You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1073 lines
57 KiB

/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "Operations"
#include "LSTM.h"
#include <tensorflow/lite/kernels/internal/reference/portable_tensor_utils.h>
#include <vector>
#include "CpuExecutor.h"
#include "CpuOperationUtils.h"
#include "LegacyUtils.h"
#include "OperationsUtils.h"
#include "Tracing.h"
#include "nnapi/Types.h"
namespace android {
namespace nn {
namespace {
template <typename T>
inline T* GetBuffer(RunTimeOperandInfo* operand) {
return reinterpret_cast<T*>(operand->buffer);
}
template <typename T>
inline const T* GetBuffer(const RunTimeOperandInfo* operand) {
return reinterpret_cast<const T*>(operand->buffer);
}
template <typename T>
inline const T* GetOptionalBuffer(const RunTimeOperandInfo* operand) {
return !IsNullInput(operand) ? reinterpret_cast<const T*>(operand->buffer) : nullptr;
}
} // anonymous namespace
LSTMCell::LSTMCell(const Operation& operation, RunTimeOperandInfo* operands) {
input_ = GetInput(operation, operands, kInputTensor);
input_to_input_weights_ =
GetInput(operation, operands, kInputToInputWeightsTensor); // optional
input_to_forget_weights_ = GetInput(operation, operands, kInputToForgetWeightsTensor);
input_to_cell_weights_ = GetInput(operation, operands, kInputToCellWeightsTensor);
input_to_output_weights_ = GetInput(operation, operands, kInputToOutputWeightsTensor);
recurrent_to_input_weights_ =
GetInput(operation, operands, kRecurrentToInputWeightsTensor); // optional
recurrent_to_forget_weights_ = GetInput(operation, operands, kRecurrentToForgetWeightsTensor);
recurrent_to_cell_weights_ = GetInput(operation, operands, kRecurrentToCellWeightsTensor);
recurrent_to_output_weights_ = GetInput(operation, operands, kRecurrentToOutputWeightsTensor);
cell_to_input_weights_ = GetInput(operation, operands, kCellToInputWeightsTensor); // optional
cell_to_forget_weights_ =
GetInput(operation, operands, kCellToForgetWeightsTensor); // optional
cell_to_output_weights_ =
GetInput(operation, operands, kCellToOutputWeightsTensor); // optional
input_gate_bias_ = GetInput(operation, operands, kInputGateBiasTensor);
forget_gate_bias_ = GetInput(operation, operands, kForgetGateBiasTensor);
cell_bias_ = GetInput(operation, operands, kCellGateBiasTensor);
output_gate_bias_ = GetInput(operation, operands, kOutputGateBiasTensor);
projection_weights_ = GetInput(operation, operands, kProjectionWeightsTensor); // optional
projection_bias_ = GetInput(operation, operands, kProjectionBiasTensor); // optional
output_state_in_ = GetInput(operation, operands, kOutputStateInTensor);
cell_state_in_ = GetInput(operation, operands, kCellStateInTensor);
const auto& activationOperand = *GetInput(operation, operands, kActivationParam);
params_.activation = static_cast<TfLiteFusedActivation>(getScalarDataWithDefault<int32_t>(
activationOperand, TfLiteFusedActivation::kTfLiteActNone));
const auto& cellClipOperand = *GetInput(operation, operands, kCellClipParam);
const auto& projClipOperand = *GetInput(operation, operands, kProjClipParam);
if (input_->type == OperandType::TENSOR_FLOAT32) {
params_.cell_clip = getScalarDataWithDefault<float>(cellClipOperand, 0.0f);
params_.proj_clip = getScalarDataWithDefault<float>(projClipOperand, 0.0f);
} else {
params_.cell_clip =
static_cast<float>(getScalarDataWithDefault<_Float16>(cellClipOperand, 0.0f));
params_.proj_clip =
static_cast<float>(getScalarDataWithDefault<_Float16>(projClipOperand, 0.0f));
}
// We check the version of LSTM by checking the number of the inputs to the
// op. For LSTM version 1.0 there were 23 inputs and for 1.2 there are 27.
if (operation.inputs.size() == 27) {
input_layer_norm_weights_ =
GetInput(operation, operands, kInputLayerNormWeightsTensor); // optional
forget_layer_norm_weights_ =
GetInput(operation, operands, kForgetLayerNormWeightsTensor); // optional
cell_layer_norm_weights_ =
GetInput(operation, operands, kCellLayerNormWeightsTensor); // optional
output_layer_norm_weights_ =
GetInput(operation, operands, kOutputLayerNormWeightsTensor); // optional
} else {
// For LSTM from HAL v1.0 assign operands with no values
static RunTimeOperandInfo no_value;
no_value.lifetime = Operand::LifeTime::NO_VALUE;
input_layer_norm_weights_ = &no_value;
forget_layer_norm_weights_ = &no_value;
cell_layer_norm_weights_ = &no_value;
output_layer_norm_weights_ = &no_value;
}
output_state_out_ = GetOutput(operation, operands, kOutputStateOutTensor);
cell_state_out_ = GetOutput(operation, operands, kCellStateOutTensor);
output_ = GetOutput(operation, operands, kOutputTensor);
scratch_buffer_ = GetOutput(operation, operands, kScratchBufferTensor);
}
// static
bool LSTMCell::CheckInputTensorDimensions(
const RunTimeOperandInfo* input_, const RunTimeOperandInfo* input_to_input_weights,
const RunTimeOperandInfo* input_to_forget_weights,
const RunTimeOperandInfo* input_to_cell_weights,
const RunTimeOperandInfo* input_to_output_weights,
const RunTimeOperandInfo* recurrent_to_input_weights,
const RunTimeOperandInfo* recurrent_to_forget_weights,
const RunTimeOperandInfo* recurrent_to_cell_weights,
const RunTimeOperandInfo* recurrent_to_output_weights,
const RunTimeOperandInfo* cell_to_input_weights,
const RunTimeOperandInfo* cell_to_forget_weights,
const RunTimeOperandInfo* cell_to_output_weights, const RunTimeOperandInfo* input_gate_bias,
const RunTimeOperandInfo* forget_gate_bias, const RunTimeOperandInfo* cell_bias,
const RunTimeOperandInfo* output_gate_bias, const RunTimeOperandInfo* projection_weights,
const RunTimeOperandInfo* projection_bias,
const RunTimeOperandInfo* input_layer_norm_weights,
const RunTimeOperandInfo* forget_layer_norm_weights,
const RunTimeOperandInfo* cell_layer_norm_weights,
const RunTimeOperandInfo* output_layer_norm_weights, uint32_t n_input, uint32_t n_output,
uint32_t n_cell, LSTMParams* params) {
// Making sure clipping parameters have valid values.
// == 0 means no clipping
// > 0 means clipping
NN_CHECK(params->cell_clip >= 0);
NN_CHECK(params->proj_clip >= 0);
if (!IsNullInput(input_to_input_weights)) {
NN_CHECK_EQ(NumDimensions(input_to_input_weights), 2);
NN_CHECK_EQ(SizeOfDimension(input_to_input_weights, 0), n_cell);
NN_CHECK_EQ(SizeOfDimension(input_to_input_weights, 1), n_input);
}
NN_CHECK_EQ(NumDimensions(input_to_forget_weights), 2);
NN_CHECK_EQ(SizeOfDimension(input_to_forget_weights, 0), n_cell);
NN_CHECK_EQ(SizeOfDimension(input_to_forget_weights, 1), n_input);
NN_CHECK_EQ(NumDimensions(input_to_cell_weights), 2);
NN_CHECK_EQ(SizeOfDimension(input_to_cell_weights, 0), n_cell);
NN_CHECK_EQ(SizeOfDimension(input_to_cell_weights, 1), n_input);
if (!IsNullInput(recurrent_to_input_weights)) {
NN_CHECK_EQ(NumDimensions(recurrent_to_input_weights), 2);
NN_CHECK_EQ(SizeOfDimension(recurrent_to_input_weights, 0), n_cell);
NN_CHECK_EQ(SizeOfDimension(recurrent_to_input_weights, 1), n_output);
}
NN_CHECK_EQ(NumDimensions(recurrent_to_forget_weights), 2);
NN_CHECK_EQ(SizeOfDimension(recurrent_to_forget_weights, 0), n_cell);
NN_CHECK_EQ(SizeOfDimension(recurrent_to_forget_weights, 1), n_output);
NN_CHECK_EQ(NumDimensions(recurrent_to_cell_weights), 2);
NN_CHECK_EQ(SizeOfDimension(recurrent_to_cell_weights, 0), n_cell);
NN_CHECK_EQ(SizeOfDimension(recurrent_to_cell_weights, 1), n_output);
// We make sure the input-gate's parameters are either both present (regular
// LSTM) or not at all (CIFG-LSTM).
const bool cifg_weights_all_or_none =
(!IsNullInput(input_to_input_weights) && !IsNullInput(recurrent_to_input_weights)) ||
(IsNullInput(input_to_input_weights) && IsNullInput(recurrent_to_input_weights));
NN_CHECK(cifg_weights_all_or_none);
if (!IsNullInput(cell_to_input_weights)) {
NN_CHECK_EQ(NumDimensions(cell_to_input_weights), 1);
NN_CHECK_EQ(SizeOfDimension(cell_to_input_weights, 0), n_cell);
}
if (!IsNullInput(cell_to_forget_weights)) {
NN_CHECK_EQ(NumDimensions(cell_to_forget_weights), 1);
NN_CHECK_EQ(SizeOfDimension(cell_to_forget_weights, 0), n_cell);
}
if (!IsNullInput(cell_to_output_weights)) {
NN_CHECK_EQ(NumDimensions(cell_to_output_weights), 1);
NN_CHECK_EQ(SizeOfDimension(cell_to_output_weights, 0), n_cell);
}
// Making sure the peephole weights are there all or none.
params->use_cifg = IsNullInput(input_to_input_weights);
const bool peephole_weights_all_or_none =
((!IsNullInput(cell_to_input_weights) || params->use_cifg) &&
!IsNullInput(cell_to_forget_weights) && !IsNullInput(cell_to_output_weights)) ||
(IsNullInput(cell_to_input_weights) && IsNullInput(cell_to_forget_weights) &&
IsNullInput(cell_to_output_weights));
NN_CHECK(peephole_weights_all_or_none);
// Since we have already checked that weights are all there or none, we can
// check the existence of only one to the get the condition.
params->use_peephole = !IsNullInput(cell_to_output_weights);
// Checking output instead of input layer norm weights because input can be
// omitted ones can be omited in case CIFG LSTM is used.
params->use_layer_norm = !IsNullInput(output_layer_norm_weights);
params->use_projection_weight = (projection_weights->lifetime != Operand::LifeTime::NO_VALUE);
params->use_projection_bias = (projection_bias->lifetime != Operand::LifeTime::NO_VALUE);
// Make sure the input gate bias is present only when not a CIFG-LSTM.
if (params->use_cifg) {
NN_CHECK(IsNullInput(input_gate_bias));
} else {
NN_CHECK_EQ(NumDimensions(input_gate_bias), 1);
NN_CHECK_EQ(SizeOfDimension(input_gate_bias, 0), n_cell);
}
NN_CHECK_EQ(NumDimensions(forget_gate_bias), 1);
NN_CHECK_EQ(SizeOfDimension(forget_gate_bias, 0), n_cell);
NN_CHECK_EQ(NumDimensions(cell_bias), 1);
NN_CHECK_EQ(SizeOfDimension(cell_bias, 0), n_cell);
NN_CHECK_EQ(NumDimensions(output_gate_bias), 1);
NN_CHECK_EQ(SizeOfDimension(output_gate_bias, 0), n_cell);
if (!IsNullInput(projection_weights)) {
NN_CHECK_EQ(NumDimensions(projection_weights), 2);
NN_CHECK_EQ(SizeOfDimension(projection_weights, 0), n_output);
NN_CHECK_EQ(SizeOfDimension(projection_weights, 1), n_cell);
}
if (!IsNullInput(projection_bias)) {
NN_CHECK_EQ(NumDimensions(projection_bias), 1);
NN_CHECK_EQ(SizeOfDimension(projection_bias, 0), n_output);
}
// Making sure the projection tensors are consistent:
// 1) If projection weight is not present, then projection bias should not be
// present.
// 2) If projection weight is present, then projection bias is optional.
// TODO: make sure this is correct.
const bool projecton_tensors_consistent =
(!IsNullInput(projection_weights) || IsNullInput(projection_bias));
NN_CHECK(projecton_tensors_consistent == true);
if (!IsNullInput(input_layer_norm_weights)) {
NN_CHECK_EQ(NumDimensions(input_layer_norm_weights), 1);
NN_CHECK_EQ(SizeOfDimension(input_layer_norm_weights, 0), n_cell);
}
if (!IsNullInput(forget_layer_norm_weights)) {
NN_CHECK_EQ(NumDimensions(forget_layer_norm_weights), 1);
NN_CHECK_EQ(SizeOfDimension(forget_layer_norm_weights, 0), n_cell);
}
if (!IsNullInput(cell_layer_norm_weights)) {
NN_CHECK_EQ(NumDimensions(cell_layer_norm_weights), 1);
NN_CHECK_EQ(SizeOfDimension(cell_layer_norm_weights, 0), n_cell);
}
if (!IsNullInput(output_layer_norm_weights)) {
NN_CHECK_EQ(NumDimensions(output_layer_norm_weights), 1);
NN_CHECK_EQ(SizeOfDimension(output_layer_norm_weights, 0), n_cell);
}
if (params->use_cifg) {
NN_RET_CHECK(IsNullInput(input_layer_norm_weights))
<< "input_layer_norm_weights are provided while CIFG is used";
const bool layer_norm_weights_all_or_none_cifg =
(IsNullInput(forget_layer_norm_weights) && IsNullInput(cell_layer_norm_weights) &&
IsNullInput(output_layer_norm_weights)) ||
(!IsNullInput(forget_layer_norm_weights) && !IsNullInput(cell_layer_norm_weights) &&
!IsNullInput(output_layer_norm_weights));
NN_RET_CHECK(layer_norm_weights_all_or_none_cifg);
} else {
const bool layer_norm_weights_all_or_none =
(IsNullInput(input_layer_norm_weights) && IsNullInput(forget_layer_norm_weights) &&
IsNullInput(cell_layer_norm_weights) && IsNullInput(output_layer_norm_weights)) ||
(!IsNullInput(input_layer_norm_weights) &&
!IsNullInput(forget_layer_norm_weights) && !IsNullInput(cell_layer_norm_weights) &&
!IsNullInput(output_layer_norm_weights));
NN_RET_CHECK(layer_norm_weights_all_or_none);
}
return true;
}
bool LSTMCell::Prepare(const Operation& operation, RunTimeOperandInfo* operands,
Shape* scratchShape, Shape* outputStateShape, Shape* cellStateShape,
Shape* outputShape) {
// Check we have all the inputs and outputs we need.
NN_CHECK(NumInputsWithValues(operation, operands) >= 15 &&
NumInputsWithValues(operation, operands) <= 27);
constexpr int requiredInputs[] = {
kInputTensor,
kInputToForgetWeightsTensor,
kInputToCellWeightsTensor,
kInputToOutputWeightsTensor,
kRecurrentToForgetWeightsTensor,
kRecurrentToCellWeightsTensor,
kRecurrentToOutputWeightsTensor,
kForgetGateBiasTensor,
kCellGateBiasTensor,
kOutputGateBiasTensor,
kOutputStateInTensor,
kCellStateInTensor,
kActivationParam,
kCellClipParam,
kProjClipParam,
};
for (const int requiredInput : requiredInputs) {
NN_RET_CHECK(!IsNullInput(GetInput(operation, operands, requiredInput)))
<< "required input " << requiredInput << " is omitted";
}
NN_CHECK_EQ(NumOutputs(operation), 4);
// Check that the scalar operands' buffers are large enough.
const auto& activationOperand = *GetInput(operation, operands, kActivationParam);
NN_RET_CHECK(activationOperand.length >= sizeof(int32_t));
const auto& cellClipOperand = *GetInput(operation, operands, kCellClipParam);
const auto& projClipOperand = *GetInput(operation, operands, kProjClipParam);
if (input_->type == OperandType::TENSOR_FLOAT32) {
NN_RET_CHECK(cellClipOperand.length >= sizeof(float));
NN_RET_CHECK(projClipOperand.length >= sizeof(float));
} else {
NN_RET_CHECK(cellClipOperand.length >= sizeof(_Float16));
NN_RET_CHECK(projClipOperand.length >= sizeof(_Float16));
}
// Inferring batch size, number of outputs and number of cells from the
// input tensors.
NN_CHECK(NumDimensions(input_) > 1);
const uint32_t n_batch = SizeOfDimension(input_, 0);
const uint32_t n_input = SizeOfDimension(input_, 1);
const uint32_t n_cell = SizeOfDimension(input_to_output_weights_, 0);
NN_CHECK_EQ(NumDimensions(input_to_output_weights_), 2);
NN_CHECK_EQ(SizeOfDimension(input_to_output_weights_, 1), n_input);
NN_CHECK_EQ(NumDimensions(recurrent_to_output_weights_), 2);
NN_CHECK_EQ(SizeOfDimension(recurrent_to_output_weights_, 0), n_cell);
const uint32_t n_output = SizeOfDimension(recurrent_to_output_weights_, 1);
// Check that input tensor dimensions matches with each other.
if (!CheckInputTensorDimensions(
input_, input_to_input_weights_, input_to_forget_weights_, input_to_cell_weights_,
input_to_output_weights_, recurrent_to_input_weights_, recurrent_to_forget_weights_,
recurrent_to_cell_weights_, recurrent_to_output_weights_, cell_to_input_weights_,
cell_to_forget_weights_, cell_to_output_weights_, input_gate_bias_,
forget_gate_bias_, cell_bias_, output_gate_bias_, projection_weights_,
projection_bias_, input_layer_norm_weights_, forget_layer_norm_weights_,
cell_layer_norm_weights_, output_layer_norm_weights_, n_input, n_output, n_cell,
&params_)) {
return false;
}
// Resize the output and output_state tensors.
const Shape& inputShape = input_->shape();
outputShape->type = inputShape.type;
outputShape->dimensions = {n_batch, n_output};
outputShape->offset = inputShape.offset;
outputShape->scale = inputShape.scale;
outputStateShape->type = inputShape.type;
outputStateShape->dimensions = {n_batch, n_output};
outputStateShape->offset = inputShape.offset;
outputStateShape->scale = inputShape.scale;
cellStateShape->type = inputShape.type;
cellStateShape->dimensions = {n_batch, n_cell};
cellStateShape->offset = inputShape.offset;
cellStateShape->scale = inputShape.scale;
if (params_.use_cifg) {
// Reserving space for Cell, Forget, Output gates
scratchShape->dimensions = {n_batch, n_cell * 3};
} else {
// Reserving space for Input, Cell, Forget, Output gates
scratchShape->dimensions = {n_batch, n_cell * 4};
}
scratchShape->type = inputShape.type;
scratchShape->offset = inputShape.offset;
scratchShape->scale = inputShape.scale;
return true;
}
// static
bool LSTMCell::LSTMEvalFloat32(
const LSTMParams& params, const float* input_buffer, const Shape& input_shape,
const float* input_to_input_weights_buffer, const float* input_to_forget_weights_buffer,
const float* input_to_cell_weights_buffer, const float* input_to_output_weights_buffer,
const Shape& input_to_output_weights_shape, const float* recurrent_to_input_weights_buffer,
const float* recurrent_to_forget_weights_buffer,
const float* recurrent_to_cell_weights_buffer,
const float* recurrent_to_output_weights_buffer,
const Shape& recurrent_to_output_weights_shape, const float* cell_to_input_weights_buffer,
const float* cell_to_forget_weights_buffer, const float* cell_to_output_weights_buffer,
const float* aux_input_buffer, const float* aux_input_to_input_weights_buffer,
const float* aux_input_to_forget_weights_buffer,
const float* aux_input_to_cell_weights_buffer,
const float* aux_input_to_output_weights_buffer, const float* input_gate_bias_buffer,
const float* forget_gate_bias_buffer, const float* cell_bias_buffer,
const float* output_gate_bias_buffer, const float* projection_weights_buffer,
const float* projection_bias_buffer, const float* output_state_in_buffer,
const float* cell_state_in_buffer, const float* input_layer_norm_weights_buffer,
const float* forget_layer_norm_weights_buffer, const float* cell_layer_norm_weights_buffer,
const float* output_layer_norm_weights_buffer, float* output_state_out_buffer,
float* cell_state_out_buffer, float* output_buffer, float* scratch_buffer_buffer,
bool timeMajor, bool forwardSequence) {
NNTRACE_COMP("LSTMCell::LSTMEvalFloat32");
const uint32_t inputRank = getNumberOfDimensions(input_shape);
NN_CHECK(inputRank == 2 || inputRank == 3);
const uint32_t maxTime =
(inputRank == 3) ? getSizeOfDimension(input_shape, timeMajor ? 0 : 1) : 1;
const uint32_t batchSize = (inputRank == 3) ? getSizeOfDimension(input_shape, timeMajor ? 1 : 0)
: getSizeOfDimension(input_shape, 0);
const uint32_t inputSize = getSizeOfDimension(input_shape, inputRank - 1);
const uint32_t numCells = getSizeOfDimension(input_to_output_weights_shape, 0);
const uint32_t outputSize = getSizeOfDimension(recurrent_to_output_weights_shape, 1);
Shape batchInputShape = input_shape;
batchInputShape.dimensions = {batchSize, inputSize};
const uint32_t batchInputSize = batchSize * inputSize;
const uint32_t batchOutputSize = batchSize * outputSize;
std::vector<float> transposedInput;
const bool hasAuxInput = (aux_input_buffer != nullptr);
std::vector<float> transposedAuxInput;
std::vector<float> transposedOutput;
Shape transposedInputShape;
Shape transposedOutputShape;
if (!timeMajor) {
transposedInput.resize(maxTime * batchInputSize);
transposeFirstTwoDimensions<float>(input_buffer, input_shape, transposedInput.data());
if (hasAuxInput) {
transposedAuxInput.resize(maxTime * batchInputSize);
transposeFirstTwoDimensions<float>(aux_input_buffer, input_shape,
transposedAuxInput.data());
}
transposeFirstTwoDimensions(input_shape, &transposedInputShape);
transposedOutput.resize(maxTime * batchOutputSize);
transposedOutputShape = transposedInputShape;
transposedOutputShape.dimensions[2] = outputSize;
}
const float* inputData = timeMajor ? input_buffer : transposedInput.data();
const float* auxInputData =
hasAuxInput ? (timeMajor ? aux_input_buffer : transposedAuxInput.data()) : nullptr;
float* outputData = timeMajor ? output_buffer : transposedOutput.data();
std::vector<float> outputStateInCurrentTimeStep(
output_state_in_buffer, output_state_in_buffer + batchSize * outputSize);
std::vector<float> cellStateInCurrentTimeStep(cell_state_in_buffer,
cell_state_in_buffer + batchSize * numCells);
const float* inputCurrentTimeStep =
inputData + (forwardSequence ? 0 : batchInputSize * (maxTime - 1));
const float* auxInputCurrentTimeStep =
hasAuxInput ? (auxInputData + (forwardSequence ? 0 : batchInputSize * (maxTime - 1)))
: nullptr;
float* outputCurrentTimeStep =
outputData + (forwardSequence ? 0 : batchOutputSize * (maxTime - 1));
const int batchInputDelta = (forwardSequence ? 1 : -1) * static_cast<int>(batchInputSize);
const int batchOutputDelta = (forwardSequence ? 1 : -1) * static_cast<int>(batchOutputSize);
for (int t = 0; t < maxTime; ++t) {
LSTMStep(params, inputCurrentTimeStep, batchInputShape, input_to_input_weights_buffer,
input_to_forget_weights_buffer, input_to_cell_weights_buffer,
input_to_output_weights_buffer, input_to_output_weights_shape,
recurrent_to_input_weights_buffer, recurrent_to_forget_weights_buffer,
recurrent_to_cell_weights_buffer, recurrent_to_output_weights_buffer,
recurrent_to_output_weights_shape, cell_to_input_weights_buffer,
cell_to_forget_weights_buffer, cell_to_output_weights_buffer,
auxInputCurrentTimeStep, aux_input_to_input_weights_buffer,
aux_input_to_forget_weights_buffer, aux_input_to_cell_weights_buffer,
aux_input_to_output_weights_buffer, input_gate_bias_buffer,
forget_gate_bias_buffer, cell_bias_buffer, output_gate_bias_buffer,
projection_weights_buffer, projection_bias_buffer,
outputStateInCurrentTimeStep.data(), cellStateInCurrentTimeStep.data(),
input_layer_norm_weights_buffer, forget_layer_norm_weights_buffer,
cell_layer_norm_weights_buffer, output_layer_norm_weights_buffer,
output_state_out_buffer, cell_state_out_buffer, outputCurrentTimeStep,
scratch_buffer_buffer);
inputCurrentTimeStep += batchInputDelta;
if (hasAuxInput) {
auxInputCurrentTimeStep += batchInputDelta;
}
outputCurrentTimeStep += batchOutputDelta;
outputStateInCurrentTimeStep.assign(output_state_out_buffer,
output_state_out_buffer + batchSize * outputSize);
cellStateInCurrentTimeStep.assign(cell_state_out_buffer,
cell_state_out_buffer + batchSize * numCells);
}
if (!timeMajor) {
transposeFirstTwoDimensions<float>(transposedOutput.data(), transposedOutputShape,
output_buffer);
}
return true;
}
// static
bool LSTMCell::LSTMEvalFloat16(
const LSTMParams& params, const _Float16* input_buffer, const Shape& input_shape,
const _Float16* input_to_input_weights_buffer,
const _Float16* input_to_forget_weights_buffer,
const _Float16* input_to_cell_weights_buffer,
const _Float16* input_to_output_weights_buffer, const Shape& input_to_output_weights_shape,
const _Float16* recurrent_to_input_weights_buffer,
const _Float16* recurrent_to_forget_weights_buffer,
const _Float16* recurrent_to_cell_weights_buffer,
const _Float16* recurrent_to_output_weights_buffer,
const Shape& recurrent_to_output_weights_shape,
const _Float16* cell_to_input_weights_buffer, const _Float16* cell_to_forget_weights_buffer,
const _Float16* cell_to_output_weights_buffer, const _Float16* aux_input_buffer,
const _Float16* aux_input_to_input_weights_buffer,
const _Float16* aux_input_to_forget_weights_buffer,
const _Float16* aux_input_to_cell_weights_buffer,
const _Float16* aux_input_to_output_weights_buffer, const _Float16* input_gate_bias_buffer,
const _Float16* forget_gate_bias_buffer, const _Float16* cell_bias_buffer,
const _Float16* output_gate_bias_buffer, const _Float16* projection_weights_buffer,
const _Float16* projection_bias_buffer, const _Float16* output_state_in_buffer,
const _Float16* cell_state_in_buffer, const _Float16* input_layer_norm_weights_buffer,
const _Float16* forget_layer_norm_weights_buffer,
const _Float16* cell_layer_norm_weights_buffer,
const _Float16* output_layer_norm_weights_buffer, _Float16* output_state_out_buffer,
_Float16* cell_state_out_buffer, _Float16* output_buffer, _Float16* scratch_buffer_buffer,
bool timeMajor, bool forwardSequence) {
NNTRACE_COMP("LSTMCell::LSTMEvalFloat16");
const uint32_t inputRank = getNumberOfDimensions(input_shape);
NN_CHECK(inputRank == 2 || inputRank == 3);
const uint32_t maxTime =
(inputRank == 3) ? getSizeOfDimension(input_shape, timeMajor ? 0 : 1) : 1;
const uint32_t batchSize = (inputRank == 3) ? getSizeOfDimension(input_shape, timeMajor ? 1 : 0)
: getSizeOfDimension(input_shape, 0);
const uint32_t inputSize = getSizeOfDimension(input_shape, inputRank - 1);
const uint32_t numCells = getSizeOfDimension(input_to_output_weights_shape, 0);
const uint32_t outputSize = getSizeOfDimension(recurrent_to_output_weights_shape, 1);
Shape batchInputShape = input_shape;
batchInputShape.dimensions = {batchSize, inputSize};
const uint32_t batchInputSize = batchSize * inputSize;
const uint32_t batchOutputSize = batchSize * outputSize;
std::vector<float> input_float32(maxTime * batchInputSize);
convertFloat16ToFloat32(input_buffer, &input_float32);
std::vector<float> input_to_input_weights_float32(numCells * inputSize);
if (input_to_input_weights_buffer != nullptr) {
convertFloat16ToFloat32(input_to_input_weights_buffer, &input_to_input_weights_float32);
}
std::vector<float> input_to_forget_weights_float32(numCells * inputSize);
convertFloat16ToFloat32(input_to_forget_weights_buffer, &input_to_forget_weights_float32);
std::vector<float> input_to_cell_weights_float32(numCells * inputSize);
convertFloat16ToFloat32(input_to_cell_weights_buffer, &input_to_cell_weights_float32);
std::vector<float> input_to_output_weights_float32(numCells * inputSize);
convertFloat16ToFloat32(input_to_output_weights_buffer, &input_to_output_weights_float32);
std::vector<float> recurrent_to_input_weights_float32(numCells * outputSize);
if (recurrent_to_input_weights_buffer != nullptr) {
convertFloat16ToFloat32(recurrent_to_input_weights_buffer,
&recurrent_to_input_weights_float32);
}
std::vector<float> recurrent_to_forget_weights_float32(numCells * outputSize);
convertFloat16ToFloat32(recurrent_to_forget_weights_buffer,
&recurrent_to_forget_weights_float32);
std::vector<float> recurrent_to_cell_weights_float32(numCells * outputSize);
convertFloat16ToFloat32(recurrent_to_cell_weights_buffer, &recurrent_to_cell_weights_float32);
std::vector<float> recurrent_to_output_weights_float32(numCells * outputSize);
convertFloat16ToFloat32(recurrent_to_output_weights_buffer,
&recurrent_to_output_weights_float32);
std::vector<float> cell_to_input_weights_float32(numCells);
if (cell_to_input_weights_buffer != nullptr) {
convertFloat16ToFloat32(cell_to_input_weights_buffer, &cell_to_input_weights_float32);
}
std::vector<float> cell_to_forget_weights_float32(numCells);
if (cell_to_forget_weights_buffer != nullptr) {
convertFloat16ToFloat32(cell_to_forget_weights_buffer, &cell_to_forget_weights_float32);
}
std::vector<float> cell_to_output_weights_float32(numCells);
if (cell_to_output_weights_buffer != nullptr) {
convertFloat16ToFloat32(cell_to_output_weights_buffer, &cell_to_output_weights_float32);
}
std::vector<float> aux_input_float32(maxTime * batchInputSize);
if (aux_input_buffer != nullptr) {
convertFloat16ToFloat32(aux_input_buffer, &aux_input_float32);
}
std::vector<float> aux_input_to_input_weights_float32(numCells * inputSize);
if (aux_input_to_input_weights_buffer != nullptr) {
convertFloat16ToFloat32(aux_input_to_input_weights_buffer,
&aux_input_to_input_weights_float32);
}
std::vector<float> aux_input_to_forget_weights_float32(numCells * inputSize);
if (aux_input_to_forget_weights_buffer != nullptr) {
convertFloat16ToFloat32(aux_input_to_forget_weights_buffer,
&aux_input_to_forget_weights_float32);
}
std::vector<float> aux_input_to_cell_weights_float32(numCells * inputSize);
if (aux_input_to_cell_weights_buffer != nullptr) {
convertFloat16ToFloat32(aux_input_to_cell_weights_buffer,
&aux_input_to_cell_weights_float32);
}
std::vector<float> aux_input_to_output_weights_float32(numCells * inputSize);
if (aux_input_to_output_weights_buffer != nullptr) {
convertFloat16ToFloat32(aux_input_to_output_weights_buffer,
&aux_input_to_output_weights_float32);
}
std::vector<float> input_gate_bias_float32(numCells);
if (input_gate_bias_buffer != nullptr) {
convertFloat16ToFloat32(input_gate_bias_buffer, &input_gate_bias_float32);
}
std::vector<float> forget_gate_bias_float32(numCells);
convertFloat16ToFloat32(forget_gate_bias_buffer, &forget_gate_bias_float32);
std::vector<float> cell_bias_float32(numCells);
convertFloat16ToFloat32(cell_bias_buffer, &cell_bias_float32);
std::vector<float> output_gate_bias_float32(numCells);
convertFloat16ToFloat32(output_gate_bias_buffer, &output_gate_bias_float32);
std::vector<float> projection_weights_float32(numCells * outputSize);
if (projection_weights_buffer != nullptr) {
convertFloat16ToFloat32(projection_weights_buffer, &projection_weights_float32);
}
std::vector<float> projection_bias_float32(outputSize);
if (projection_bias_buffer != nullptr) {
convertFloat16ToFloat32(projection_bias_buffer, &projection_bias_float32);
}
std::vector<float> input_layer_norm_weights_float32(numCells);
if (input_layer_norm_weights_buffer != nullptr) {
convertFloat16ToFloat32(input_layer_norm_weights_buffer, &input_layer_norm_weights_float32);
}
std::vector<float> forget_layer_norm_weights_float32(numCells);
if (forget_layer_norm_weights_buffer != nullptr) {
convertFloat16ToFloat32(forget_layer_norm_weights_buffer,
&forget_layer_norm_weights_float32);
}
std::vector<float> cell_layer_norm_weights_float32(numCells);
if (cell_layer_norm_weights_buffer != nullptr) {
convertFloat16ToFloat32(cell_layer_norm_weights_buffer, &cell_layer_norm_weights_float32);
}
std::vector<float> output_layer_norm_weights_float32(numCells);
if (output_layer_norm_weights_buffer != nullptr) {
convertFloat16ToFloat32(output_layer_norm_weights_buffer,
&output_layer_norm_weights_float32);
}
std::vector<float> output_state_out_float32(batchOutputSize);
convertFloat16ToFloat32(output_state_out_buffer, &output_state_out_float32);
std::vector<float> cell_state_out_float32(batchSize * numCells);
convertFloat16ToFloat32(cell_state_out_buffer, &cell_state_out_float32);
std::vector<float> output_float32(maxTime * batchOutputSize);
convertFloat16ToFloat32(output_buffer, &output_float32);
std::vector<float> scratch_buffer_float32(params.use_cifg ? 3 * batchSize * numCells
: 4 * batchSize * numCells);
convertFloat16ToFloat32(scratch_buffer_buffer, &scratch_buffer_float32);
std::vector<float> transposedInput;
const bool hasAuxInput = (aux_input_buffer != nullptr);
std::vector<float> transposedAuxInput;
std::vector<float> transposedOutput;
Shape transposedInputShape;
Shape transposedOutputShape;
if (!timeMajor) {
transposedInput.resize(maxTime * batchInputSize);
transposeFirstTwoDimensions<float>(input_float32.data(), input_shape,
transposedInput.data());
if (hasAuxInput) {
transposedAuxInput.resize(maxTime * batchInputSize);
transposeFirstTwoDimensions<float>(aux_input_float32.data(), input_shape,
transposedAuxInput.data());
}
transposeFirstTwoDimensions(input_shape, &transposedInputShape);
transposedOutput.resize(maxTime * batchOutputSize);
transposedOutputShape = transposedInputShape;
transposedOutputShape.dimensions[2] = outputSize;
}
const float* inputData = timeMajor ? input_float32.data() : transposedInput.data();
const float* auxInputData =
hasAuxInput ? (timeMajor ? aux_input_float32.data() : transposedAuxInput.data())
: nullptr;
float* outputData = timeMajor ? output_float32.data() : transposedOutput.data();
std::vector<float> outputStateInCurrentTimeStep(batchSize * outputSize);
convertFloat16ToFloat32(output_state_in_buffer, &outputStateInCurrentTimeStep);
std::vector<float> cellStateInCurrentTimeStep(batchSize * numCells);
convertFloat16ToFloat32(cell_state_in_buffer, &cellStateInCurrentTimeStep);
const float* inputCurrentTimeStep =
inputData + (forwardSequence ? 0 : batchInputSize * (maxTime - 1));
const float* auxInputCurrentTimeStep =
hasAuxInput ? (auxInputData + (forwardSequence ? 0 : batchInputSize * (maxTime - 1)))
: nullptr;
float* outputCurrentTimeStep =
outputData + (forwardSequence ? 0 : batchOutputSize * (maxTime - 1));
const int batchInputDelta = (forwardSequence ? 1 : -1) * static_cast<int>(batchInputSize);
const int batchOutputDelta = (forwardSequence ? 1 : -1) * static_cast<int>(batchOutputSize);
for (int t = 0; t < maxTime; ++t) {
LSTMStep(params, inputCurrentTimeStep, batchInputShape,
input_to_input_weights_float32.data(), input_to_forget_weights_float32.data(),
input_to_cell_weights_float32.data(), input_to_output_weights_float32.data(),
input_to_output_weights_shape, recurrent_to_input_weights_float32.data(),
recurrent_to_forget_weights_float32.data(),
recurrent_to_cell_weights_float32.data(),
recurrent_to_output_weights_float32.data(), recurrent_to_output_weights_shape,
cell_to_input_weights_float32.data(), cell_to_forget_weights_float32.data(),
cell_to_output_weights_float32.data(), auxInputCurrentTimeStep,
aux_input_to_input_weights_float32.data(),
aux_input_to_forget_weights_float32.data(),
aux_input_to_cell_weights_float32.data(),
aux_input_to_output_weights_float32.data(), input_gate_bias_float32.data(),
forget_gate_bias_float32.data(), cell_bias_float32.data(),
output_gate_bias_float32.data(), projection_weights_float32.data(),
projection_bias_float32.data(), outputStateInCurrentTimeStep.data(),
cellStateInCurrentTimeStep.data(), input_layer_norm_weights_float32.data(),
forget_layer_norm_weights_float32.data(), cell_layer_norm_weights_float32.data(),
output_layer_norm_weights_float32.data(), output_state_out_float32.data(),
cell_state_out_float32.data(), outputCurrentTimeStep,
scratch_buffer_float32.data());
inputCurrentTimeStep += batchInputDelta;
if (hasAuxInput) {
auxInputCurrentTimeStep += batchInputDelta;
}
outputCurrentTimeStep += batchOutputDelta;
outputStateInCurrentTimeStep = output_state_out_float32;
cellStateInCurrentTimeStep = cell_state_out_float32;
}
if (!timeMajor) {
transposeFirstTwoDimensions<float>(transposedOutput.data(), transposedOutputShape,
output_float32.data());
}
convertFloat32ToFloat16(output_state_out_float32, output_state_out_buffer);
convertFloat32ToFloat16(cell_state_out_float32, cell_state_out_buffer);
convertFloat32ToFloat16(output_float32, output_buffer);
convertFloat32ToFloat16(scratch_buffer_float32, scratch_buffer_buffer);
return true;
}
// static
bool LSTMCell::LSTMStep(
const LSTMParams& params, const float* input_buffer, const Shape& input_shape,
const float* input_to_input_weights_buffer, const float* input_to_forget_weights_buffer,
const float* input_to_cell_weights_buffer, const float* input_to_output_weights_buffer,
const Shape& input_to_output_weights_shape, const float* recurrent_to_input_weights_buffer,
const float* recurrent_to_forget_weights_buffer,
const float* recurrent_to_cell_weights_buffer,
const float* recurrent_to_output_weights_buffer,
const Shape& recurrent_to_output_weights_shape, const float* cell_to_input_weights_buffer,
const float* cell_to_forget_weights_buffer, const float* cell_to_output_weights_buffer,
const float* aux_input_buffer, const float* aux_input_to_input_weights_buffer,
const float* aux_input_to_forget_weights_buffer,
const float* aux_input_to_cell_weights_buffer,
const float* aux_input_to_output_weights_buffer, const float* input_gate_bias_buffer,
const float* forget_gate_bias_buffer, const float* cell_bias_buffer,
const float* output_gate_bias_buffer, const float* projection_weights_buffer,
const float* projection_bias_buffer, const float* output_state_in_buffer,
const float* cell_state_in_buffer, const float* input_layer_norm_weights_buffer,
const float* forget_layer_norm_weights_buffer, const float* cell_layer_norm_weights_buffer,
const float* output_layer_norm_weights_buffer, float* output_state_out_buffer,
float* cell_state_out_buffer, float* output_buffer, float* scratch_buffer_buffer) {
NNTRACE_COMP("LSTMCell::LSTMStep");
const uint32_t n_batch = input_shape.dimensions[0];
const uint32_t n_input = input_shape.dimensions[1];
// n_cell and n_output will be the same size when there is no projection.
const uint32_t n_cell = input_to_output_weights_shape.dimensions[0];
const uint32_t n_output = recurrent_to_output_weights_shape.dimensions[1];
const uint32_t n_aux_input = aux_input_buffer == nullptr ? 0 : n_input;
// Index the scratch buffers pointers to the global scratch buffer.
float* input_gate_scratch = nullptr;
float* cell_scratch = nullptr;
float* forget_gate_scratch = nullptr;
float* output_gate_scratch = nullptr;
if (params.use_cifg) {
cell_scratch = scratch_buffer_buffer;
forget_gate_scratch = cell_scratch + n_cell * n_batch;
output_gate_scratch = cell_scratch + 2 * n_cell * n_batch;
} else {
input_gate_scratch = scratch_buffer_buffer;
cell_scratch = input_gate_scratch + n_cell * n_batch;
forget_gate_scratch = input_gate_scratch + 2 * n_cell * n_batch;
output_gate_scratch = input_gate_scratch + 3 * n_cell * n_batch;
}
if (!params.use_layer_norm) {
// Initialize scratch buffers with bias.
if (!params.use_cifg) {
tflite::tensor_utils::VectorBatchVectorAssign(input_gate_bias_buffer, n_cell, n_batch,
input_gate_scratch);
}
tflite::tensor_utils::VectorBatchVectorAssign(forget_gate_bias_buffer, n_cell, n_batch,
forget_gate_scratch);
tflite::tensor_utils::VectorBatchVectorAssign(cell_bias_buffer, n_cell, n_batch,
cell_scratch);
tflite::tensor_utils::VectorBatchVectorAssign(output_gate_bias_buffer, n_cell, n_batch,
output_gate_scratch);
} else {
// Initialize scratch buffers with zeroes.
if (!params.use_cifg) {
std::fill_n(input_gate_scratch, n_cell * n_batch, 0.0f);
}
std::fill_n(forget_gate_scratch, n_cell * n_batch, 0.0f);
std::fill_n(cell_scratch, n_cell * n_batch, 0.0f);
std::fill_n(output_gate_scratch, n_cell * n_batch, 0.0f);
}
// For each batch and cell: compute input_weight * input.
if (!params.use_cifg) {
tflite::tensor_utils::MatrixBatchVectorMultiplyAccumulate(input_to_input_weights_buffer,
n_cell, n_input, input_buffer,
n_batch, input_gate_scratch);
}
tflite::tensor_utils::MatrixBatchVectorMultiplyAccumulate(input_to_forget_weights_buffer,
n_cell, n_input, input_buffer,
n_batch, forget_gate_scratch);
tflite::tensor_utils::MatrixBatchVectorMultiplyAccumulate(
input_to_cell_weights_buffer, n_cell, n_input, input_buffer, n_batch, cell_scratch);
tflite::tensor_utils::MatrixBatchVectorMultiplyAccumulate(input_to_output_weights_buffer,
n_cell, n_input, input_buffer,
n_batch, output_gate_scratch);
// If auxiliary input is available then compute aux_input_weight * aux_input
if (aux_input_buffer != nullptr) {
if (!params.use_cifg) {
tflite::tensor_utils::MatrixBatchVectorMultiplyAccumulate(
aux_input_to_input_weights_buffer, n_cell, n_aux_input, aux_input_buffer,
n_batch, input_gate_scratch);
}
tflite::tensor_utils::MatrixBatchVectorMultiplyAccumulate(
aux_input_to_forget_weights_buffer, n_cell, n_aux_input, aux_input_buffer, n_batch,
forget_gate_scratch);
tflite::tensor_utils::MatrixBatchVectorMultiplyAccumulate(
aux_input_to_cell_weights_buffer, n_cell, n_aux_input, aux_input_buffer, n_batch,
cell_scratch);
tflite::tensor_utils::MatrixBatchVectorMultiplyAccumulate(
aux_input_to_output_weights_buffer, n_cell, n_aux_input, aux_input_buffer, n_batch,
output_gate_scratch);
}
// For each batch and cell: compute recurrent_weight * output_state.
if (!params.use_cifg) {
tflite::tensor_utils::MatrixBatchVectorMultiplyAccumulate(
recurrent_to_input_weights_buffer, n_cell, n_output, output_state_in_buffer,
n_batch, input_gate_scratch);
}
tflite::tensor_utils::MatrixBatchVectorMultiplyAccumulate(
recurrent_to_forget_weights_buffer, n_cell, n_output, output_state_in_buffer, n_batch,
forget_gate_scratch);
tflite::tensor_utils::MatrixBatchVectorMultiplyAccumulate(
recurrent_to_cell_weights_buffer, n_cell, n_output, output_state_in_buffer, n_batch,
cell_scratch);
tflite::tensor_utils::MatrixBatchVectorMultiplyAccumulate(
recurrent_to_output_weights_buffer, n_cell, n_output, output_state_in_buffer, n_batch,
output_gate_scratch);
// For each batch and cell: update input gate.
if (!params.use_cifg) {
if (params.use_peephole) {
tflite::tensor_utils::VectorBatchVectorCwiseProductAccumulate(
cell_to_input_weights_buffer, n_cell, cell_state_in_buffer, n_batch,
input_gate_scratch);
}
if (params.use_layer_norm) {
tflite::tensor_utils::MeanStddevNormalization(input_gate_scratch, input_gate_scratch,
n_cell, n_batch);
tflite::tensor_utils::VectorBatchVectorCwiseProduct(input_layer_norm_weights_buffer,
n_cell, input_gate_scratch, n_batch,
input_gate_scratch);
tflite::tensor_utils::VectorBatchVectorAdd(input_gate_bias_buffer, n_cell, n_batch,
input_gate_scratch);
}
tflite::tensor_utils::ApplySigmoidToVector(input_gate_scratch, n_cell * n_batch,
input_gate_scratch);
}
// For each batch and cell: update forget gate.
if (params.use_peephole) {
tflite::tensor_utils::VectorBatchVectorCwiseProductAccumulate(cell_to_forget_weights_buffer,
n_cell, cell_state_in_buffer,
n_batch, forget_gate_scratch);
}
if (params.use_layer_norm) {
tflite::tensor_utils::MeanStddevNormalization(forget_gate_scratch, forget_gate_scratch,
n_cell, n_batch);
tflite::tensor_utils::VectorBatchVectorCwiseProduct(forget_layer_norm_weights_buffer,
n_cell, forget_gate_scratch, n_batch,
forget_gate_scratch);
tflite::tensor_utils::VectorBatchVectorAdd(forget_gate_bias_buffer, n_cell, n_batch,
forget_gate_scratch);
}
tflite::tensor_utils::ApplySigmoidToVector(forget_gate_scratch, n_cell * n_batch,
forget_gate_scratch);
// For each batch and cell: update the cell.
if (params.use_layer_norm) {
tflite::tensor_utils::MeanStddevNormalization(cell_scratch, cell_scratch, n_cell, n_batch);
tflite::tensor_utils::VectorBatchVectorCwiseProduct(cell_layer_norm_weights_buffer, n_cell,
cell_scratch, n_batch, cell_scratch);
tflite::tensor_utils::VectorBatchVectorAdd(cell_bias_buffer, n_cell, n_batch, cell_scratch);
}
tflite::tensor_utils::VectorVectorCwiseProduct(forget_gate_scratch, cell_state_in_buffer,
n_batch * n_cell, cell_state_out_buffer);
tflite::tensor_utils::ApplyActivationToVector(cell_scratch, n_batch * n_cell, params.activation,
cell_scratch);
if (params.use_cifg) {
tflite::tensor_utils::Sub1Vector(forget_gate_scratch, n_batch * n_cell,
forget_gate_scratch);
tflite::tensor_utils::VectorVectorCwiseProductAccumulate(
cell_scratch, forget_gate_scratch, n_batch * n_cell, cell_state_out_buffer);
} else {
tflite::tensor_utils::VectorVectorCwiseProductAccumulate(
cell_scratch, input_gate_scratch, n_batch * n_cell, cell_state_out_buffer);
}
if (params.cell_clip > 0.0) {
tflite::tensor_utils::CwiseClipping(cell_state_out_buffer, n_batch * n_cell,
params.cell_clip);
}
// For each batch and cell: update the output gate.
if (params.use_peephole) {
tflite::tensor_utils::VectorBatchVectorCwiseProductAccumulate(cell_to_output_weights_buffer,
n_cell, cell_state_out_buffer,
n_batch, output_gate_scratch);
}
if (params.use_layer_norm) {
tflite::tensor_utils::MeanStddevNormalization(output_gate_scratch, output_gate_scratch,
n_cell, n_batch);
tflite::tensor_utils::VectorBatchVectorCwiseProduct(output_layer_norm_weights_buffer,
n_cell, output_gate_scratch, n_batch,
output_gate_scratch);
tflite::tensor_utils::VectorBatchVectorAdd(output_gate_bias_buffer, n_cell, n_batch,
output_gate_scratch);
}
tflite::tensor_utils::ApplySigmoidToVector(output_gate_scratch, n_batch * n_cell,
output_gate_scratch);
tflite::tensor_utils::ApplyActivationToVector(cell_state_out_buffer, n_batch * n_cell,
params.activation, cell_scratch);
tflite::tensor_utils::VectorVectorCwiseProduct(output_gate_scratch, cell_scratch,
n_batch * n_cell, output_gate_scratch);
// For each batch: update the projection and output_state.
if (params.use_projection_weight) {
if (params.use_projection_bias) {
tflite::tensor_utils::VectorBatchVectorAssign(projection_bias_buffer, n_output, n_batch,
output_buffer);
} else {
std::fill_n(output_buffer, n_batch * n_output, 0.0f);
}
tflite::tensor_utils::MatrixBatchVectorMultiplyAccumulate(
projection_weights_buffer, n_output, n_cell, output_gate_scratch, n_batch,
output_buffer);
if (params.proj_clip > 0.0) {
tflite::tensor_utils::CwiseClipping(output_buffer, n_batch * n_output,
params.proj_clip);
}
} else {
std::copy_n(output_gate_scratch, n_batch * n_output, output_buffer);
}
std::copy_n(output_buffer, n_batch * n_output, output_state_out_buffer);
return true;
}
bool LSTMCell::Eval() {
switch (input_->type) {
case OperandType::TENSOR_FLOAT32: {
LSTMEvalFloat32(params_, GetBuffer<const float>(input_), input_->shape(),
GetBuffer<const float>(input_to_input_weights_),
GetBuffer<const float>(input_to_forget_weights_),
GetBuffer<const float>(input_to_cell_weights_),
GetBuffer<const float>(input_to_output_weights_),
input_to_output_weights_->shape(),
GetBuffer<const float>(recurrent_to_input_weights_),
GetBuffer<const float>(recurrent_to_forget_weights_),
GetBuffer<const float>(recurrent_to_cell_weights_),
GetBuffer<const float>(recurrent_to_output_weights_),
recurrent_to_output_weights_->shape(),
GetBuffer<const float>(cell_to_input_weights_),
GetBuffer<const float>(cell_to_forget_weights_),
GetBuffer<const float>(cell_to_output_weights_),
/*aux_input_buffer=*/nullptr,
/*aux_input_to_input_weights_buffer=*/nullptr,
/*aux_input_to_forget_weights_buffer=*/nullptr,
/*aux_input_to_cell_weights_buffer=*/nullptr,
/*aux_input_to_output_weights_buffer=*/nullptr,
GetBuffer<const float>(input_gate_bias_),
GetBuffer<const float>(forget_gate_bias_),
GetBuffer<const float>(cell_bias_),
GetBuffer<const float>(output_gate_bias_),
GetBuffer<const float>(projection_weights_),
GetBuffer<const float>(projection_bias_),
GetBuffer<const float>(output_state_in_),
GetBuffer<const float>(cell_state_in_),
GetBuffer<const float>(input_layer_norm_weights_),
GetBuffer<const float>(forget_layer_norm_weights_),
GetBuffer<const float>(cell_layer_norm_weights_),
GetBuffer<const float>(output_layer_norm_weights_),
GetBuffer<float>(output_state_out_), GetBuffer<float>(cell_state_out_),
GetBuffer<float>(output_), GetBuffer<float>(scratch_buffer_));
} break;
case OperandType::TENSOR_FLOAT16: {
LSTMEvalFloat16(params_, GetBuffer<const _Float16>(input_), input_->shape(),
GetOptionalBuffer<const _Float16>(input_to_input_weights_),
GetBuffer<const _Float16>(input_to_forget_weights_),
GetBuffer<const _Float16>(input_to_cell_weights_),
GetBuffer<const _Float16>(input_to_output_weights_),
input_to_output_weights_->shape(),
GetOptionalBuffer<const _Float16>(recurrent_to_input_weights_),
GetBuffer<const _Float16>(recurrent_to_forget_weights_),
GetBuffer<const _Float16>(recurrent_to_cell_weights_),
GetBuffer<const _Float16>(recurrent_to_output_weights_),
recurrent_to_output_weights_->shape(),
GetOptionalBuffer<const _Float16>(cell_to_input_weights_),
GetOptionalBuffer<const _Float16>(cell_to_forget_weights_),
GetOptionalBuffer<const _Float16>(cell_to_output_weights_),
/*aux_input_buffer=*/nullptr,
/*aux_input_to_input_weights_buffer=*/nullptr,
/*aux_input_to_forget_weights_buffer=*/nullptr,
/*aux_input_to_cell_weights_buffer=*/nullptr,
/*aux_input_to_output_weights_buffer=*/nullptr,
GetOptionalBuffer<const _Float16>(input_gate_bias_),
GetBuffer<const _Float16>(forget_gate_bias_),
GetBuffer<const _Float16>(cell_bias_),
GetBuffer<const _Float16>(output_gate_bias_),
GetOptionalBuffer<const _Float16>(projection_weights_),
GetOptionalBuffer<const _Float16>(projection_bias_),
GetBuffer<const _Float16>(output_state_in_),
GetBuffer<const _Float16>(cell_state_in_),
GetOptionalBuffer<const _Float16>(input_layer_norm_weights_),
GetOptionalBuffer<const _Float16>(forget_layer_norm_weights_),
GetOptionalBuffer<const _Float16>(cell_layer_norm_weights_),
GetOptionalBuffer<const _Float16>(output_layer_norm_weights_),
GetBuffer<_Float16>(output_state_out_),
GetBuffer<_Float16>(cell_state_out_), GetBuffer<_Float16>(output_),
GetBuffer<_Float16>(scratch_buffer_));
} break;
default: {
LOG(ERROR) << "Unsupported data type: " << static_cast<int>(input_->type);
return false;
}
}
return true;
}
} // namespace nn
} // namespace android