|
if (read_thread_ != nullptr) {
|
|
result = SendCmdToReadThread(CMD_STOP_THREAD, nullptr);
|
|
if (result) {
|
|
read_thread_->join();
|
|
read_thread_ = nullptr;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
bool RecordReadThread::SendCmdToReadThread(Cmd cmd, void* cmd_arg) {
|
|
{
|
|
std::lock_guard<std::mutex> lock(cmd_mutex_);
|
|
cmd_ = cmd;
|
|
cmd_arg_ = cmd_arg;
|
|
}
|
|
char unused = 0;
|
|
if (TEMP_FAILURE_RETRY(write(write_cmd_fd_, &unused, 1)) != 1) {
|
|
return false;
|
|
}
|
|
std::unique_lock<std::mutex> lock(cmd_mutex_);
|
|
while (cmd_ != NO_CMD) {
|
|
cmd_finish_cond_.wait(lock);
|
|
}
|
|
return cmd_result_;
|
|
}
|
|
|
|
std::unique_ptr<Record> RecordReadThread::GetRecord() {
|
|
record_buffer_.MoveToNextRecord();
|
|
char* p = record_buffer_.GetCurrentRecord();
|
|
if (p != nullptr) {
|
|
std::unique_ptr<Record> r = ReadRecordFromBuffer(attr_, p);
|
|
if (r->type() == PERF_RECORD_AUXTRACE) {
|
|
auto auxtrace = static_cast<AuxTraceRecord*>(r.get());
|
|
record_buffer_.AddCurrentRecordSize(auxtrace->data->aux_size);
|
|
auxtrace->location.addr = r->Binary() + r->size();
|
|
}
|
|
return r;
|
|
}
|
|
if (has_data_notification_) {
|
|
char unused;
|
|
TEMP_FAILURE_RETRY(read(read_data_fd_, &unused, 1));
|
|
has_data_notification_ = false;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void RecordReadThread::RunReadThread() {
|
|
IncreaseThreadPriority();
|
|
IOEventLoop loop;
|
|
CHECK(loop.AddReadEvent(read_cmd_fd_, [&]() { return HandleCmd(loop); }));
|
|
loop.RunLoop();
|
|
}
|
|
|
|
void RecordReadThread::IncreaseThreadPriority() {
|
|
// TODO: use real time priority for root.
|
|
rlimit rlim;
|
|
int result = getrlimit(RLIMIT_NICE, &rlim);
|
|
if (result == 0 && rlim.rlim_cur == 40) {
|
|
result = setpriority(PRIO_PROCESS, gettid(), -20);
|
|
if (result == 0) {
|
|
LOG(VERBOSE) << "Priority of record read thread is increased";
|
|
}
|
|
}
|
|
}
|
|
|
|
RecordReadThread::Cmd RecordReadThread::GetCmd() {
|
|
std::lock_guard<std::mutex> lock(cmd_mutex_);
|
|
return cmd_;
|
|
}
|
|
|
|
bool RecordReadThread::HandleCmd(IOEventLoop& loop) {
|
|
char unused;
|
|
TEMP_FAILURE_RETRY(read(read_cmd_fd_, &unused, 1));
|
|
bool result = true;
|
|
switch (GetCmd()) {
|
|
case CMD_ADD_EVENT_FDS:
|
|
result = HandleAddEventFds(loop, *static_cast<std::vector<EventFd*>*>(cmd_arg_));
|
|
break;
|
|
case CMD_REMOVE_EVENT_FDS:
|
|
result = HandleRemoveEventFds(*static_cast<std::vector<EventFd*>*>(cmd_arg_));
|
|
break;
|
|
case CMD_SYNC_KERNEL_BUFFER:
|
|
result = ReadRecordsFromKernelBuffer();
|
|
break;
|
|
case CMD_STOP_THREAD:
|
|
result = loop.ExitLoop();
|
|
break;
|
|
default:
|
|
LOG(ERROR) << "Unknown cmd: " << GetCmd();
|
|
result = false;
|
|
break;
|
|
}
|
|
std::lock_guard<std::mutex> lock(cmd_mutex_);
|
|
cmd_ = NO_CMD;
|
|
cmd_result_ = result;
|
|
cmd_finish_cond_.notify_one();
|
|
return true;
|
|
}
|
|
|
|
bool RecordReadThread::HandleAddEventFds(IOEventLoop& loop,
|
|
const std::vector<EventFd*>& event_fds) {
|
|
std::unordered_map<int, EventFd*> cpu_map;
|
|
for (size_t pages = max_mmap_pages_; pages >= min_mmap_pages_; pages >>= 1) {
|
|
bool success = true;
|
|
bool report_error = pages == min_mmap_pages_;
|
|
for (EventFd* fd : event_fds) {
|
|
auto it = cpu_map.find(fd->Cpu());
|
|
if (it == cpu_map.end()) {
|
|
if (!fd->CreateMappedBuffer(pages, report_error)) {
|
|
success = false;
|
|
break;
|
|
}
|
|
if (IsEtmEventType(fd->attr().type)) {
|
|
if (!fd->CreateAuxBuffer(aux_buffer_size_, report_error)) {
|
|
fd->DestroyMappedBuffer();
|
|
success = false;
|
|
break;
|
|
}
|
|
}
|
|
cpu_map[fd->Cpu()] = fd;
|
|
} else {
|
|
if (!fd->ShareMappedBuffer(*(it->second), pages == min_mmap_pages_)) {
|
|
success = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (success) {
|
|
LOG(VERBOSE) << "Each kernel buffer is " << pages << " pages.";
|
|
break;
|
|
}
|
|
for (auto& pair : cpu_map) {
|
|
pair.second->DestroyMappedBuffer();
|
|
pair.second->DestroyAuxBuffer();
|
|
}
|
|
cpu_map.clear();
|
|
}
|
|
if (cpu_map.empty()) {
|
|
return false;
|
|
}
|
|
for (auto& pair : cpu_map) {
|
|
if (!pair.second->StartPolling(loop, [this]() { return ReadRecordsFromKernelBuffer(); })) {
|
|
return false;
|
|
}
|
|
kernel_record_readers_.emplace_back(pair.second);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool RecordReadThread::HandleRemoveEventFds(const std::vector<EventFd*>& event_fds) {
|
|
for (auto& event_fd : event_fds) {
|
|
if (event_fd->HasMappedBuffer()) {
|
|
auto it = std::find_if(
|
|
kernel_record_readers_.begin(), kernel_record_readers_.end(),
|
|
[&](const KernelRecordReader& reader) { return reader.GetEventFd() == event_fd; });
|
|
if (it != kernel_record_readers_.end()) {
|
|
kernel_record_readers_.erase(it);
|
|
event_fd->StopPolling();
|
|
event_fd->DestroyMappedBuffer();
|
|
event_fd->DestroyAuxBuffer();
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool CompareRecordTime(KernelRecordReader* r1, KernelRecordReader* r2) {
|
|
return r1->RecordTime() > r2->RecordTime();
|
|
}
|
|
|
|
// When reading from mmap buffers, we prefer reading from all buffers at once rather than reading
|
|
// one buffer at a time. Because by reading all buffers at once, we can merge records from
|
|
// different buffers easily in memory. Otherwise, we have to sort records with greater effort.
|
|
bool RecordReadThread::ReadRecordsFromKernelBuffer() {
|
|
do {
|
|
std::vector<KernelRecordReader*> readers;
|
|
for (auto& reader : kernel_record_readers_) {
|
|
if (reader.GetDataFromKernelBuffer()) {
|
|
readers.push_back(&reader);
|
|
}
|
|
}
|
|
bool has_data = false;
|
|
if (!readers.empty()) {
|
|
has_data = true;
|
|
if (readers.size() == 1u) {
|
|
// Only one buffer has data, process it directly.
|
|
while (readers[0]->MoveToNextRecord(record_parser_)) {
|
|
PushRecordToRecordBuffer(readers[0]);
|
|
}
|
|
} else {
|
|
// Use a binary heap to merge records from different buffers. As records from the same
|
|
// buffer are already ordered by time, we only need to merge the first record from all
|
|
// buffers. And each time a record is popped from the heap, we put the next record from its
|
|
// buffer into the heap.
|
|
for (auto& reader : readers) {
|
|
reader->MoveToNextRecord(record_parser_);
|
|
}
|
|
std::make_heap(readers.begin(), readers.end(), CompareRecordTime);
|
|
size_t size = readers.size();
|
|
while (size > 0) {
|
|
std::pop_heap(readers.begin(), readers.begin() + size, CompareRecordTime);
|
|
PushRecordToRecordBuffer(readers[size - 1]);
|
|
if (readers[size - 1]->MoveToNextRecord(record_parser_)) {
|
|
std::push_heap(readers.begin(), readers.begin() + size, CompareRecordTime);
|
|
} else {
|
|
size--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
ReadAuxDataFromKernelBuffer(&has_data);
|
|
if (!has_data) {
|
|
break;
|
|
}
|
|
if (!SendDataNotificationToMainThread()) {
|
|
return false;
|
|
}
|
|
// If there are no commands, we can loop until there is no more data from the kernel.
|
|
} while (GetCmd() == NO_CMD);
|
|
return true;
|
|
}
|
|
|
|
void RecordReadThread::PushRecordToRecordBuffer(KernelRecordReader* kernel_record_reader) {
|
|
const perf_event_header& header = kernel_record_reader->RecordHeader();
|
|
if (header.type == PERF_RECORD_SAMPLE && exclude_pid_ != -1) {
|
|
uint32_t pid;
|
|
kernel_record_reader->ReadRecord(record_parser_.GetPidPosInSampleRecord(), sizeof(pid), &pid);
|
|
if (pid == exclude_pid_) {
|
|
return;
|
|
}
|
|
}
|
|
if (header.type == PERF_RECORD_SAMPLE && stack_size_in_sample_record_ > 1024) {
|
|
size_t free_size = record_buffer_.GetFreeSize();
|
|
if (free_size < record_buffer_critical_level_) {
|
|
// When the free size in record buffer is below critical level, drop sample records to save
|
|
// space for more important records (like mmap or fork records).
|
|
stat_.lost_samples++;
|
|
return;
|
|
}
|
|
size_t stack_size_limit = stack_size_in_sample_record_;
|
|
if (free_size < record_buffer_low_level_) {
|
|
// When the free size in record buffer is below low level, cut the stack data in sample
|
|
// records to 1K. This makes the unwinder unwind only part of the callchains, but hopefully
|
|
// the call chain joiner can complete the callchains.
|
|
stack_size_limit = 1024;
|
|
}
|
|
size_t stack_size_pos =
|
|
record_parser_.GetStackSizePos([&](size_t pos, size_t size, void* dest) {
|
|
return kernel_record_reader->ReadRecord(pos, size, dest);
|
|
});
|
|
uint64_t stack_size;
|
|
kernel_record_reader->ReadRecord(stack_size_pos, sizeof(stack_size), &stack_size);
|
|
if (stack_size > 0) {
|
|
size_t dyn_stack_size_pos = stack_size_pos + sizeof(stack_size) + stack_size;
|
|
uint64_t dyn_stack_size;
|
|
kernel_record_reader->ReadRecord(dyn_stack_size_pos, sizeof(dyn_stack_size), &dyn_stack_size);
|
|
if (dyn_stack_size == 0) {
|
|
// If stack_user_data.dyn_size == 0, it may be because the kernel misses the patch to
|
|
// update dyn_size, like in N9 (See b/22612370). So assume all stack data is valid if
|
|
// dyn_size == 0.
|
|
// TODO: Add cts test.
|
|
dyn_stack_size = stack_size;
|
|
}
|
|
// When simpleperf requests the kernel to dump 64K stack per sample, it will allocate 64K
|
|
// space in each sample to store stack data. However, a thread may use less stack than 64K.
|
|
// So not all the 64K stack data in a sample is valid, and we only need to keep valid stack
|
|
// data, whose size is dyn_stack_size.
|
|
uint64_t new_stack_size = std::min<uint64_t>(dyn_stack_size, stack_size_limit);
|
|
if (stack_size > new_stack_size) {
|
|
// Remove part of the stack data.
|
|
perf_event_header new_header = header;
|
|
new_header.size -= stack_size - new_stack_size;
|
|
char* p = record_buffer_.AllocWriteSpace(new_header.size);
|
|
if (p != nullptr) {
|
|
memcpy(p, &new_header, sizeof(new_header));
|
|
size_t pos = sizeof(new_header);
|
|
kernel_record_reader->ReadRecord(pos, stack_size_pos - pos, p + pos);
|
|
memcpy(p + stack_size_pos, &new_stack_size, sizeof(uint64_t));
|
|
pos = stack_size_pos + sizeof(uint64_t);
|
|
kernel_record_reader->ReadRecord(pos, new_stack_size, p + pos);
|
|
memcpy(p + pos + new_stack_size, &new_stack_size, sizeof(uint64_t));
|
|
record_buffer_.FinishWrite();
|
|
if (new_stack_size < dyn_stack_size) {
|
|
stat_.cut_stack_samples++;
|
|
}
|
|
} else {
|
|
stat_.lost_samples++;
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
char* p = record_buffer_.AllocWriteSpace(header.size);
|
|
if (p != nullptr) {
|
|
kernel_record_reader->ReadRecord(0, header.size, p);
|
|
record_buffer_.FinishWrite();
|
|
} else {
|
|
if (header.type == PERF_RECORD_SAMPLE) {
|
|
stat_.lost_samples++;
|
|
} else {
|
|
stat_.lost_non_samples++;
|
|
}
|
|
}
|
|
}
|
|
|
|
void RecordReadThread::ReadAuxDataFromKernelBuffer(bool* has_data) {
|
|
for (auto& reader : kernel_record_readers_) {
|
|
EventFd* event_fd = reader.GetEventFd();
|
|
if (event_fd->HasAuxBuffer()) {
|
|
char* buf[2];
|
|
size_t size[2];
|
|
uint64_t offset = event_fd->GetAvailableAuxData(&buf[0], &size[0], &buf[1], &size[1]);
|
|
size_t aux_size = size[0] + size[1];
|
|
if (aux_size == 0) {
|
|
continue;
|
|
}
|
|
*has_data = true;
|
|
AuxTraceRecord auxtrace(Align(aux_size, 8), offset, event_fd->Cpu(), 0, event_fd->Cpu());
|
|
size_t alloc_size = auxtrace.size() + auxtrace.data->aux_size;
|
|
if (record_buffer_.GetFreeSize() < alloc_size + record_buffer_critical_level_) {
|
|
stat_.lost_aux_data_size += aux_size;
|
|
} else {
|
|
char* p = record_buffer_.AllocWriteSpace(alloc_size);
|
|
CHECK(p != nullptr);
|
|
MoveToBinaryFormat(auxtrace.Binary(), auxtrace.size(), p);
|
|
MoveToBinaryFormat(buf[0], size[0], p);
|
|
if (size[1] != 0) {
|
|
MoveToBinaryFormat(buf[1], size[1], p);
|
|
}
|
|
size_t pad_size = auxtrace.data->aux_size - aux_size;
|
|
if (pad_size != 0) {
|
|
uint64_t pad = 0;
|
|
memcpy(p, &pad, pad_size);
|
|
}
|
|
record_buffer_.FinishWrite();
|
|
stat_.aux_data_size += aux_size;
|
|
LOG(DEBUG) << "record aux data " << aux_size << " bytes";
|
|
}
|
|
event_fd->DiscardAuxData(aux_size);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool RecordReadThread::SendDataNotificationToMainThread() {
|
|
if (!has_data_notification_.load(std::memory_order_relaxed)) {
|
|
has_data_notification_ = true;
|
|
char unused = 0;
|
|
if (TEMP_FAILURE_RETRY(write(write_data_fd_, &unused, 1)) != 1) {
|
|
PLOG(ERROR) << "write";
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace simpleperf
|