You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
123 lines
5.0 KiB
123 lines
5.0 KiB
/*
|
|
* Copyright (C) 2018 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define LOG_TAG "Operations"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <vector>
|
|
|
|
#include "OperationResolver.h"
|
|
#include "OperationsUtils.h"
|
|
#include "Tracing.h"
|
|
|
|
namespace android {
|
|
namespace nn {
|
|
namespace log_softmax {
|
|
|
|
constexpr char kOperationName[] = "LOG_SOFTMAX";
|
|
|
|
constexpr uint32_t kNumInputs = 3;
|
|
constexpr uint32_t kInputTensor = 0;
|
|
constexpr uint32_t kInputBeta = 1;
|
|
constexpr uint32_t kInputAxis = 2;
|
|
|
|
constexpr uint32_t kNumOutputs = 1;
|
|
constexpr uint32_t kOutputTensor = 0;
|
|
|
|
template <typename T>
|
|
inline bool compute(const T* input, const Shape& shape, T beta, uint32_t axis, T* output) {
|
|
const uint32_t outerSize = getNumberOfElements(shape, 0, axis);
|
|
const uint32_t axisSize = getSizeOfDimension(shape, axis);
|
|
const uint32_t innerSize = getNumberOfElements(shape, axis + 1, getNumberOfDimensions(shape));
|
|
for (uint32_t outer = 0; outer < outerSize; ++outer) {
|
|
for (uint32_t inner = 0; inner < innerSize; ++inner) {
|
|
// We subtract the maximum value from each element to ensure
|
|
// numerical stability, taking advantage of the following equality:
|
|
// exp(x[i])/sum(exp(x[i])) == exp(x[i]+C)/sum(exp(x[i]+C))
|
|
T maxValue = input[outer * axisSize * innerSize + inner];
|
|
for (uint32_t i = 1; i < axisSize; ++i) {
|
|
maxValue = std::max(maxValue, input[(outer * axisSize + i) * innerSize + inner]);
|
|
}
|
|
|
|
T sum = 0;
|
|
for (uint32_t i = 0; i < axisSize; ++i) {
|
|
sum += std::exp(static_cast<double>(
|
|
(input[(outer * axisSize + i) * innerSize + inner] - maxValue) * beta));
|
|
}
|
|
|
|
const T logSum = std::log(static_cast<double>(sum));
|
|
for (uint32_t i = 0; i < axisSize; ++i) {
|
|
output[(outer * axisSize + i) * innerSize + inner] =
|
|
(input[(outer * axisSize + i) * innerSize + inner] - maxValue) * beta -
|
|
logSum;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Result<Version> validate(const IOperationValidationContext* context) {
|
|
NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
|
|
NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
|
|
OperandType inputType = context->getInputType(kInputTensor);
|
|
std::vector<OperandType> inExpectedTypes;
|
|
std::vector<OperandType> outExpectedTypes;
|
|
if (inputType == OperandType::TENSOR_FLOAT32) {
|
|
inExpectedTypes = {OperandType::TENSOR_FLOAT32, OperandType::FLOAT32, OperandType::INT32};
|
|
outExpectedTypes = {OperandType::TENSOR_FLOAT32};
|
|
} else if (inputType == OperandType::TENSOR_FLOAT16) {
|
|
inExpectedTypes = {OperandType::TENSOR_FLOAT16, OperandType::FLOAT16, OperandType::INT32};
|
|
outExpectedTypes = {OperandType::TENSOR_FLOAT16};
|
|
} else {
|
|
return NN_ERROR() << "Unsupported input tensor type for operation " << kOperationName;
|
|
}
|
|
NN_RET_CHECK(validateInputTypes(context, inExpectedTypes));
|
|
NN_RET_CHECK(validateOutputTypes(context, outExpectedTypes));
|
|
return Version::ANDROID_Q;
|
|
}
|
|
|
|
bool prepare(IOperationExecutionContext* context) {
|
|
return context->setOutputShape(kOutputTensor, context->getInputShape(kInputTensor));
|
|
}
|
|
|
|
bool execute(IOperationExecutionContext* context) {
|
|
int32_t axis = context->getInputValue<int32_t>(kInputAxis);
|
|
NN_RET_CHECK(handleNegativeAxis(context->getInputShape(kInputTensor), &axis));
|
|
switch (context->getInputType(kInputTensor)) {
|
|
case OperandType::TENSOR_FLOAT16:
|
|
return compute(context->getInputBuffer<_Float16>(kInputTensor),
|
|
context->getInputShape(kInputTensor),
|
|
context->getInputValue<_Float16>(kInputBeta), axis,
|
|
context->getOutputBuffer<_Float16>(kOutputTensor));
|
|
case OperandType::TENSOR_FLOAT32:
|
|
return compute(context->getInputBuffer<float>(kInputTensor),
|
|
context->getInputShape(kInputTensor),
|
|
context->getInputValue<float>(kInputBeta), axis,
|
|
context->getOutputBuffer<float>(kOutputTensor));
|
|
default:
|
|
NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
|
|
}
|
|
}
|
|
|
|
} // namespace log_softmax
|
|
|
|
NN_REGISTER_OPERATION(LOG_SOFTMAX, log_softmax::kOperationName, log_softmax::validate,
|
|
log_softmax::prepare, log_softmax::execute);
|
|
|
|
} // namespace nn
|
|
} // namespace android
|