You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
203 lines
8.0 KiB
203 lines
8.0 KiB
/*
|
|
* Copyright (C) 2017 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define LOG_TAG "Operations"
|
|
|
|
#include "LSHProjection.h"
|
|
|
|
#include <utils/hash/farmhash.h>
|
|
|
|
#include <memory>
|
|
|
|
#include "CpuExecutor.h"
|
|
#include "LegacyUtils.h"
|
|
#include "Tracing.h"
|
|
#include "nnapi/Types.h"
|
|
|
|
namespace android {
|
|
namespace nn {
|
|
|
|
LSHProjection::LSHProjection(const Operation& operation, RunTimeOperandInfo* operands) {
|
|
input_ = GetInput(operation, operands, kInputTensor);
|
|
weight_ = GetInput(operation, operands, kWeightTensor);
|
|
hash_ = GetInput(operation, operands, kHashTensor);
|
|
|
|
type_ = static_cast<LSHProjectionType>(
|
|
getScalarData<int32_t>(*GetInput(operation, operands, kTypeParam)));
|
|
|
|
output_ = GetOutput(operation, operands, kOutputTensor);
|
|
}
|
|
|
|
bool LSHProjection::Prepare(const Operation& operation, RunTimeOperandInfo* operands,
|
|
Shape* outputShape) {
|
|
// Check that none of the required inputs are omitted.
|
|
constexpr int requiredInputs[] = {kHashTensor, kInputTensor, kTypeParam};
|
|
for (const int requiredInput : requiredInputs) {
|
|
NN_RET_CHECK(!IsNullInput(GetInput(operation, operands, requiredInput)))
|
|
<< "required input " << requiredInput << " is omitted";
|
|
}
|
|
NN_CHECK_EQ(NumOutputs(operation), 1);
|
|
|
|
const RunTimeOperandInfo* hash = GetInput(operation, operands, kHashTensor);
|
|
NN_CHECK_EQ(NumDimensions(hash), 2);
|
|
// Support up to 32 bits.
|
|
NN_CHECK(SizeOfDimension(hash, 1) <= 32);
|
|
|
|
const RunTimeOperandInfo* input = GetInput(operation, operands, kInputTensor);
|
|
NN_CHECK(NumDimensions(input) >= 1);
|
|
|
|
const auto& typeOperand = operands[operation.inputs[kTypeParam]];
|
|
NN_RET_CHECK(typeOperand.length >= sizeof(int32_t));
|
|
auto type = static_cast<LSHProjectionType>(getScalarData<int32_t>(typeOperand));
|
|
switch (type) {
|
|
case LSHProjectionType_SPARSE:
|
|
case LSHProjectionType_SPARSE_DEPRECATED:
|
|
NN_CHECK(NumInputsWithValues(operation, operands) == 3);
|
|
outputShape->dimensions = {SizeOfDimension(hash, 0)};
|
|
break;
|
|
case LSHProjectionType_DENSE: {
|
|
RunTimeOperandInfo* weight = GetInput(operation, operands, kWeightTensor);
|
|
NN_CHECK_EQ(NumInputsWithValues(operation, operands), 4);
|
|
NN_CHECK_EQ(NumDimensions(weight), 1);
|
|
NN_CHECK_EQ(SizeOfDimension(weight, 0), SizeOfDimension(input, 0));
|
|
outputShape->dimensions = {SizeOfDimension(hash, 0) * SizeOfDimension(hash, 1)};
|
|
break;
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
outputShape->type = OperandType::TENSOR_INT32;
|
|
outputShape->offset = 0;
|
|
outputShape->scale = 0.f;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Compute sign bit of dot product of hash(seed, input) and weight.
|
|
// NOTE: use float as seed, and convert it to double as a temporary solution
|
|
// to match the trained model. This is going to be changed once the new
|
|
// model is trained in an optimized method.
|
|
//
|
|
template <typename T>
|
|
int runningSignBit(const RunTimeOperandInfo* input, const RunTimeOperandInfo* weight, float seed) {
|
|
double score = 0.0;
|
|
int input_item_bytes = nonExtensionOperandSizeOfData(input->type, input->dimensions) /
|
|
SizeOfDimension(input, 0);
|
|
char* input_ptr = (char*)(input->buffer);
|
|
|
|
const size_t seed_size = sizeof(seed);
|
|
const size_t key_bytes = seed_size + input_item_bytes;
|
|
std::unique_ptr<char[]> key(new char[key_bytes]);
|
|
|
|
for (uint32_t i = 0; i < SizeOfDimension(input, 0); ++i) {
|
|
// Create running hash id and value for current dimension.
|
|
memcpy(key.get(), &seed, seed_size);
|
|
memcpy(key.get() + seed_size, input_ptr, input_item_bytes);
|
|
|
|
int64_t hash_signature = farmhash::Fingerprint64(key.get(), key_bytes);
|
|
double running_value = static_cast<double>(hash_signature);
|
|
input_ptr += input_item_bytes;
|
|
if (weight->lifetime == Operand::LifeTime::NO_VALUE) {
|
|
score += running_value;
|
|
} else {
|
|
score += static_cast<double>(reinterpret_cast<T*>(weight->buffer)[i]) * running_value;
|
|
}
|
|
}
|
|
|
|
return (score > 0) ? 1 : 0;
|
|
}
|
|
|
|
template <typename T>
|
|
void SparseLshProjection(LSHProjectionType type, const RunTimeOperandInfo* hash,
|
|
const RunTimeOperandInfo* input, const RunTimeOperandInfo* weight,
|
|
int32_t* out_buf) {
|
|
int num_hash = SizeOfDimension(hash, 0);
|
|
int num_bits = SizeOfDimension(hash, 1);
|
|
for (int i = 0; i < num_hash; i++) {
|
|
int32_t hash_signature = 0;
|
|
for (int j = 0; j < num_bits; j++) {
|
|
T seed = reinterpret_cast<T*>(hash->buffer)[i * num_bits + j];
|
|
int bit = runningSignBit<T>(input, weight, static_cast<float>(seed));
|
|
hash_signature = (hash_signature << 1) | bit;
|
|
}
|
|
if (type == LSHProjectionType_SPARSE_DEPRECATED) {
|
|
*out_buf++ = hash_signature;
|
|
} else {
|
|
*out_buf++ = hash_signature + i * (1 << num_bits);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void DenseLshProjection(const RunTimeOperandInfo* hash, const RunTimeOperandInfo* input,
|
|
const RunTimeOperandInfo* weight, int32_t* out_buf) {
|
|
int num_hash = SizeOfDimension(hash, 0);
|
|
int num_bits = SizeOfDimension(hash, 1);
|
|
for (int i = 0; i < num_hash; i++) {
|
|
for (int j = 0; j < num_bits; j++) {
|
|
T seed = reinterpret_cast<T*>(hash->buffer)[i * num_bits + j];
|
|
int bit = runningSignBit<T>(input, weight, static_cast<float>(seed));
|
|
*out_buf++ = bit;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
bool LSHProjection::Eval() {
|
|
NNTRACE_COMP("LSHProjection::Eval");
|
|
|
|
int32_t* out_buf = reinterpret_cast<int32_t*>(output_->buffer);
|
|
|
|
switch (type_) {
|
|
case LSHProjectionType_DENSE:
|
|
DenseLshProjection<T>(hash_, input_, weight_, out_buf);
|
|
break;
|
|
case LSHProjectionType_SPARSE:
|
|
case LSHProjectionType_SPARSE_DEPRECATED:
|
|
SparseLshProjection<T>(type_, hash_, input_, weight_, out_buf);
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template bool LSHProjection::Eval<float>();
|
|
template bool LSHProjection::Eval<_Float16>();
|
|
|
|
template int runningSignBit<float>(const RunTimeOperandInfo* input,
|
|
const RunTimeOperandInfo* weight, float seed);
|
|
template int runningSignBit<_Float16>(const RunTimeOperandInfo* input,
|
|
const RunTimeOperandInfo* weight, float seed);
|
|
|
|
template void SparseLshProjection<float>(LSHProjectionType type, const RunTimeOperandInfo* hash,
|
|
const RunTimeOperandInfo* input,
|
|
const RunTimeOperandInfo* weight, int32_t* outBuffer);
|
|
template void SparseLshProjection<_Float16>(LSHProjectionType type, const RunTimeOperandInfo* hash,
|
|
const RunTimeOperandInfo* input,
|
|
const RunTimeOperandInfo* weight, int32_t* outBuffer);
|
|
|
|
template void DenseLshProjection<float>(const RunTimeOperandInfo* hash,
|
|
const RunTimeOperandInfo* input,
|
|
const RunTimeOperandInfo* weight, int32_t* outBuffer);
|
|
template void DenseLshProjection<_Float16>(const RunTimeOperandInfo* hash,
|
|
const RunTimeOperandInfo* input,
|
|
const RunTimeOperandInfo* weight, int32_t* outBuffer);
|
|
|
|
} // namespace nn
|
|
} // namespace android
|