You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

374 lines
19 KiB

/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "Operations"
#include <algorithm>
#include <cfloat>
#include <cmath>
#include <vector>
#include "OperationResolver.h"
#include "OperationsUtils.h"
#include "Tracing.h"
#ifdef NN_INCLUDE_CPU_IMPLEMENTATION
#include "CpuOperationUtils.h"
#endif // NN_INCLUDE_CPU_IMPLEMENTATION
namespace android {
namespace nn {
namespace heatmap_max_keypoint {
constexpr char kOperationName[] = "HEATMAP_MAX_KEYPOINT";
constexpr uint32_t kNumInputs = 3;
constexpr uint32_t kHeatmapTensor = 0;
constexpr uint32_t kBoxesTensor = 1;
constexpr uint32_t kLayoutScalar = 2;
constexpr uint32_t kNumOutputs = 2;
constexpr uint32_t kOutputScoreTensor = 0;
constexpr uint32_t kOutputKeypointTensor = 1;
#ifdef NN_INCLUDE_CPU_IMPLEMENTATION
namespace {
// This function uses Taylor expansion up to the quatratic term to approximate bicubic
// upscaling result.
// 2nd order Taylor expansion: D(x) = D - b'x + 1/2 * x'Ax
// where D = grid[1][1], Taylor expansion center, the original score,
// x = delta, the correction on max keypoint position,
// D(x) = deltaScore, the accuracy score after correction
static void solveForDelta(const float grid[3][3], float* delta, float* deltaScore,
float fpAtol = 1e-5f, float fpRtol = 1e-5f) {
// b: negative 1st order derivative at center
// A: Hessian matrix at center (2nd order derivative)
float A[2][2], b[2];
b[0] = -(grid[1][2] - grid[1][0]) / 2.0f;
b[1] = -(grid[2][1] - grid[0][1]) / 2.0f;
A[0][0] = grid[1][0] - 2.0f * grid[1][1] + grid[1][2];
A[0][1] = (grid[2][2] - grid[2][0] - grid[0][2] + grid[0][0]) / 4.0f;
A[1][0] = A[0][1];
A[1][1] = grid[0][1] - 2.0f * grid[1][1] + grid[2][1];
// solve Ax=b, where x=delta -> delta = inv(A) * b
float crossProd1 = A[0][0] * A[1][1], crossProd2 = A[0][1] * A[1][0];
float detA = crossProd1 - crossProd2;
// check if A is invertible
if (std::abs(detA) < (fpAtol + fpRtol * crossProd1)) return;
delta[0] = (A[1][1] * b[0] - A[0][1] * b[1]) / detA;
delta[1] = (A[0][0] * b[1] - A[1][0] * b[0]) / detA;
// clip out of range delta, i.e. delta > 3/2
if (std::abs(delta[0]) > 1.5f || std::abs(delta[1]) > 1.5f) {
float scale = 1.5f / std::max(std::abs(delta[0]), std::abs(delta[1]));
delta[0] *= scale;
delta[1] *= scale;
}
*deltaScore = grid[1][1] - b[0] * delta[0] - b[1] * delta[1] +
((A[0][0] * delta[0] + A[0][1] * delta[1]) * delta[0] +
(A[1][0] * delta[0] + A[1][1] * delta[1]) * delta[1]) /
2.0f;
}
inline bool heatmapMaxKeypointFloat32Nhwc(const float* heatmap, const Shape& heatmapShape,
const float* boxes, const Shape& boxesShape,
float* outputScoreData, const Shape& outputScoreShape,
float* outputKeypointData,
const Shape& outputKeypointShape, float fpAtol,
float fpRtol) {
NNTRACE_TRANS("HeatmapMaxKeypoint");
uint32_t numBoxes = getSizeOfDimension(heatmapShape, 0);
uint32_t heatmapSize = getSizeOfDimension(heatmapShape, 1);
uint32_t numKeypoints = getSizeOfDimension(heatmapShape, 3);
uint32_t boxInfoLength = getSizeOfDimension(boxesShape, 1);
const float* heatmapBase = heatmap;
const float* boxInfoBase = boxes;
float* outputScoreBase = outputScoreData;
float* outputKeypointBase = outputKeypointData;
for (uint32_t i = 0; i < numBoxes; i++) {
NN_RET_CHECK_LE(boxInfoBase[0], boxInfoBase[2]);
NN_RET_CHECK_LE(boxInfoBase[1], boxInfoBase[3]);
for (uint32_t j = 0; j < numKeypoints; j++) {
// find max score and its index
uint32_t maxIndex = 0;
float maxScore = -FLT_MAX;
for (uint32_t k = 0; k < heatmapSize * heatmapSize; k++) {
float val = heatmapBase[k * numKeypoints + j];
if (maxScore < val) {
maxScore = val;
maxIndex = k;
}
}
uint32_t maxIndexWidth = maxIndex % heatmapSize;
uint32_t maxIndexHeight = maxIndex / heatmapSize;
// get local 3x3 grid
float localGrid[3][3];
for (int32_t dh = -1; dh <= 1; dh++) {
for (int32_t dw = -1; dw <= 1; dw++) {
// cast uint32_t to int32_t
int32_t h = static_cast<int32_t>(maxIndexHeight) + dh;
int32_t w = static_cast<int32_t>(maxIndexWidth) + dw;
// use mirroring for out of bound indexing
// need to ensure heatmapSize >= 2
h = h < 0 ? 1 : (h >= heatmapSize ? heatmapSize - 2 : h);
w = w < 0 ? 1 : (w >= heatmapSize ? heatmapSize - 2 : w);
uint32_t heatmapIndex = static_cast<uint32_t>(h) * heatmapSize * numKeypoints +
static_cast<uint32_t>(w) * numKeypoints + j;
localGrid[dh + 1][dw + 1] = heatmapBase[heatmapIndex];
}
}
float delta[2] = {0.0f, 0.0f}, deltaScore = maxScore;
solveForDelta(localGrid, delta, &deltaScore, fpAtol, fpRtol);
float wRoiStart = boxInfoBase[0];
float hRoiStart = boxInfoBase[1];
float wRoiEnd = boxInfoBase[2];
float hRoiEnd = boxInfoBase[3];
float roiWidth = wRoiEnd - wRoiStart;
float roiHeight = hRoiEnd - hRoiStart;
float wRelativePos = (static_cast<float>(maxIndexWidth) + delta[0] + 0.5f) /
static_cast<float>(heatmapSize);
float hRelativePos = (static_cast<float>(maxIndexHeight) + delta[1] + 0.5f) /
static_cast<float>(heatmapSize);
*outputScoreBase++ = deltaScore;
outputKeypointBase[0] = wRelativePos * roiWidth + wRoiStart;
outputKeypointBase[1] = hRelativePos * roiHeight + hRoiStart;
outputKeypointBase += 2;
}
boxInfoBase += boxInfoLength;
heatmapBase += heatmapSize * heatmapSize * numKeypoints;
}
return true;
}
inline bool heatmapMaxKeypointFloat32(const float* heatmap, const Shape& heatmapShape,
const float* boxes, const Shape& boxesShape, bool layout,
float* outputScoreData, const Shape& outputScoreShape,
float* outputKeypointData, const Shape& outputKeypointShape,
float fpAtol, float fpRtol) {
std::vector<float> heatmap_nhwc;
Shape heatmapShape_nhwc;
if (layout) {
NN_RET_CHECK(convertNchwToNhwc(heatmap, heatmapShape, &heatmap_nhwc, &heatmapShape_nhwc));
}
const float* heatmap_tmp = layout ? heatmap_nhwc.data() : heatmap;
const Shape& heatmapShape_tmp = layout ? heatmapShape_nhwc : heatmapShape;
return heatmapMaxKeypointFloat32Nhwc(heatmap_tmp, heatmapShape_tmp, boxes, boxesShape,
outputScoreData, outputScoreShape, outputKeypointData,
outputKeypointShape, fpAtol, fpRtol);
}
inline bool heatmapMaxKeypointQuant(const uint8_t* heatmap, const Shape& heatmapShape,
const uint16_t* boxes, const Shape& boxesShape, bool layout,
uint8_t* outputScoreData, const Shape& outputScoreShape,
uint16_t* outputKeypointData, const Shape& outputKeypointShape,
float fpAtol, float fpRtol) {
std::vector<float> heatmap_float32(getNumberOfElements(heatmapShape));
convertQuantToFloat32(heatmap, heatmapShape.scale, heatmapShape.offset, &heatmap_float32);
std::vector<float> boxes_float32(getNumberOfElements(boxesShape));
convertQuantToFloat32(boxes, boxesShape.scale, boxesShape.offset, &boxes_float32);
std::vector<float> outputScore_float32(getNumberOfElements(outputScoreShape));
std::vector<float> outputKeypoint_float32(getNumberOfElements(outputKeypointShape));
NN_RET_CHECK(heatmapMaxKeypointFloat32(
heatmap_float32.data(), heatmapShape, boxes_float32.data(), boxesShape, layout,
outputScore_float32.data(), outputScoreShape, outputKeypoint_float32.data(),
outputKeypointShape, fpAtol, fpRtol));
convertFloat32ToQuant(outputScore_float32, outputScoreShape.scale, outputScoreShape.offset,
outputScoreData);
convertFloat32ToQuant(outputKeypoint_float32, outputKeypointShape.scale,
outputKeypointShape.offset, outputKeypointData);
return true;
}
inline bool heatmapMaxKeypointQuant(const int8_t* heatmap, const Shape& heatmapShape,
const uint16_t* boxes, const Shape& boxesShape, bool layout,
int8_t* outputScoreData, const Shape& outputScoreShape,
uint16_t* outputKeypointData, const Shape& outputKeypointShape,
float fpAtol, float fpRtol) {
std::vector<float> heatmap_float32(getNumberOfElements(heatmapShape));
convertQuantToFloat32(heatmap, heatmapShape.scale, heatmapShape.offset, &heatmap_float32);
std::vector<float> boxes_float32(getNumberOfElements(boxesShape));
convertQuantToFloat32(boxes, boxesShape.scale, boxesShape.offset, &boxes_float32);
std::vector<float> outputScore_float32(getNumberOfElements(outputScoreShape));
std::vector<float> outputKeypoint_float32(getNumberOfElements(outputKeypointShape));
NN_RET_CHECK(heatmapMaxKeypointFloat32(
heatmap_float32.data(), heatmapShape, boxes_float32.data(), boxesShape, layout,
outputScore_float32.data(), outputScoreShape, outputKeypoint_float32.data(),
outputKeypointShape, fpAtol, fpRtol));
convertFloat32ToQuant(outputScore_float32, outputScoreShape.scale, outputScoreShape.offset,
outputScoreData);
convertFloat32ToQuant(outputKeypoint_float32, outputKeypointShape.scale,
outputKeypointShape.offset, outputKeypointData);
return true;
}
} // namespace
#endif // NN_INCLUDE_CPU_IMPLEMENTATION
Result<Version> validate(const IOperationValidationContext* context) {
NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
std::vector<OperandType> inExpectedTypes;
std::vector<OperandType> outExpectedTypes;
auto inputType = context->getInputType(kHeatmapTensor);
auto minSupportedVersion = Version::ANDROID_Q;
if (inputType == OperandType::TENSOR_FLOAT32 || inputType == OperandType::TENSOR_FLOAT16) {
inExpectedTypes = {inputType, inputType, OperandType::BOOL};
outExpectedTypes = {inputType, inputType};
} else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_QUANT16_ASYMM,
OperandType::BOOL};
outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_QUANT16_ASYMM};
} else if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM_SIGNED,
OperandType::TENSOR_QUANT16_ASYMM, OperandType::BOOL};
outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM_SIGNED,
OperandType::TENSOR_QUANT16_ASYMM};
minSupportedVersion = Version::ANDROID_R;
} else {
return NN_ERROR() << "Unsupported input tensor type for operation " << kOperationName;
}
NN_RET_CHECK(validateInputTypes(context, inExpectedTypes));
NN_RET_CHECK(validateOutputTypes(context, outExpectedTypes));
return minSupportedVersion;
}
#ifdef NN_INCLUDE_CPU_IMPLEMENTATION
bool prepare(IOperationExecutionContext* context) {
bool layout = context->getInputValue<bool>(kLayoutScalar);
Shape heatmapShape = context->getInputShape(kHeatmapTensor);
Shape boxesShape = context->getInputShape(kBoxesTensor);
NN_RET_CHECK_EQ(getNumberOfDimensions(heatmapShape), 4);
NN_RET_CHECK_EQ(getNumberOfDimensions(boxesShape), 2);
uint32_t numBoxes = getSizeOfDimension(heatmapShape, 0);
uint32_t heatmapSize = getSizeOfDimension(heatmapShape, 2);
uint32_t numKeypoints = getSizeOfDimension(heatmapShape, layout ? 1 : 3);
uint32_t boxInfoLength = getSizeOfDimension(boxesShape, 1);
NN_RET_CHECK_EQ(getSizeOfDimension(heatmapShape, layout ? 3 : 1), heatmapSize);
NN_RET_CHECK_GE(heatmapSize, 2);
NN_RET_CHECK_EQ(getSizeOfDimension(boxesShape, 0), numBoxes);
NN_RET_CHECK_EQ(boxInfoLength, 4);
if (heatmapShape.type == OperandType::TENSOR_QUANT8_ASYMM ||
heatmapShape.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
NN_RET_CHECK_EQ(boxesShape.scale, 0.125f);
NN_RET_CHECK_EQ(boxesShape.offset, 0);
}
Shape outputScore = context->getOutputShape(kOutputScoreTensor);
outputScore.type = heatmapShape.type;
outputScore.dimensions = {numBoxes, numKeypoints};
NN_RET_CHECK(context->setOutputShape(kOutputScoreTensor, outputScore));
Shape outputKeypoint = context->getOutputShape(kOutputKeypointTensor);
outputKeypoint.type = boxesShape.type;
outputKeypoint.dimensions = {numBoxes, numKeypoints, 2};
outputKeypoint.offset = 0;
outputKeypoint.scale = 0.f;
if (heatmapShape.type == OperandType::TENSOR_QUANT8_ASYMM ||
heatmapShape.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
outputKeypoint.scale = 0.125f;
}
NN_RET_CHECK(context->setOutputShape(kOutputKeypointTensor, outputKeypoint));
return true;
}
bool execute(IOperationExecutionContext* context) {
bool layout = context->getInputValue<bool>(kLayoutScalar);
switch (context->getInputType(kHeatmapTensor)) {
case OperandType::TENSOR_FLOAT16: {
const auto heatmap = context->getInputBuffer<_Float16>(kHeatmapTensor);
const auto heatmapShape = context->getInputShape(kHeatmapTensor);
const auto boxes = context->getInputBuffer<_Float16>(kBoxesTensor);
const auto boxesShape = context->getInputShape(kBoxesTensor);
auto outputScoreData = context->getOutputBuffer<_Float16>(kOutputScoreTensor);
const auto outputScoreShape = context->getOutputShape(kOutputScoreTensor);
auto outputKeypointData = context->getOutputBuffer<_Float16>(kOutputKeypointTensor);
const auto outputKeypointShape = context->getOutputShape(kOutputKeypointTensor);
std::vector<float> heatmap_float32(getNumberOfElements(heatmapShape));
convertFloat16ToFloat32(heatmap, &heatmap_float32);
std::vector<float> boxes_float32(getNumberOfElements(boxesShape));
convertFloat16ToFloat32(boxes, &boxes_float32);
std::vector<float> outputScore_float32(getNumberOfElements(outputScoreShape));
std::vector<float> outputKeypoint_float32(getNumberOfElements(outputKeypointShape));
NN_RET_CHECK(heatmapMaxKeypointFloat32(
heatmap_float32.data(), heatmapShape, boxes_float32.data(), boxesShape, layout,
outputScore_float32.data(), outputScoreShape, outputKeypoint_float32.data(),
outputKeypointShape, 1e-3f, 1e-3f));
convertFloat32ToFloat16(outputScore_float32, outputScoreData);
convertFloat32ToFloat16(outputKeypoint_float32, outputKeypointData);
return true;
}
case OperandType::TENSOR_FLOAT32: {
return heatmapMaxKeypointFloat32(context->getInputBuffer<float>(kHeatmapTensor),
context->getInputShape(kHeatmapTensor),
context->getInputBuffer<float>(kBoxesTensor),
context->getInputShape(kBoxesTensor), layout,
context->getOutputBuffer<float>(kOutputScoreTensor),
context->getOutputShape(kOutputScoreTensor),
context->getOutputBuffer<float>(kOutputKeypointTensor),
context->getOutputShape(kOutputKeypointTensor), 1e-5f,
1e-5f);
}
case OperandType::TENSOR_QUANT8_ASYMM: {
return heatmapMaxKeypointQuant(
context->getInputBuffer<uint8_t>(kHeatmapTensor),
context->getInputShape(kHeatmapTensor),
context->getInputBuffer<uint16_t>(kBoxesTensor),
context->getInputShape(kBoxesTensor), layout,
context->getOutputBuffer<uint8_t>(kOutputScoreTensor),
context->getOutputShape(kOutputScoreTensor),
context->getOutputBuffer<uint16_t>(kOutputKeypointTensor),
context->getOutputShape(kOutputKeypointTensor), 1e-5f, 1e-5f);
}
case OperandType::TENSOR_QUANT8_ASYMM_SIGNED: {
return heatmapMaxKeypointQuant(
context->getInputBuffer<int8_t>(kHeatmapTensor),
context->getInputShape(kHeatmapTensor),
context->getInputBuffer<uint16_t>(kBoxesTensor),
context->getInputShape(kBoxesTensor), layout,
context->getOutputBuffer<int8_t>(kOutputScoreTensor),
context->getOutputShape(kOutputScoreTensor),
context->getOutputBuffer<uint16_t>(kOutputKeypointTensor),
context->getOutputShape(kOutputKeypointTensor), 1e-5f, 1e-5f);
}
default:
NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
}
}
#endif // NN_INCLUDE_CPU_IMPLEMENTATION
} // namespace heatmap_max_keypoint
NN_REGISTER_OPERATION(HEATMAP_MAX_KEYPOINT, heatmap_max_keypoint::kOperationName,
heatmap_max_keypoint::validate, heatmap_max_keypoint::prepare,
heatmap_max_keypoint::execute);
} // namespace nn
} // namespace android