You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

504 lines
23 KiB

/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <HalInterfaces.h>
#include <SampleDriver.h>
#include <android-base/scopeguard.h>
#include <gtest/gtest.h>
#include <cstdlib>
#include <filesystem>
#include <numeric>
#include <string>
#include <string_view>
#include <tuple>
#include <vector>
#include "HalUtils.h"
#include "Manager.h"
#include "TestNeuralNetworksWrapper.h"
using namespace android::nn;
namespace hardware = android::hardware;
using WrapperResult = test_wrapper::Result;
using Type = test_wrapper::Type;
const V1_2::Timing kBadTiming = {.timeOnDevice = UINT64_MAX, .timeInDriver = UINT64_MAX};
template <typename T>
using MQDescriptorSync = ::android::hardware::MQDescriptorSync<T>;
using android::sp;
namespace android::hardware::neuralnetworks::V1_0 {
::std::ostream& operator<<(::std::ostream& os, V1_3::ErrorStatus errorStatus) {
return os << toString(errorStatus);
}
} // namespace android::hardware::neuralnetworks::V1_0
namespace {
enum class HasCalledPrepareModel { NO, WITHOUT_CACHING, WITH_CACHING };
// Print HasCalledPrepareModel enum for better GTEST failure messages
std::ostream& operator<<(std::ostream& os, HasCalledPrepareModel hasCalledPrepareModel) {
switch (hasCalledPrepareModel) {
case HasCalledPrepareModel::NO:
return os << "NO";
case HasCalledPrepareModel::WITHOUT_CACHING:
return os << "WITHOUT_CACHING";
case HasCalledPrepareModel::WITH_CACHING:
return os << "WITH_CACHING";
}
CHECK(false) << "HasCalledPrepareModel print called with invalid code "
<< static_cast<int>(hasCalledPrepareModel);
return os;
}
// Whether the driver is expected to be registered because it can pass initialization.
bool canDeviceBeRegistered(V1_3::ErrorStatus error, uint32_t numModelCache, uint32_t numDataCache) {
constexpr uint32_t maxNumCacheFiles =
static_cast<uint32_t>(V1_2::Constant::MAX_NUMBER_OF_CACHE_FILES);
return error == V1_3::ErrorStatus::NONE && numModelCache <= maxNumCacheFiles &&
numDataCache <= maxNumCacheFiles;
}
// Whether the driver supports caching based on the returns from getNumberOfCacheFilesNeeded.
bool isCachingSupported(uint32_t numModelCache, uint32_t numDataCache) {
return numModelCache != 0 || numDataCache != 0;
}
// This is an IDevice for testing purposes which overrides several methods from sample driver:
// - supports all the operations and is faster than cpu fallback.
// - overrides getNumberOfCacheFilesNeeded to report according to given parameters.
// - overrides prepareModelFromCache_1_3 to return error status according to
// mErrorStatusPrepareFromCache.
// - produces CachingPreparedModel on prepareModel and prepareModelFromCache_1_3.
//
// The cache entry is written by prepareModel_1_3 and is checked later by
// CachingDriver::prepareModelFromCache_1_3.
//
// The CachingDriver has 2 flags mHasCalledPrepareModelFromCache and mHasCalledPrepareModel
// to check if the correct methods are invoked by the runtime.
class CachingDriver : public sample_driver::SampleDriver {
private:
static constexpr size_t kCacheSize = 256;
class CachingPreparedModel : public V1_3::IPreparedModel {
public:
CachingPreparedModel() = default;
hardware::Return<V1_0::ErrorStatus> execute(const V1_0::Request&,
const sp<V1_0::IExecutionCallback>&) override {
return V1_0::ErrorStatus::DEVICE_UNAVAILABLE;
}
hardware::Return<V1_0::ErrorStatus> execute_1_2(
const V1_0::Request&, V1_2::MeasureTiming,
const sp<V1_2::IExecutionCallback>&) override {
return V1_0::ErrorStatus::DEVICE_UNAVAILABLE;
}
hardware::Return<V1_3::ErrorStatus> execute_1_3(
const V1_3::Request&, V1_2::MeasureTiming, const V1_3::OptionalTimePoint&,
const V1_3::OptionalTimeoutDuration&,
const sp<V1_3::IExecutionCallback>&) override {
return V1_3::ErrorStatus::DEVICE_UNAVAILABLE;
}
hardware::Return<void> executeSynchronously(const V1_0::Request&, V1_2::MeasureTiming,
executeSynchronously_cb cb) override {
cb(V1_0::ErrorStatus::DEVICE_UNAVAILABLE, {}, kBadTiming);
return hardware::Void();
}
hardware::Return<void> executeSynchronously_1_3(const V1_3::Request&, V1_2::MeasureTiming,
const V1_3::OptionalTimePoint&,
const V1_3::OptionalTimeoutDuration&,
executeSynchronously_1_3_cb cb) override {
cb(V1_3::ErrorStatus::DEVICE_UNAVAILABLE, {}, kBadTiming);
return hardware::Void();
}
hardware::Return<void> configureExecutionBurst(
const sp<V1_2::IBurstCallback>&, const MQDescriptorSync<V1_2::FmqRequestDatum>&,
const MQDescriptorSync<V1_2::FmqResultDatum>&,
configureExecutionBurst_cb cb) override {
cb(V1_0::ErrorStatus::DEVICE_UNAVAILABLE, nullptr);
return hardware::Void();
}
hardware::Return<void> executeFenced(const V1_3::Request&,
const hardware::hidl_vec<hardware::hidl_handle>&,
V1_2::MeasureTiming, const V1_3::OptionalTimePoint&,
const V1_3::OptionalTimeoutDuration&,
const V1_3::OptionalTimeoutDuration&,
executeFenced_cb cb) {
cb(V1_3::ErrorStatus::DEVICE_UNAVAILABLE, hardware::hidl_handle(nullptr), nullptr);
return hardware::Void();
}
};
public:
CachingDriver(std::string_view name, V1_3::ErrorStatus errorStatusGetNumCacheFiles,
uint32_t numModelCache, uint32_t numDataCache,
V1_3::ErrorStatus errorStatusPrepareFromCache)
: SampleDriver(name.data()),
mErrorStatusGetNumCacheFiles(errorStatusGetNumCacheFiles),
mNumModelCache(numModelCache),
mNumDataCache(numDataCache),
mErrorStatusPrepareFromCache(errorStatusPrepareFromCache) {
mModelCacheData.resize(kCacheSize);
std::iota(mModelCacheData.begin(), mModelCacheData.end(), 0);
mDataCacheData.resize(kCacheSize);
std::iota(mDataCacheData.begin(), mDataCacheData.end(), 1);
}
~CachingDriver() override {}
// Reports faster than cpu.
hardware::Return<void> getCapabilities_1_3(getCapabilities_1_3_cb cb) override {
android::nn::initVLogMask();
const V1_0::PerformanceInfo kPerf = {.execTime = 0.1, .powerUsage = 0.1};
V1_3::Capabilities capabilities = {
.relaxedFloat32toFloat16PerformanceScalar = kPerf,
.relaxedFloat32toFloat16PerformanceTensor = kPerf,
.operandPerformance = nonExtensionOperandPerformance<HalVersion::V1_3>(kPerf),
.ifPerformance = kPerf,
.whilePerformance = kPerf};
cb(V1_3::ErrorStatus::NONE, capabilities);
return hardware::Void();
}
// Reports supporting all operations.
hardware::Return<void> getSupportedOperations_1_3(const V1_3::Model& model,
getSupportedOperations_1_3_cb cb) override {
std::vector<bool> supported(model.main.operations.size(), true);
cb(V1_3::ErrorStatus::NONE, supported);
return hardware::Void();
}
// Reports according to mGetNumCacheFiles.
hardware::Return<void> getNumberOfCacheFilesNeeded(getNumberOfCacheFilesNeeded_cb cb) override {
cb(convertToV1_0(mErrorStatusGetNumCacheFiles), mNumModelCache, mNumDataCache);
return hardware::Void();
}
// Generates CachingPreparedModel.
// Writes the cache entry per mCacheXData and sets mHasCalledPrepareModel.
hardware::Return<V1_3::ErrorStatus> prepareModel_1_3(
const V1_3::Model&, V1_1::ExecutionPreference, V1_3::Priority,
const V1_3::OptionalTimePoint&,
const hardware::hidl_vec<hardware::hidl_handle>& modelCacheHandle,
const hardware::hidl_vec<hardware::hidl_handle>& dataCacheHandle, const HalCacheToken&,
const sp<V1_3::IPreparedModelCallback>& cb) override {
checkNumberOfCacheHandles(modelCacheHandle.size(), dataCacheHandle.size());
if (modelCacheHandle.size() != 0 || dataCacheHandle.size() != 0) {
writeToCache(modelCacheHandle, mModelCacheData);
writeToCache(dataCacheHandle, mDataCacheData);
mHasCalledPrepareModel = HasCalledPrepareModel::WITH_CACHING;
} else {
mHasCalledPrepareModel = HasCalledPrepareModel::WITHOUT_CACHING;
}
cb->notify_1_3(V1_3::ErrorStatus::NONE, new CachingPreparedModel());
return V1_3::ErrorStatus::NONE;
}
// Checks if the cache entry is correct, notifies error status according to
// mErrorStatusPrepareFromCache, sets mHasCalledPrepareModelFromCache.
hardware::Return<V1_3::ErrorStatus> prepareModelFromCache_1_3(
const V1_3::OptionalTimePoint&,
const hardware::hidl_vec<hardware::hidl_handle>& modelCacheHandle,
const hardware::hidl_vec<hardware::hidl_handle>& dataCacheHandle, const HalCacheToken&,
const sp<V1_3::IPreparedModelCallback>& callback) override {
readFromCache(modelCacheHandle, mModelCacheData);
readFromCache(dataCacheHandle, mDataCacheData);
mHasCalledPrepareModelFromCache = true;
if (mErrorStatusPrepareFromCache == V1_3::ErrorStatus::NONE) {
callback->notify_1_3(mErrorStatusPrepareFromCache, new CachingPreparedModel());
} else {
callback->notify_1_3(mErrorStatusPrepareFromCache, nullptr);
}
return V1_3::ErrorStatus::NONE;
};
bool hasCalledPrepareModelFromCache() const { return mHasCalledPrepareModelFromCache; }
HasCalledPrepareModel hasCalledPrepareModel() const { return mHasCalledPrepareModel; }
private:
// Checks the number of cache files passed to the driver from runtime.
void checkNumberOfCacheHandles(size_t modelCache, size_t dataCache) {
if (isCachingSupported(mNumModelCache, mNumDataCache)) {
if (modelCache != 0 || dataCache != 0) {
ASSERT_EQ(modelCache, mNumModelCache);
ASSERT_EQ(dataCache, mNumDataCache);
}
} else {
ASSERT_EQ(modelCache, 0ul);
ASSERT_EQ(dataCache, 0ul);
}
}
void writeToCache(const hardware::hidl_vec<hardware::hidl_handle>& handles,
const std::vector<uint8_t>& cache) {
for (uint32_t i = 0; i < handles.size(); ++i) {
ASSERT_EQ(handles[i]->numFds, 1);
EXPECT_EQ(write(handles[i]->data[0], cache.data(), kCacheSize),
static_cast<ssize_t>(kCacheSize));
}
}
void readFromCache(const hardware::hidl_vec<hardware::hidl_handle>& handles,
const std::vector<uint8_t>& expected) {
for (uint32_t i = 0; i < handles.size(); ++i) {
ASSERT_EQ(handles[i]->numFds, 1);
std::vector<uint8_t> actual(kCacheSize);
EXPECT_EQ(read(handles[i]->data[0], actual.data(), kCacheSize),
static_cast<ssize_t>(kCacheSize));
EXPECT_EQ(actual, expected);
}
}
std::vector<uint8_t> mModelCacheData;
std::vector<uint8_t> mDataCacheData;
const V1_3::ErrorStatus mErrorStatusGetNumCacheFiles;
const uint32_t mNumModelCache;
const uint32_t mNumDataCache;
const V1_3::ErrorStatus mErrorStatusPrepareFromCache;
bool mHasCalledPrepareModelFromCache = false;
HasCalledPrepareModel mHasCalledPrepareModel = HasCalledPrepareModel::NO;
};
void CreateBroadcastAddModel(test_wrapper::Model* model) {
test_wrapper::OperandType matrixType(Type::TENSOR_FLOAT32, {2, 2});
test_wrapper::OperandType vectorType(Type::TENSOR_FLOAT32, {2});
test_wrapper::OperandType scalarType(Type::INT32, {});
int32_t activation(ANEURALNETWORKS_FUSED_NONE);
auto a = model->addOperand(&matrixType);
auto b = model->addOperand(&vectorType);
auto c = model->addOperand(&matrixType);
auto d = model->addOperand(&scalarType);
model->setOperandValue(d, &activation, sizeof(activation));
model->addOperation(ANEURALNETWORKS_ADD, {a, b, d}, {c});
model->identifyInputsAndOutputs({a, b}, {c});
ASSERT_TRUE(model->isValid());
ASSERT_EQ(model->finish(), WrapperResult::NO_ERROR);
}
void getDeviceWithName(std::string_view deviceName, const ANeuralNetworksDevice** outputDevice) {
uint32_t numDevices = 0;
ASSERT_EQ(ANeuralNetworks_getDeviceCount(&numDevices), ANEURALNETWORKS_NO_ERROR);
EXPECT_GE(numDevices, (uint32_t)1);
int numMatchingDevices = 0;
for (uint32_t i = 0; i < numDevices; i++) {
ANeuralNetworksDevice* device = nullptr;
ASSERT_EQ(ANeuralNetworks_getDevice(i, &device), ANEURALNETWORKS_NO_ERROR);
const char* buffer = nullptr;
ASSERT_EQ(ANeuralNetworksDevice_getName(device, &buffer), ANEURALNETWORKS_NO_ERROR);
if (deviceName == buffer) {
*outputDevice = device;
numMatchingDevices++;
}
}
EXPECT_LE(numMatchingDevices, 1);
}
// Test device registration with a driver parameterized with
// - ErrorStatus returning from getNumberOfCacheFilesNeeded
// - Number of model cache files returning from getNumberOfCacheFilesNeeded
// - Number of data cache files returning from getNumberOfCacheFilesNeeded
using DeviceRegistrationTestParam = std::tuple<V1_3::ErrorStatus, uint32_t, uint32_t>;
class DeviceRegistrationTest : public ::testing::TestWithParam<DeviceRegistrationTestParam> {
protected:
static constexpr std::string_view kDeviceName = "deviceTestCompilationCaching";
const V1_3::ErrorStatus kErrorStatusGetNumCacheFiles = std::get<0>(GetParam());
const uint32_t kNumModelCache = std::get<1>(GetParam());
const uint32_t kNumDataCache = std::get<2>(GetParam());
const sp<CachingDriver> kDriver =
new CachingDriver(kDeviceName, kErrorStatusGetNumCacheFiles, kNumModelCache,
kNumDataCache, V1_3::ErrorStatus::NONE);
};
TEST_P(DeviceRegistrationTest, CachingFailure) {
if (DeviceManager::get()->getUseCpuOnly()) {
return;
}
DeviceManager::get()->forTest_registerDevice(makeSharedDevice(kDeviceName.data(), kDriver));
const auto cleanup = android::base::make_scope_guard(
[] { DeviceManager::get()->forTest_reInitializeDeviceList(); });
// get device
const ANeuralNetworksDevice* device = nullptr;
getDeviceWithName(kDeviceName, &device);
// check if device registeration matches expectations
const bool isDeviceRegistered = (device != nullptr);
const bool expectDeviceToBeRegistered =
canDeviceBeRegistered(kErrorStatusGetNumCacheFiles, kNumModelCache, kNumDataCache);
ASSERT_EQ(isDeviceRegistered, expectDeviceToBeRegistered);
}
// Test model compilation with a driver parameterized with
// - Number of model cache files returning from getNumberOfCacheFilesNeeded
// - Number of data cache files returning from getNumberOfCacheFilesNeeded
// - ErrorStatus returning from prepareModelFromCache_1_3
using CompilationCachingTestParam = std::tuple<uint32_t, uint32_t, V1_3::ErrorStatus>;
class CompilationCachingTest : public ::testing::TestWithParam<CompilationCachingTestParam> {
protected:
virtual void SetUp() override {
char cacheDirTemp[] =
"/data/local/tmp/AVeryLongDirectoryNameForTestCompilationCachingXXXXXX";
char* cacheDir = mkdtemp(cacheDirTemp);
ASSERT_NE(cacheDir, nullptr);
mCacheDir = cacheDir;
CreateBroadcastAddModel(&mModel);
}
virtual void TearDown() override {
if (!::testing::Test::HasFailure()) {
std::filesystem::remove_all(mCacheDir);
}
}
void compileModel(const sp<CachingDriver>& driver, bool withToken) {
DeviceManager::get()->forTest_registerDevice(makeSharedDevice(kDeviceName.data(), driver));
const auto cleanup = android::base::make_scope_guard(
[] { DeviceManager::get()->forTest_reInitializeDeviceList(); });
// Get a handle to the single driver device matching kDeviceName.
const ANeuralNetworksDevice* device = nullptr;
getDeviceWithName(kDeviceName, &device);
ASSERT_NE(device, nullptr);
// Compile the model with the device.
ANeuralNetworksCompilation* compilation = nullptr;
ASSERT_EQ(ANeuralNetworksCompilation_createForDevices(mModel.getHandle(), &device, 1,
&compilation),
ANEURALNETWORKS_NO_ERROR);
if (withToken) {
ASSERT_EQ(ANeuralNetworksCompilation_setCaching(compilation, mCacheDir.c_str(),
kToken.data()),
ANEURALNETWORKS_NO_ERROR);
}
ASSERT_EQ(ANeuralNetworksCompilation_finish(compilation), ANEURALNETWORKS_NO_ERROR);
// close memory
ANeuralNetworksCompilation_free(compilation);
}
void createCache() {
sp<CachingDriver> driver =
new CachingDriver(kDeviceName, V1_3::ErrorStatus::NONE, kNumModelCache,
kNumDataCache, V1_3::ErrorStatus::NONE);
compileModel(driver, /*withToken=*/true);
}
static constexpr std::string_view kDeviceName = "deviceTestCompilationCaching";
const uint32_t kNumModelCache = std::get<0>(GetParam());
const uint32_t kNumDataCache = std::get<1>(GetParam());
const V1_3::ErrorStatus kErrorStatusPrepareFromCache = std::get<2>(GetParam());
const bool kIsCachingSupported = isCachingSupported(kNumModelCache, kNumDataCache);
test_wrapper::Model mModel;
std::string mCacheDir;
const HalCacheToken kToken{};
};
TEST_P(CompilationCachingTest, TokenProvidedAndCacheNotExist) {
if (DeviceManager::get()->getUseCpuOnly()) {
return;
}
sp<CachingDriver> driver =
new CachingDriver(kDeviceName, V1_3::ErrorStatus::NONE, kNumModelCache, kNumDataCache,
kErrorStatusPrepareFromCache);
compileModel(driver, /*withToken=*/true);
// When cache file does not exist, the runtime should never call prepareModelFromCache_1_3.
EXPECT_FALSE(driver->hasCalledPrepareModelFromCache());
// The runtime should call prepareModel_1_3. It should request caching iff caching supported.
EXPECT_EQ(driver->hasCalledPrepareModel(), kIsCachingSupported
? HasCalledPrepareModel::WITH_CACHING
: HasCalledPrepareModel::WITHOUT_CACHING);
}
TEST_P(CompilationCachingTest, TokenProvidedAndCacheExist) {
if (DeviceManager::get()->getUseCpuOnly()) {
return;
}
createCache();
sp<CachingDriver> driver =
new CachingDriver(kDeviceName, V1_3::ErrorStatus::NONE, kNumModelCache, kNumDataCache,
kErrorStatusPrepareFromCache);
compileModel(driver, /*withToken=*/true);
// When cache files exist, the runtime should call prepareModelFromCache_1_3 iff caching
// supported.
EXPECT_EQ(driver->hasCalledPrepareModelFromCache(), kIsCachingSupported);
HasCalledPrepareModel expectHasCalledPrepareModel;
if (kIsCachingSupported) {
if (kErrorStatusPrepareFromCache == V1_3::ErrorStatus::NONE) {
// The runtime should not call prepareModel_1_3 iff caching supported and
// prepareModelFromCache_1_3 succeeds.
expectHasCalledPrepareModel = HasCalledPrepareModel::NO;
} else {
// The runtime should call prepareModel_1_3 and request caching iff caching supported
// but prepareModelFromCache_1_3 fails.
expectHasCalledPrepareModel = HasCalledPrepareModel::WITH_CACHING;
}
} else {
// The runtime should call prepareModel_1_3 without caching iff caching not supported.
expectHasCalledPrepareModel = HasCalledPrepareModel::WITHOUT_CACHING;
}
EXPECT_EQ(driver->hasCalledPrepareModel(), expectHasCalledPrepareModel);
}
TEST_P(CompilationCachingTest, TokenNotProvided) {
if (DeviceManager::get()->getUseCpuOnly()) {
return;
}
sp<CachingDriver> driver =
new CachingDriver(kDeviceName, V1_3::ErrorStatus::NONE, kNumModelCache, kNumDataCache,
kErrorStatusPrepareFromCache);
compileModel(driver, /*withToken=*/false);
// When no NDK token is provided by the client, the runtime should never call
// prepareModelFromCache_1_3 or request caching with prepareModel_1_3.
EXPECT_FALSE(driver->hasCalledPrepareModelFromCache());
EXPECT_EQ(driver->hasCalledPrepareModel(), HasCalledPrepareModel::WITHOUT_CACHING);
}
static const auto kErrorStatusGetNumCacheFilesChoices =
testing::Values(V1_3::ErrorStatus::NONE, V1_3::ErrorStatus::DEVICE_UNAVAILABLE);
static const auto kNumCacheChoices =
testing::Values(0ul, 1ul, static_cast<uint32_t>(V1_2::Constant::MAX_NUMBER_OF_CACHE_FILES),
static_cast<uint32_t>(V1_2::Constant::MAX_NUMBER_OF_CACHE_FILES) + 1);
static const auto kNumValidCacheChoices =
testing::Values(0ul, 1ul, static_cast<uint32_t>(V1_2::Constant::MAX_NUMBER_OF_CACHE_FILES));
static const auto kErrorStatusPrepareFromCacheChoices =
testing::Values(V1_3::ErrorStatus::NONE, V1_3::ErrorStatus::GENERAL_FAILURE,
V1_3::ErrorStatus::DEVICE_UNAVAILABLE, V1_3::ErrorStatus::INVALID_ARGUMENT);
INSTANTIATE_TEST_SUITE_P(TestCompilationCaching, DeviceRegistrationTest,
testing::Combine(kErrorStatusGetNumCacheFilesChoices, kNumCacheChoices,
kNumCacheChoices));
INSTANTIATE_TEST_SUITE_P(TestCompilationCaching, CompilationCachingTest,
testing::Combine(kNumValidCacheChoices, kNumValidCacheChoices,
kErrorStatusPrepareFromCacheChoices));
} // namespace