You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

297 lines
11 KiB

//===- Builders.cpp - MLIR Declarative Builder Classes --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/EDSC/Builders.h"
#include "mlir/Dialect/StandardOps/EDSC/Builders.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
using namespace mlir;
using namespace mlir::edsc;
void mlir::edsc::affineLoopNestBuilder(
ValueRange lbs, ValueRange ubs, ArrayRef<int64_t> steps,
function_ref<void(ValueRange)> bodyBuilderFn) {
assert(ScopedContext::getContext() && "EDSC ScopedContext not set up");
// Wrap the body builder function into an interface compatible with the main
// builder.
auto wrappedBuilderFn = [&](OpBuilder &nestedBuilder, Location nestedLoc,
ValueRange ivs) {
ScopedContext context(nestedBuilder, nestedLoc);
bodyBuilderFn(ivs);
};
function_ref<void(OpBuilder &, Location, ValueRange)> wrapper;
if (bodyBuilderFn)
wrapper = wrappedBuilderFn;
// Extract the builder, location and construct the loop nest.
OpBuilder &builder = ScopedContext::getBuilderRef();
Location loc = ScopedContext::getLocation();
buildAffineLoopNest(builder, loc, lbs, ubs, steps, wrapper);
}
void mlir::edsc::affineLoopBuilder(ValueRange lbs, ValueRange ubs, int64_t step,
function_ref<void(Value)> bodyBuilderFn) {
// Fetch the builder and location.
assert(ScopedContext::getContext() && "EDSC ScopedContext not set up");
OpBuilder &builder = ScopedContext::getBuilderRef();
Location loc = ScopedContext::getLocation();
// Create the actual loop and call the body builder, if provided, after
// updating the scoped context.
builder.create<AffineForOp>(
loc, lbs, builder.getMultiDimIdentityMap(lbs.size()), ubs,
builder.getMultiDimIdentityMap(ubs.size()), step, llvm::None,
[&](OpBuilder &nestedBuilder, Location nestedLoc, Value iv,
ValueRange itrArgs) {
if (bodyBuilderFn) {
ScopedContext nestedContext(nestedBuilder, nestedLoc);
OpBuilder::InsertionGuard guard(nestedBuilder);
bodyBuilderFn(iv);
}
nestedBuilder.create<AffineYieldOp>(nestedLoc);
});
}
void mlir::edsc::affineLoopBuilder(
ValueRange lbs, ValueRange ubs, int64_t step, ValueRange iterArgs,
function_ref<void(Value, ValueRange)> bodyBuilderFn) {
// Fetch the builder and location.
assert(ScopedContext::getContext() && "EDSC ScopedContext not set up");
OpBuilder &builder = ScopedContext::getBuilderRef();
Location loc = ScopedContext::getLocation();
// Create the actual loop and call the body builder, if provided, after
// updating the scoped context.
builder.create<AffineForOp>(
loc, lbs, builder.getMultiDimIdentityMap(lbs.size()), ubs,
builder.getMultiDimIdentityMap(ubs.size()), step, iterArgs,
[&](OpBuilder &nestedBuilder, Location nestedLoc, Value iv,
ValueRange itrArgs) {
if (bodyBuilderFn) {
ScopedContext nestedContext(nestedBuilder, nestedLoc);
OpBuilder::InsertionGuard guard(nestedBuilder);
bodyBuilderFn(iv, itrArgs);
} else if (itrArgs.empty())
nestedBuilder.create<AffineYieldOp>(nestedLoc);
});
}
static std::pair<AffineExpr, Value>
categorizeValueByAffineType(MLIRContext *context, Value val, unsigned &numDims,
unsigned &numSymbols) {
AffineExpr d;
Value resultVal = nullptr;
if (auto constant = val.getDefiningOp<ConstantIndexOp>()) {
d = getAffineConstantExpr(constant.getValue(), context);
} else if (isValidSymbol(val) && !isValidDim(val)) {
d = getAffineSymbolExpr(numSymbols++, context);
resultVal = val;
} else {
d = getAffineDimExpr(numDims++, context);
resultVal = val;
}
return std::make_pair(d, resultVal);
}
static Value createBinaryIndexHandle(
Value lhs, Value rhs,
function_ref<AffineExpr(AffineExpr, AffineExpr)> affCombiner) {
MLIRContext *context = ScopedContext::getContext();
unsigned numDims = 0, numSymbols = 0;
AffineExpr d0, d1;
Value v0, v1;
std::tie(d0, v0) =
categorizeValueByAffineType(context, lhs, numDims, numSymbols);
std::tie(d1, v1) =
categorizeValueByAffineType(context, rhs, numDims, numSymbols);
SmallVector<Value, 2> operands;
if (v0)
operands.push_back(v0);
if (v1)
operands.push_back(v1);
auto map = AffineMap::get(numDims, numSymbols, affCombiner(d0, d1));
// TODO: createOrFold when available.
Operation *op =
makeComposedAffineApply(ScopedContext::getBuilderRef(),
ScopedContext::getLocation(), map, operands)
.getOperation();
assert(op->getNumResults() == 1 && "Expected single result AffineApply");
return op->getResult(0);
}
template <typename IOp, typename FOp>
static Value createBinaryHandle(
Value lhs, Value rhs,
function_ref<AffineExpr(AffineExpr, AffineExpr)> affCombiner) {
auto thisType = lhs.getType();
auto thatType = rhs.getType();
assert(thisType == thatType && "cannot mix types in operators");
(void)thisType;
(void)thatType;
if (thisType.isIndex()) {
return createBinaryIndexHandle(lhs, rhs, affCombiner);
} else if (thisType.isSignlessInteger()) {
return ValueBuilder<IOp>(lhs, rhs);
} else if (thisType.isa<FloatType>()) {
return ValueBuilder<FOp>(lhs, rhs);
} else if (thisType.isa<VectorType, TensorType>()) {
auto aggregateType = thisType.cast<ShapedType>();
if (aggregateType.getElementType().isSignlessInteger())
return ValueBuilder<IOp>(lhs, rhs);
else if (aggregateType.getElementType().isa<FloatType>())
return ValueBuilder<FOp>(lhs, rhs);
}
llvm_unreachable("failed to create a Value");
}
Value mlir::edsc::op::operator+(Value lhs, Value rhs) {
return createBinaryHandle<AddIOp, AddFOp>(
lhs, rhs, [](AffineExpr d0, AffineExpr d1) { return d0 + d1; });
}
Value mlir::edsc::op::operator-(Value lhs, Value rhs) {
return createBinaryHandle<SubIOp, SubFOp>(
lhs, rhs, [](AffineExpr d0, AffineExpr d1) { return d0 - d1; });
}
Value mlir::edsc::op::operator*(Value lhs, Value rhs) {
return createBinaryHandle<MulIOp, MulFOp>(
lhs, rhs, [](AffineExpr d0, AffineExpr d1) { return d0 * d1; });
}
Value mlir::edsc::op::operator/(Value lhs, Value rhs) {
return createBinaryHandle<SignedDivIOp, DivFOp>(
lhs, rhs, [](AffineExpr d0, AffineExpr d1) -> AffineExpr {
llvm_unreachable("only exprs of non-index type support operator/");
});
}
Value mlir::edsc::op::operator%(Value lhs, Value rhs) {
return createBinaryHandle<SignedRemIOp, RemFOp>(
lhs, rhs, [](AffineExpr d0, AffineExpr d1) { return d0 % d1; });
}
Value mlir::edsc::op::floorDiv(Value lhs, Value rhs) {
return createBinaryIndexHandle(
lhs, rhs, [](AffineExpr d0, AffineExpr d1) { return d0.floorDiv(d1); });
}
Value mlir::edsc::op::ceilDiv(Value lhs, Value rhs) {
return createBinaryIndexHandle(
lhs, rhs, [](AffineExpr d0, AffineExpr d1) { return d0.ceilDiv(d1); });
}
Value mlir::edsc::op::negate(Value value) {
assert(value.getType().isInteger(1) && "expected boolean expression");
return ValueBuilder<ConstantIntOp>(1, 1) - value;
}
Value mlir::edsc::op::operator&&(Value lhs, Value rhs) {
assert(lhs.getType().isInteger(1) && "expected boolean expression on LHS");
assert(rhs.getType().isInteger(1) && "expected boolean expression on RHS");
return ValueBuilder<AndOp>(lhs, rhs);
}
Value mlir::edsc::op::operator||(Value lhs, Value rhs) {
assert(lhs.getType().isInteger(1) && "expected boolean expression on LHS");
assert(rhs.getType().isInteger(1) && "expected boolean expression on RHS");
return ValueBuilder<OrOp>(lhs, rhs);
}
static Value createIComparisonExpr(CmpIPredicate predicate, Value lhs,
Value rhs) {
auto lhsType = lhs.getType();
auto rhsType = rhs.getType();
(void)lhsType;
(void)rhsType;
assert(lhsType == rhsType && "cannot mix types in operators");
assert((lhsType.isa<IndexType>() || lhsType.isSignlessInteger()) &&
"only integer comparisons are supported");
return ScopedContext::getBuilderRef().create<CmpIOp>(
ScopedContext::getLocation(), predicate, lhs, rhs);
}
static Value createFComparisonExpr(CmpFPredicate predicate, Value lhs,
Value rhs) {
auto lhsType = lhs.getType();
auto rhsType = rhs.getType();
(void)lhsType;
(void)rhsType;
assert(lhsType == rhsType && "cannot mix types in operators");
assert(lhsType.isa<FloatType>() && "only float comparisons are supported");
return ScopedContext::getBuilderRef().create<CmpFOp>(
ScopedContext::getLocation(), predicate, lhs, rhs);
}
// All floating point comparison are ordered through EDSL
Value mlir::edsc::op::eq(Value lhs, Value rhs) {
auto type = lhs.getType();
return type.isa<FloatType>()
? createFComparisonExpr(CmpFPredicate::OEQ, lhs, rhs)
: createIComparisonExpr(CmpIPredicate::eq, lhs, rhs);
}
Value mlir::edsc::op::ne(Value lhs, Value rhs) {
auto type = lhs.getType();
return type.isa<FloatType>()
? createFComparisonExpr(CmpFPredicate::ONE, lhs, rhs)
: createIComparisonExpr(CmpIPredicate::ne, lhs, rhs);
}
Value mlir::edsc::op::slt(Value lhs, Value rhs) {
auto type = lhs.getType();
return type.isa<FloatType>()
? createFComparisonExpr(CmpFPredicate::OLT, lhs, rhs)
: createIComparisonExpr(CmpIPredicate::slt, lhs, rhs);
}
Value mlir::edsc::op::sle(Value lhs, Value rhs) {
auto type = lhs.getType();
return type.isa<FloatType>()
? createFComparisonExpr(CmpFPredicate::OLE, lhs, rhs)
: createIComparisonExpr(CmpIPredicate::sle, lhs, rhs);
}
Value mlir::edsc::op::sgt(Value lhs, Value rhs) {
auto type = lhs.getType();
return type.isa<FloatType>()
? createFComparisonExpr(CmpFPredicate::OGT, lhs, rhs)
: createIComparisonExpr(CmpIPredicate::sgt, lhs, rhs);
}
Value mlir::edsc::op::sge(Value lhs, Value rhs) {
auto type = lhs.getType();
return type.isa<FloatType>()
? createFComparisonExpr(CmpFPredicate::OGE, lhs, rhs)
: createIComparisonExpr(CmpIPredicate::sge, lhs, rhs);
}
Value mlir::edsc::op::ult(Value lhs, Value rhs) {
auto type = lhs.getType();
return type.isa<FloatType>()
? createFComparisonExpr(CmpFPredicate::OLT, lhs, rhs)
: createIComparisonExpr(CmpIPredicate::ult, lhs, rhs);
}
Value mlir::edsc::op::ule(Value lhs, Value rhs) {
auto type = lhs.getType();
return type.isa<FloatType>()
? createFComparisonExpr(CmpFPredicate::OLE, lhs, rhs)
: createIComparisonExpr(CmpIPredicate::ule, lhs, rhs);
}
Value mlir::edsc::op::ugt(Value lhs, Value rhs) {
auto type = lhs.getType();
return type.isa<FloatType>()
? createFComparisonExpr(CmpFPredicate::OGT, lhs, rhs)
: createIComparisonExpr(CmpIPredicate::ugt, lhs, rhs);
}
Value mlir::edsc::op::uge(Value lhs, Value rhs) {
auto type = lhs.getType();
return type.isa<FloatType>()
? createFComparisonExpr(CmpFPredicate::OGE, lhs, rhs)
: createIComparisonExpr(CmpIPredicate::uge, lhs, rhs);
}