You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
612 lines
25 KiB
612 lines
25 KiB
/*
|
|
* Copyright (C) 2017 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define LOG_TAG "Memory"
|
|
|
|
#include "Memory.h"
|
|
|
|
#include <CpuExecutor.h>
|
|
#include <LegacyUtils.h>
|
|
#include <android-base/scopeguard.h>
|
|
#include <android/hardware_buffer.h>
|
|
#include <nnapi/IBurst.h>
|
|
#include <nnapi/SharedMemory.h>
|
|
#include <nnapi/TypeUtils.h>
|
|
#include <nnapi/Types.h>
|
|
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <set>
|
|
#include <tuple>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "CompilationBuilder.h"
|
|
#include "Manager.h"
|
|
#include "TypeManager.h"
|
|
|
|
namespace android {
|
|
namespace nn {
|
|
namespace {
|
|
|
|
// The validator for a client-managed single-dimensional memory pool with a known size.
|
|
// The memory may be used for request inputs, request outputs, or model constants.
|
|
class SizedMemoryValidator : public MemoryValidatorBase {
|
|
public:
|
|
explicit SizedMemoryValidator(uint32_t size) : kSize(size) {}
|
|
|
|
bool validate(const CompilationBuilder*, IOType, uint32_t, const ANeuralNetworksOperandType*,
|
|
uint32_t offset, uint32_t length) const override {
|
|
NN_RET_CHECK(offset + length <= kSize) << "request size larger than the memory size.";
|
|
NN_RET_CHECK(offset != 0 || length != 0) << "memory size cannot be implied.";
|
|
return true;
|
|
}
|
|
|
|
Metadata getMetadata() const override { return {.logicalSize = kSize}; }
|
|
bool updateMetadata(const Metadata& metadata) override {
|
|
return metadata.logicalSize == 0 || metadata.logicalSize == kSize;
|
|
}
|
|
|
|
private:
|
|
const uint32_t kSize;
|
|
};
|
|
|
|
// The validator for an AHardwareBuffer with Non-BLOB format.
|
|
// We require the memory only used for request inputs or request outputs,
|
|
// with both offset and length set to zero.
|
|
class AHardwareBufferNonBlobValidator : public MemoryValidatorBase {
|
|
public:
|
|
AHardwareBufferNonBlobValidator() = default;
|
|
|
|
bool validate(const CompilationBuilder* compilation, IOType, uint32_t,
|
|
const ANeuralNetworksOperandType*, uint32_t offset,
|
|
uint32_t length) const override {
|
|
NN_RET_CHECK(compilation != nullptr)
|
|
<< "cannot use Non-BLOB AHardwareBuffer as model constant";
|
|
NN_RET_CHECK(offset == 0 && length == 0)
|
|
<< "non-zero offset (" << offset << ") and/or length (" << length
|
|
<< ") for Non-BLOB format AHardwareBuffer.";
|
|
return true;
|
|
}
|
|
|
|
Metadata getMetadata() const override { return {}; }
|
|
bool updateMetadata(const Metadata&) override { return true; }
|
|
};
|
|
|
|
// The validator for a memory created from ANNMemory_createFromDesc.
|
|
// We require the memory only used as one of the pre-specified roles,
|
|
// with both offset and length set to zero.
|
|
class DeviceMemoryValidator : public MemoryValidatorBase {
|
|
public:
|
|
DeviceMemoryValidator(std::set<CompilationRole> roles, Operand operand,
|
|
std::vector<uint32_t> dimensions)
|
|
: kCompilationRoles(std::move(roles)),
|
|
kOperand(std::move(operand)),
|
|
kInitialDimensions(std::move(dimensions)),
|
|
mUpdatedDimensions(kInitialDimensions) {}
|
|
|
|
bool validate(const CompilationBuilder* compilation, IOType ioType, uint32_t index,
|
|
const ANeuralNetworksOperandType* type, uint32_t offset,
|
|
uint32_t length) const override {
|
|
NN_RET_CHECK(kCompilationRoles.count({compilation, ioType, index}) > 0)
|
|
<< "invalid compilation role.";
|
|
NN_RET_CHECK(offset == 0 && length == 0)
|
|
<< "non-zero offset and/or length for driver-allocated memory.";
|
|
if (type) {
|
|
const bool isTensor = TypeManager::get()->isTensorType(kOperand.type);
|
|
NN_RET_CHECK(isTensor || type->dimensionCount == 0)
|
|
<< "invalid dimensions for scalar memory.";
|
|
std::vector<uint32_t> dimensions(type->dimensions,
|
|
type->dimensions + type->dimensionCount);
|
|
// We only check against kInitialDimensions here.
|
|
// For input memories, mUpdatedDimensions will be checked in validateInputDimensions
|
|
// at the beginning of a computation.
|
|
const auto combined = combineDimensions(dimensions, kInitialDimensions);
|
|
NN_RET_CHECK(combined.has_value())
|
|
<< "incompatible dimensions between request and memory. (request: "
|
|
<< toString(dimensions) << ", memory: " << toString(kInitialDimensions) << ")";
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool validateInputDimensions(const std::vector<uint32_t>& dimensions) const override {
|
|
NN_RET_CHECK(mInitialized) << "using an uninitialized memory as input";
|
|
NN_RET_CHECK(dimensions == mUpdatedDimensions)
|
|
<< "incompatible input dimensions between request and memory. (request: "
|
|
<< toString(dimensions) << ", memory: " << toString(mUpdatedDimensions) << ")";
|
|
return true;
|
|
}
|
|
|
|
Metadata getMetadata() const override {
|
|
return {.logicalSize = TypeManager::get()->getSizeOfData(kOperand.type, mUpdatedDimensions),
|
|
.dimensions = mUpdatedDimensions,
|
|
.operand = kOperand};
|
|
}
|
|
|
|
bool updateMetadata(const Metadata& metadata) override {
|
|
NN_RET_CHECK(!metadata.operand.has_value() ||
|
|
(metadata.operand->type == kOperand.type &&
|
|
metadata.operand->scale == kOperand.scale &&
|
|
metadata.operand->zeroPoint == kOperand.zeroPoint &&
|
|
metadata.operand->extraParams == kOperand.extraParams));
|
|
|
|
NN_RET_CHECK(metadata.dimensions.empty() ||
|
|
TypeManager::get()->isTensorType(kOperand.type));
|
|
auto combined = combineDimensions(metadata.dimensions, kInitialDimensions);
|
|
NN_RET_CHECK(combined.has_value());
|
|
NN_RET_CHECK(metadata.logicalSize == 0 ||
|
|
metadata.logicalSize ==
|
|
TypeManager::get()->getSizeOfData(kOperand.type, combined.value()));
|
|
mUpdatedDimensions = std::move(combined.value());
|
|
return true;
|
|
}
|
|
|
|
bool createdWithUnknownShape() const override {
|
|
return TypeManager::get()->getSizeOfData(kOperand.type, kInitialDimensions) == 0;
|
|
}
|
|
|
|
void setInitialized(bool initialized) override { mInitialized = initialized; }
|
|
bool isInitialized() const override { return mInitialized; }
|
|
|
|
private:
|
|
const std::set<CompilationRole> kCompilationRoles;
|
|
|
|
// Keep track of the data type, scale, zero point, and extra parameters of the target operand.
|
|
// Other fields will be ignored, including dimensions, lifetime, location, etc.
|
|
const Operand kOperand;
|
|
|
|
// The dimensions of the memory when the memory object is created.
|
|
// May have unknown dimensions or rank.
|
|
const std::vector<uint32_t> kInitialDimensions;
|
|
|
|
// The updated dimensions after a successful execution or memory copying.
|
|
std::vector<uint32_t> mUpdatedDimensions;
|
|
|
|
bool mInitialized = false;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
RuntimeMemory::RuntimeMemory(SharedMemory memory) : kMemory(std::move(memory)) {
|
|
CHECK(kMemory != nullptr);
|
|
mValidator = std::make_unique<SizedMemoryValidator>(nn::getSize(kMemory));
|
|
}
|
|
|
|
RuntimeMemory::RuntimeMemory(SharedMemory memory, std::unique_ptr<MemoryValidatorBase> validator)
|
|
: kMemory(std::move(memory)), mValidator(std::move(validator)) {
|
|
CHECK(kMemory != nullptr);
|
|
}
|
|
|
|
RuntimeMemory::RuntimeMemory(SharedBuffer buffer) : kBuffer(std::move(buffer)) {}
|
|
|
|
Request::MemoryPool RuntimeMemory::getMemoryPool() const {
|
|
if (kBuffer != nullptr) {
|
|
return kBuffer->getToken();
|
|
}
|
|
return kMemory;
|
|
}
|
|
|
|
std::optional<RunTimePoolInfo> RuntimeMemory::getRunTimePoolInfo() const {
|
|
std::lock_guard<std::mutex> guard(mMutex);
|
|
if (!mHasCachedRunTimePoolInfo) {
|
|
mCachedRunTimePoolInfo = RunTimePoolInfo::createFromMemory(kMemory);
|
|
mHasCachedRunTimePoolInfo = true;
|
|
}
|
|
return mCachedRunTimePoolInfo;
|
|
}
|
|
|
|
void RuntimeMemory::hold(const IBurst::OptionalCacheHold& cacheHold) const {
|
|
if (cacheHold != nullptr) {
|
|
std::lock_guard<std::mutex> guard(mMutex);
|
|
mHold.insert(cacheHold);
|
|
}
|
|
}
|
|
|
|
static int copyHidlMemories(const std::optional<RunTimePoolInfo>& src,
|
|
const std::optional<RunTimePoolInfo>& dst) {
|
|
if (!src.has_value() || !dst.has_value()) {
|
|
LOG(ERROR) << "ANeuralNetworksMemory_copy -- unable to map memory";
|
|
return ANEURALNETWORKS_UNMAPPABLE;
|
|
}
|
|
if (src->getSize() != dst->getSize()) {
|
|
LOG(ERROR) << "ANeuralNetworksMemory_copy -- incompatible memory size";
|
|
return ANEURALNETWORKS_BAD_DATA;
|
|
}
|
|
CHECK(src->getBuffer() != nullptr);
|
|
CHECK(dst->getBuffer() != nullptr);
|
|
std::copy(src->getBuffer(), src->getBuffer() + src->getSize(), dst->getBuffer());
|
|
dst->flush();
|
|
return ANEURALNETWORKS_NO_ERROR;
|
|
}
|
|
|
|
int copyIBufferToMemory(const SharedBuffer& src, const SharedMemory& dst) {
|
|
const auto ret = src->copyTo(dst);
|
|
if (!ret.has_value()) {
|
|
LOG(ERROR) << "ANeuralNetworksMemory_copy failure: " << ret.error().message;
|
|
return convertErrorStatusToResultCode(ret.error().code);
|
|
}
|
|
return ANEURALNETWORKS_NO_ERROR;
|
|
}
|
|
|
|
int copyMemoryToIBuffer(const SharedMemory& src, const SharedBuffer& dst,
|
|
const std::vector<uint32_t>& dimensions) {
|
|
const auto ret = dst->copyFrom(src, dimensions);
|
|
if (!ret.has_value()) {
|
|
LOG(ERROR) << "ANeuralNetworksMemory_copy failure: " << ret.error().message;
|
|
return convertErrorStatusToResultCode(ret.error().code);
|
|
}
|
|
return ANEURALNETWORKS_NO_ERROR;
|
|
}
|
|
|
|
static int copyIBuffers(const SharedBuffer& src, const SharedBuffer& dst,
|
|
const MemoryValidatorBase::Metadata& srcMetadata) {
|
|
const auto [n, memoryAHWB] = MemoryRuntimeAHWB::create(srcMetadata.logicalSize);
|
|
NN_RETURN_IF_ERROR(n);
|
|
const SharedMemory& memory = memoryAHWB->getMemory();
|
|
if (!validate(memory).ok()) return ANEURALNETWORKS_OUT_OF_MEMORY;
|
|
NN_RETURN_IF_ERROR(copyIBufferToMemory(src, memory));
|
|
NN_RETURN_IF_ERROR(copyMemoryToIBuffer(memory, dst, srcMetadata.dimensions));
|
|
return ANEURALNETWORKS_NO_ERROR;
|
|
}
|
|
|
|
static int copyInternal(const RuntimeMemory& src, const RuntimeMemory& dst) {
|
|
if (&src == &dst) return ANEURALNETWORKS_NO_ERROR;
|
|
|
|
if (!src.getValidator().isInitialized()) {
|
|
LOG(ERROR) << "ANeuralNetworksMemory_copy -- uninitialized source memory";
|
|
return ANEURALNETWORKS_BAD_DATA;
|
|
}
|
|
|
|
const auto srcMetadata = src.getValidator().getMetadata();
|
|
if (!dst.getValidator().updateMetadata(srcMetadata)) {
|
|
LOG(ERROR) << "ANeuralNetworksMemory_copy -- incompatible memories";
|
|
return ANEURALNETWORKS_BAD_DATA;
|
|
}
|
|
|
|
bool srcHasMemory = validate(src.getMemory()).ok();
|
|
bool dstHasMemory = validate(dst.getMemory()).ok();
|
|
bool srcHasIBuffer = src.getIBuffer() != nullptr;
|
|
bool dstHasIBuffer = dst.getIBuffer() != nullptr;
|
|
if (srcHasIBuffer && dstHasIBuffer) {
|
|
return copyIBuffers(src.getIBuffer(), dst.getIBuffer(), srcMetadata);
|
|
} else if (srcHasMemory && dstHasMemory) {
|
|
return copyHidlMemories(src.getRunTimePoolInfo(), dst.getRunTimePoolInfo());
|
|
} else if (srcHasMemory && dstHasIBuffer) {
|
|
return copyMemoryToIBuffer(src.getMemory(), dst.getIBuffer(), srcMetadata.dimensions);
|
|
} else if (srcHasIBuffer && dstHasMemory) {
|
|
return copyIBufferToMemory(src.getIBuffer(), dst.getMemory());
|
|
}
|
|
return ANEURALNETWORKS_OP_FAILED;
|
|
}
|
|
|
|
int RuntimeMemory::copy(const RuntimeMemory& src, const RuntimeMemory& dst) {
|
|
int n = copyInternal(src, dst);
|
|
dst.getValidator().setInitialized(n == ANEURALNETWORKS_NO_ERROR);
|
|
return n;
|
|
}
|
|
|
|
bool MemoryBuilder::badState(const char* name) const {
|
|
if (mFinished) {
|
|
LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << name << " can't modify after finished";
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
int MemoryBuilder::addRole(const CompilationBuilder& compilation, IOType ioType, uint32_t index,
|
|
float prob) {
|
|
const char* tag = ioType == IOType::INPUT ? "addInputRole" : "addOutputRole";
|
|
if (badState(tag)) {
|
|
return ANEURALNETWORKS_BAD_STATE;
|
|
}
|
|
if (mRoles.count({&compilation, ioType, index}) > 0) {
|
|
LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag
|
|
<< " -- the same operand is specified twice.";
|
|
return ANEURALNETWORKS_BAD_DATA;
|
|
}
|
|
|
|
std::vector<std::tuple<const RuntimePreparedModel*, IOType, uint32_t>> roles;
|
|
auto callback = [&roles](const auto* preparedModel, IOType type, uint32_t index) {
|
|
roles.emplace_back(preparedModel, type, index);
|
|
};
|
|
if (ioType == IOType::INPUT) {
|
|
if (compilation.forEachStepRoleOfInput(index, callback) != ANEURALNETWORKS_NO_ERROR) {
|
|
return ANEURALNETWORKS_BAD_DATA;
|
|
}
|
|
} else {
|
|
if (compilation.forEachStepRoleOfOutput(index, callback) != ANEURALNETWORKS_NO_ERROR) {
|
|
return ANEURALNETWORKS_BAD_DATA;
|
|
}
|
|
}
|
|
|
|
const ModelBuilder* model = compilation.getModel();
|
|
CHECK(model != nullptr);
|
|
Operand operand;
|
|
if (ioType == IOType::INPUT) {
|
|
if (index >= model->inputCount()) {
|
|
LOG(ERROR) << "ANeuralNetworksMemoryDesc_addInputRole -- input index out of range.";
|
|
return ANEURALNETWORKS_BAD_DATA;
|
|
}
|
|
operand = model->getInputOperand(index);
|
|
} else {
|
|
if (index >= model->outputCount()) {
|
|
LOG(ERROR) << "ANeuralNetworksMemoryDesc_addOutputRole -- output index out of range.";
|
|
return ANEURALNETWORKS_BAD_DATA;
|
|
}
|
|
operand = model->getOutputOperand(index);
|
|
}
|
|
if (mOperand.has_value()) {
|
|
if (operand.type != mOperand->type || operand.scale != mOperand->scale ||
|
|
operand.zeroPoint != mOperand->zeroPoint ||
|
|
operand.extraParams != mOperand->extraParams) {
|
|
LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag
|
|
<< " -- incompatible operand metadata.";
|
|
return ANEURALNETWORKS_BAD_DATA;
|
|
}
|
|
}
|
|
if (!TypeManager::get()->isTensorType(operand.type) && !mDesc.dimensions.empty()) {
|
|
LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag << " -- incompatible dimensions.";
|
|
return ANEURALNETWORKS_BAD_DATA;
|
|
}
|
|
auto combined = combineDimensions(mDesc.dimensions, operand.dimensions);
|
|
if (!combined.has_value()) {
|
|
LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag << " -- incompatible dimensions.";
|
|
return ANEURALNETWORKS_BAD_DATA;
|
|
}
|
|
|
|
if (prob > 1.0f || prob <= 0.0f) {
|
|
LOG(ERROR) << "ANeuralNetworksMemoryDesc_" << tag << " -- invalid frequency " << prob;
|
|
return ANEURALNETWORKS_BAD_DATA;
|
|
}
|
|
|
|
mRoles.emplace(&compilation, ioType, index);
|
|
for (const auto& [preparedModel, type, ind] : roles) {
|
|
uint32_t modelIndex = mDesc.preparedModels.add(preparedModel);
|
|
BufferRole role = {.modelIndex = modelIndex, .ioIndex = ind, .probability = prob};
|
|
if (type == IOType::INPUT) {
|
|
mDesc.inputRoles.push_back(role);
|
|
} else {
|
|
mDesc.outputRoles.push_back(role);
|
|
}
|
|
}
|
|
mOperand = std::move(operand);
|
|
mDesc.dimensions = std::move(combined.value());
|
|
return ANEURALNETWORKS_NO_ERROR;
|
|
}
|
|
|
|
int MemoryBuilder::setDimensions(const std::vector<uint32_t>& dimensions) {
|
|
if (badState("setDimensions")) return ANEURALNETWORKS_BAD_STATE;
|
|
if (mOperand.has_value() && !TypeManager::get()->isTensorType(mOperand->type) &&
|
|
!dimensions.empty()) {
|
|
LOG(ERROR) << "ANeuralNetworksMemoryDesc_setDimensions -- incompatible dimensions for "
|
|
"scalars.";
|
|
return ANEURALNETWORKS_BAD_DATA;
|
|
}
|
|
auto combined = combineDimensions(mDesc.dimensions, dimensions);
|
|
if (!combined.has_value()) {
|
|
LOG(ERROR) << "ANeuralNetworksMemoryDesc_setDimensions -- incompatible dimensions.";
|
|
return ANEURALNETWORKS_BAD_DATA;
|
|
}
|
|
mDesc.dimensions = std::move(combined.value());
|
|
return ANEURALNETWORKS_NO_ERROR;
|
|
}
|
|
|
|
static void logMemoryDescriptorToInfo(const MemoryDescriptor& desc, const Operand& operand) {
|
|
LOG(INFO) << "MemoryDescriptor start";
|
|
LOG(INFO) << " Data type: " << operand.type;
|
|
LOG(INFO) << " Scale: " << operand.scale;
|
|
LOG(INFO) << " Zero point: " << operand.zeroPoint;
|
|
LOG(INFO) << " Extra params: " << operand.extraParams;
|
|
LOG(INFO) << " Dimensions: " << toString(desc.dimensions);
|
|
LOG(INFO) << " Prepared models [" << desc.preparedModels.size() << "]:";
|
|
for (const auto* preparedModel : desc.preparedModels) {
|
|
LOG(INFO) << " service = " << preparedModel->getDevice()->getName();
|
|
}
|
|
LOG(INFO) << " Input roles [" << desc.inputRoles.size() << "]:";
|
|
for (const auto& usage : desc.inputRoles) {
|
|
LOG(INFO) << " " << usage;
|
|
}
|
|
LOG(INFO) << " Output roles [" << desc.outputRoles.size() << "]:";
|
|
for (const auto& usage : desc.outputRoles) {
|
|
LOG(INFO) << " " << usage;
|
|
}
|
|
LOG(INFO) << "MemoryDescriptor end";
|
|
}
|
|
|
|
static std::set<const Device*> getDevices(const MemoryDescriptor& desc) {
|
|
std::set<const Device*> devices;
|
|
for (const auto* preparedModel : desc.preparedModels) {
|
|
const auto* device = preparedModel->getDevice();
|
|
devices.insert(device);
|
|
}
|
|
return devices;
|
|
}
|
|
|
|
int MemoryBuilder::finish() {
|
|
if (badState("finish")) return ANEURALNETWORKS_BAD_STATE;
|
|
if (mRoles.empty()) {
|
|
LOG(ERROR) << "ANeuralNetworksMemoryDesc_finish -- no role has been specified.";
|
|
return ANEURALNETWORKS_BAD_DATA;
|
|
}
|
|
CHECK(mOperand.has_value());
|
|
if (VLOG_IS_ON(MEMORY)) {
|
|
logMemoryDescriptorToInfo(mDesc, mOperand.value());
|
|
}
|
|
std::set<const Device*> devices = getDevices(mDesc);
|
|
if (devices.empty()) {
|
|
// This can happen with interpreted control flow.
|
|
mAllocator = nullptr;
|
|
} else if (devices.size() == 1) {
|
|
mAllocator = *devices.begin();
|
|
VLOG(MEMORY) << "Using " << mAllocator->getName() << " as allocator.";
|
|
} else {
|
|
LOG(INFO) << "MemoryBuilder::finish -- cannot handle multiple devices.";
|
|
mAllocator = nullptr;
|
|
}
|
|
mSupportsAhwb = std::all_of(devices.begin(), devices.end(), [](const auto* device) {
|
|
return device->getFeatureLevel() >= kHalVersionV1_3ToApi.featureLevel;
|
|
});
|
|
mShouldFallback = std::none_of(mRoles.begin(), mRoles.end(), [](const auto& role) {
|
|
const auto* cb = std::get<const CompilationBuilder*>(role);
|
|
return cb->createdWithExplicitDeviceList();
|
|
});
|
|
const uint32_t size = TypeManager::get()->getSizeOfData(mOperand->type, mDesc.dimensions);
|
|
mShouldFallback &= (size != 0);
|
|
mFinished = true;
|
|
return ANEURALNETWORKS_NO_ERROR;
|
|
}
|
|
|
|
std::pair<int, std::unique_ptr<RuntimeMemory>> MemoryBuilder::allocate() const {
|
|
if (!mFinished) {
|
|
LOG(ERROR) << "ANeuralNetworksMemory_createFromDesc -- passed an unfinished descriptor";
|
|
return {ANEURALNETWORKS_BAD_STATE, nullptr};
|
|
}
|
|
|
|
int n = ANEURALNETWORKS_OP_FAILED;
|
|
std::unique_ptr<RuntimeMemory> memory;
|
|
CHECK(mOperand.has_value());
|
|
|
|
// Try allocate the memory on device.
|
|
if (mAllocator != nullptr) {
|
|
std::tie(n, memory) = mAllocator->allocate(mDesc, mOperand->type);
|
|
}
|
|
|
|
// If failed, fallback to ashmem or BLOB mode AHWB.
|
|
if (n != ANEURALNETWORKS_NO_ERROR && mShouldFallback) {
|
|
const uint32_t size = TypeManager::get()->getSizeOfData(mOperand->type, mDesc.dimensions);
|
|
if (mSupportsAhwb) {
|
|
VLOG(MEMORY) << "MemoryBuilder::allocate -- fallback to BLOB mode AHWB.";
|
|
std::tie(n, memory) = MemoryRuntimeAHWB::create(size);
|
|
} else {
|
|
VLOG(MEMORY) << "MemoryBuilder::allocate -- fallback to ashmem.";
|
|
std::tie(n, memory) = MemoryAshmem::create(size);
|
|
}
|
|
}
|
|
|
|
if (n == ANEURALNETWORKS_NO_ERROR) {
|
|
CHECK(memory != nullptr);
|
|
auto validator =
|
|
std::make_unique<DeviceMemoryValidator>(mRoles, mOperand.value(), mDesc.dimensions);
|
|
memory->setValidator(std::move(validator));
|
|
}
|
|
return {n, std::move(memory)};
|
|
}
|
|
|
|
std::pair<int, std::unique_ptr<MemoryAshmem>> MemoryAshmem::create(uint32_t size) {
|
|
auto memory = createSharedMemory(size);
|
|
if (!memory.has_value()) {
|
|
LOG(ERROR) << "RuntimeMemory::create() failed: " << memory.error().message;
|
|
return {convertErrorStatusToResultCode(memory.error().code), nullptr};
|
|
}
|
|
auto mapping = map(memory.value());
|
|
if (!mapping.has_value()) {
|
|
LOG(ERROR) << "RuntimeMemory::create() map failed: " << mapping.error().message;
|
|
return {convertErrorStatusToResultCode(mapping.error().code), nullptr};
|
|
}
|
|
return {ANEURALNETWORKS_NO_ERROR,
|
|
std::make_unique<MemoryAshmem>(std::move(memory).value(), std::move(mapping).value())};
|
|
}
|
|
|
|
uint8_t* MemoryAshmem::getPointer() const {
|
|
return static_cast<uint8_t*>(std::get<void*>(kMapping.pointer));
|
|
}
|
|
|
|
MemoryAshmem::MemoryAshmem(SharedMemory memory, Mapping mapping)
|
|
: RuntimeMemory(std::move(memory)), kMapping(std::move(mapping)) {}
|
|
|
|
std::pair<int, std::unique_ptr<MemoryFd>> MemoryFd::create(size_t size, int prot, int fd,
|
|
size_t offset) {
|
|
auto memory = createSharedMemoryFromFd(size, prot, fd, offset);
|
|
if (!memory.has_value()) {
|
|
LOG(ERROR) << "Failed to create memory from fd: " << memory.error().message;
|
|
return {convertErrorStatusToResultCode(memory.error().code), nullptr};
|
|
}
|
|
return {ANEURALNETWORKS_NO_ERROR, std::make_unique<MemoryFd>(std::move(memory).value())};
|
|
}
|
|
|
|
MemoryFd::MemoryFd(SharedMemory memory) : RuntimeMemory(std::move(memory)) {}
|
|
|
|
std::pair<int, std::unique_ptr<MemoryAHWB>> MemoryAHWB::create(const AHardwareBuffer& ahwb) {
|
|
auto memory = createSharedMemoryFromAHWB(const_cast<AHardwareBuffer*>(&ahwb),
|
|
/*takeOwnership=*/false);
|
|
if (!memory.has_value()) {
|
|
LOG(ERROR) << "Failed to create memory from AHWB: " << memory.error().message;
|
|
return {convertErrorStatusToResultCode(memory.error().code), nullptr};
|
|
}
|
|
|
|
std::unique_ptr<MemoryValidatorBase> validator;
|
|
if (isAhwbBlob(memory.value())) {
|
|
validator = std::make_unique<SizedMemoryValidator>(nn::getSize(memory.value()));
|
|
} else {
|
|
validator = std::make_unique<AHardwareBufferNonBlobValidator>();
|
|
}
|
|
|
|
auto memoryAHWB = std::make_unique<MemoryAHWB>(std::move(memory).value(), std::move(validator));
|
|
return {ANEURALNETWORKS_NO_ERROR, std::move(memoryAHWB)};
|
|
}
|
|
|
|
std::pair<int, std::unique_ptr<MemoryRuntimeAHWB>> MemoryRuntimeAHWB::create(uint32_t size) {
|
|
AHardwareBuffer* ahwb = nullptr;
|
|
const auto usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN;
|
|
const AHardwareBuffer_Desc desc = {
|
|
.width = size,
|
|
.height = 1,
|
|
.layers = 1,
|
|
.format = AHARDWAREBUFFER_FORMAT_BLOB,
|
|
.usage = usage,
|
|
.stride = size,
|
|
};
|
|
int err = AHardwareBuffer_allocate(&desc, &ahwb);
|
|
if (err != 0 || ahwb == nullptr) {
|
|
LOG(ERROR) << "Failed to allocate BLOB mode AHWB.";
|
|
return {ANEURALNETWORKS_OP_FAILED, nullptr};
|
|
}
|
|
|
|
auto memory = createSharedMemoryFromAHWB(ahwb, /*takeOWnership=*/true);
|
|
if (!memory.has_value()) {
|
|
LOG(ERROR) << "Failed to allocate BLOB mode AHWB: " << memory.error().message;
|
|
return {convertErrorStatusToResultCode(memory.error().code), nullptr};
|
|
}
|
|
auto mapping = map(memory.value());
|
|
if (!mapping.has_value()) {
|
|
LOG(ERROR) << "Failed to map BLOB mode AHWB: " << mapping.error().message;
|
|
return {convertErrorStatusToResultCode(mapping.error().code), nullptr};
|
|
}
|
|
auto memoryAHWB = std::make_unique<MemoryRuntimeAHWB>(std::move(memory).value(),
|
|
std::move(mapping).value());
|
|
return {ANEURALNETWORKS_NO_ERROR, std::move(memoryAHWB)};
|
|
}
|
|
|
|
uint8_t* MemoryRuntimeAHWB::getPointer() const {
|
|
return static_cast<uint8_t*>(std::get<void*>(kMapping.pointer));
|
|
}
|
|
|
|
MemoryRuntimeAHWB::MemoryRuntimeAHWB(SharedMemory memory, Mapping mapping)
|
|
: RuntimeMemory(std::move(memory)), kMapping(std::move(mapping)) {}
|
|
|
|
std::pair<int, std::unique_ptr<MemoryFromDevice>> MemoryFromDevice::create(SharedBuffer buffer) {
|
|
if (buffer == nullptr) {
|
|
LOG(ERROR) << "nullptr IBuffer for device memory.";
|
|
return {ANEURALNETWORKS_OP_FAILED, nullptr};
|
|
}
|
|
return {ANEURALNETWORKS_NO_ERROR, std::make_unique<MemoryFromDevice>(std::move(buffer))};
|
|
}
|
|
|
|
MemoryFromDevice::MemoryFromDevice(SharedBuffer buffer) : RuntimeMemory(std::move(buffer)) {}
|
|
|
|
} // namespace nn
|
|
} // namespace android
|