You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1505 lines
65 KiB

/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <ExecutionBurstServer.h>
#include <HalInterfaces.h>
#include <SampleDriver.h>
#include <ValidateHal.h>
#include <gtest/gtest.h>
#include <algorithm>
#include <chrono>
#include <iterator>
#include <map>
#include <queue>
#include <set>
#include <string>
#include <thread>
#include <tuple>
#include <utility>
#include <vector>
#include "CompilationBuilder.h"
#include "HalUtils.h"
#include "Manager.h"
#include "NeuralNetworks.h"
#include "NeuralNetworksOEM.h"
#include "TestNeuralNetworksWrapper.h"
namespace {
using namespace ::android;
namespace V1_0 = ::android::hardware::neuralnetworks::V1_0;
namespace V1_1 = ::android::hardware::neuralnetworks::V1_1;
namespace V1_2 = ::android::hardware::neuralnetworks::V1_2;
namespace V1_3 = ::android::hardware::neuralnetworks::V1_3;
using CompilationBuilder = nn::CompilationBuilder;
using Device = nn::Device;
using DeviceManager = nn::DeviceManager;
using ExecutePreference = nn::test_wrapper::ExecutePreference;
using ExecutionBurstServer = nn::ExecutionBurstServer;
using HidlModel = V1_3::Model;
using Result = nn::test_wrapper::Result;
using SampleDriver = nn::sample_driver::SampleDriver;
using SamplePreparedModel = nn::sample_driver::SamplePreparedModel;
using SampleFencedExecutionCallback = nn::sample_driver::SampleFencedExecutionCallback;
using WrapperModel = nn::test_wrapper::Model;
using WrapperOperandType = nn::test_wrapper::OperandType;
using WrapperType = nn::test_wrapper::Type;
using nn::convertToV1_0;
using nn::convertToV1_3;
template <typename T>
using MQDescriptorSync = hardware::MQDescriptorSync<T>;
constexpr V1_2::Timing kBadTiming = {.timeOnDevice = UINT64_MAX, .timeInDriver = UINT64_MAX};
constexpr V1_2::Timing kGoodUnfencedTiming = {.timeOnDevice = 123, .timeInDriver = 456};
constexpr V1_2::Timing kGoodFencedTiming = {.timeOnDevice = 23, .timeInDriver = 56};
// This is an IDevice for testing purposes. The test driver has customized
// getCapabilities_1_3 and getSupportedOperations_1_3.
class TestDriver : public SampleDriver {
public:
TestDriver(const char* name, V1_3::Capabilities capabilities,
const std::vector<bool>& supportedOps)
: SampleDriver(name), mCapabilities(capabilities), mSupportedOps(supportedOps) {}
~TestDriver() override {}
hardware::Return<void> getCapabilities_1_3(getCapabilities_1_3_cb cb) override {
cb(V1_3::ErrorStatus::NONE, mCapabilities);
return hardware::Void();
}
hardware::Return<void> getSupportedOperations_1_3(const V1_3::Model& model,
getSupportedOperations_1_3_cb cb) override {
if (!android::nn::validateModel(model)) {
cb(V1_3::ErrorStatus::INVALID_ARGUMENT, std::vector<bool>());
return hardware::Void();
}
const size_t count = model.main.operations.size();
std::vector<bool> supported(count);
std::transform(model.main.operations.begin(), model.main.operations.end(),
supported.begin(), [this](V1_3::Operation op) {
return mSupportedOps[static_cast<int32_t>(op.type)];
});
cb(V1_3::ErrorStatus::NONE, supported);
return hardware::Void();
}
private:
V1_3::Capabilities mCapabilities;
std::vector<bool> mSupportedOps;
};
class IntrospectionControlTest : public ::testing::Test {
protected:
virtual void SetUp() {}
virtual void TearDown() {
if (mEvent) {
ANeuralNetworksEvent_free(mEvent);
}
if (mExecution) {
ANeuralNetworksExecution_free(mExecution);
}
if (mCompilation) {
ANeuralNetworksCompilation_free(mCompilation);
}
DeviceManager::get()->forTest_reInitializeDeviceList();
}
struct DeviceSpecification {
DeviceSpecification(const std::string& name, float perf, std::vector<bool>& supportedOps)
: mName(name), mSupportedOps(supportedOps) {
V1_0::PerformanceInfo perfInfo = {.execTime = perf, .powerUsage = perf};
mCapabilities = {
.relaxedFloat32toFloat16PerformanceScalar = perfInfo,
.relaxedFloat32toFloat16PerformanceTensor = perfInfo,
.operandPerformance =
nn::nonExtensionOperandPerformance<nn::HalVersion::V1_3>(perfInfo),
.ifPerformance = perfInfo,
.whilePerformance = perfInfo};
}
std::string mName;
V1_3::Capabilities mCapabilities;
std::vector<bool> mSupportedOps;
};
// From a vector of DeviceSpecification, register new Devices.
void registerDevices(std::vector<DeviceSpecification> specifications) {
for (const auto& specification : specifications) {
DeviceManager::get()->forTest_registerDevice(nn::makeSharedDevice(
specification.mName.c_str(),
new TestDriver(specification.mName.c_str(), specification.mCapabilities,
specification.mSupportedOps)));
}
}
bool selectDeviceByName(const std::string& name) {
uint32_t numDevices = 0;
EXPECT_EQ(ANeuralNetworks_getDeviceCount(&numDevices), ANEURALNETWORKS_NO_ERROR);
EXPECT_GE(numDevices, (uint32_t)1);
for (uint32_t i = 0; i < numDevices; i++) {
ANeuralNetworksDevice* device = nullptr;
EXPECT_EQ(ANeuralNetworks_getDevice(i, &device), ANEURALNETWORKS_NO_ERROR);
const char* buffer = nullptr;
int result = ANeuralNetworksDevice_getName(device, &buffer);
if (result == ANEURALNETWORKS_NO_ERROR && name.compare(buffer) == 0) {
mDevices.push_back(device);
return true;
}
}
return false;
}
bool isSupportedOpListExpected(const std::vector<bool>& expected) {
const uint32_t kMaxNumberOperations = 256;
EXPECT_LE(expected.size(), kMaxNumberOperations);
ANeuralNetworksModel* modelHandle = mModel.getHandle();
bool supported[kMaxNumberOperations] = {false};
EXPECT_EQ(ANeuralNetworksModel_getSupportedOperationsForDevices(
modelHandle, mDevices.data(), mDevices.size(), supported),
ANEURALNETWORKS_NO_ERROR);
return std::equal(expected.begin(), expected.end(), supported);
}
int prepareForExecution(bool measureTiming = false) {
ANeuralNetworksModel* modelHandle = mModel.getHandle();
int result = ANeuralNetworksCompilation_createForDevices(modelHandle, mDevices.data(),
mDevices.size(), &mCompilation);
if (result != ANEURALNETWORKS_NO_ERROR) {
return result;
}
EXPECT_EQ(ANeuralNetworksCompilation_finish(mCompilation), ANEURALNETWORKS_NO_ERROR);
EXPECT_EQ(ANeuralNetworksExecution_create(mCompilation, &mExecution),
ANEURALNETWORKS_NO_ERROR);
if (measureTiming) {
// Don't call setMeasureTiming unless we need to -- cannot call this
// API unless there is exactly one device.
EXPECT_EQ(ANeuralNetworksExecution_setMeasureTiming(mExecution, true),
ANEURALNETWORKS_NO_ERROR);
}
return ANEURALNETWORKS_NO_ERROR;
}
std::vector<ANeuralNetworksDevice*> mDevices;
ANeuralNetworksEvent* mEvent = nullptr;
ANeuralNetworksExecution* mExecution = nullptr;
ANeuralNetworksCompilation* mCompilation = nullptr;
WrapperModel mModel;
};
void createSimpleAddModel(WrapperModel* model) {
WrapperOperandType type0(WrapperType::TENSOR_FLOAT32, {2});
WrapperOperandType type1(WrapperType::INT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type0);
auto op2 = model->addOperand(&type0);
auto act = model->addOperand(&type1);
auto op3 = model->addOperand(&type0);
// Phase 2, operations
static int32_t act_init[] = {0};
model->setOperandValue(act, act_init, sizeof(act_init));
model->addOperation(ANEURALNETWORKS_ADD, {op1, op2, act}, {op3});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs({op1, op2}, {op3});
model->finish();
ASSERT_TRUE(model->isValid());
}
// This test verifies that a simple ADD model is able to run on a single device that claims being
// able to handle all operations.
TEST_F(IntrospectionControlTest, SimpleAddModel) {
// This is needed before we have the CPU fallback path being treated as a Device.
// TODO(miaowang): remove once b/72506261 is fixed.
if (DeviceManager::get()->getUseCpuOnly()) {
GTEST_SKIP();
}
createSimpleAddModel(&mModel);
std::string driverName = "test-all";
std::vector<bool> ops(android::nn::kNumberOfOperationTypes, true);
registerDevices({{driverName, 0.9, ops}});
EXPECT_TRUE(selectDeviceByName(driverName));
EXPECT_TRUE(isSupportedOpListExpected({true}));
EXPECT_EQ(prepareForExecution(), ANEURALNETWORKS_NO_ERROR);
// Verify that the mCompilation is actually using the "test-all" device.
CompilationBuilder* c = reinterpret_cast<CompilationBuilder*>(mCompilation);
const std::string& deviceNameBuffer =
c->forTest_getExecutionPlan().forTest_simpleGetDevice()->getName();
EXPECT_EQ(driverName, deviceNameBuffer);
float input1[2] = {1.0f, 2.0f};
float input2[2] = {3.0f, 4.0f};
float output[2];
EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 0, nullptr, input1, sizeof(input1)),
ANEURALNETWORKS_NO_ERROR);
EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 1, nullptr, input2, sizeof(input2)),
ANEURALNETWORKS_NO_ERROR);
EXPECT_EQ(ANeuralNetworksExecution_setOutput(mExecution, 0, nullptr, output, sizeof(output)),
ANEURALNETWORKS_NO_ERROR);
EXPECT_EQ(ANeuralNetworksExecution_setMeasureTiming(mExecution, true),
ANEURALNETWORKS_NO_ERROR);
EXPECT_EQ(ANeuralNetworksExecution_startCompute(mExecution, &mEvent), ANEURALNETWORKS_NO_ERROR);
EXPECT_EQ(ANeuralNetworksEvent_wait(mEvent), ANEURALNETWORKS_NO_ERROR);
EXPECT_EQ(output[0], input1[0] + input2[0]);
EXPECT_EQ(output[1], input1[1] + input2[1]);
uint64_t timeOnHardware, timeInDriver;
EXPECT_EQ(ANeuralNetworksExecution_getDuration(mExecution, ANEURALNETWORKS_DURATION_ON_HARDWARE,
&timeOnHardware),
ANEURALNETWORKS_NO_ERROR);
EXPECT_EQ(ANeuralNetworksExecution_getDuration(mExecution, ANEURALNETWORKS_DURATION_IN_DRIVER,
&timeInDriver),
ANEURALNETWORKS_NO_ERROR);
if (timeOnHardware != UINT64_MAX && timeInDriver != UINT64_MAX) {
EXPECT_LE(timeOnHardware, timeInDriver);
}
}
/*-- Begin test drivers -------------------------------------------------------------------------*/
namespace test_drivers {
enum class Success : uint32_t {
// ASYNC: Return ErrorStatus::GENERAL_FAILURE; notify ErrorStatus::GENERAL_FAILURE and
// kBadTiming
// SYNC, BURST: Return ErrorStatus::GENERAL_FAILURE and kBadTiming
// FENCED: Return ErrorStatus::GENERAL_FAILURE, empty hidl_handle, and a nullptr callback
FAIL_LAUNCH,
// ASYNC: Return ErrorStatus::NONE; notify ErrorStatus::GENERAL_FAILURE and kBadTiming
FAIL_WAIT,
// Bit representation for PASS: One bit set to indicate PASS rather than
// FAIL, one bit for each of the four timing fields (Unfenced, Fenced) x
// (OnDevice, InDriver) to distinguish between unavailable timing (bit is
// clear) and available timing (bit is set), and one bit to call out the
// special case of CPU.
PASS_BIT = 1 << 4,
PASS_UNFENCED_DEVICE_BIT = 1 << 5,
PASS_UNFENCED_DRIVER_BIT = 1 << 6,
PASS_FENCED_DEVICE_BIT = 1 << 7,
PASS_FENCED_DRIVER_BIT = 1 << 8,
PASS_CPU_BIT = 1 << 9,
// Each of the four timing fields may be either unavailable or 0
PASS_CPU = PASS_BIT | PASS_CPU_BIT,
// ASYNC: Return ErrorStatus::NONE; notify ErrorStatus::NONE and timing
// SYNC, BURST: Return ErrorStatus::NONE and timing
// FENCED: Return ErrorStatus::NONE, empty hidl_handle, and a callback with timing.
//
// For each PASS other than PASS_CPU, an enum name has the form
// PASS_${UNFENCED_TIME}_${FENCED_TIME}. For example, PASS_NEITHER_BOTH
// means that only fenced timing is available (both timeOnDevice and
// timeInDriver). If _${FENCED_TIME} is omitted, it is equivalent to
// _NEITHER; so PASS_BOTH means that only unfenced timing is available (both
// timeOnDevice and timeInDriver).
PASS_NEITHER = PASS_BIT,
PASS_DEVICE = PASS_BIT | PASS_UNFENCED_DEVICE_BIT,
PASS_DRIVER = PASS_BIT | PASS_UNFENCED_DRIVER_BIT,
PASS_BOTH = PASS_BIT | PASS_UNFENCED_DEVICE_BIT | PASS_UNFENCED_DRIVER_BIT,
PASS_NEITHER_DEVICE = PASS_BIT | PASS_FENCED_DEVICE_BIT,
PASS_NEITHER_DRIVER = PASS_BIT | PASS_FENCED_DRIVER_BIT,
PASS_NEITHER_BOTH = PASS_BIT | PASS_FENCED_DEVICE_BIT | PASS_FENCED_DRIVER_BIT,
PASS_DEVICE_DEVICE = PASS_DEVICE | PASS_NEITHER_DEVICE,
PASS_DEVICE_DRIVER = PASS_DEVICE | PASS_NEITHER_DRIVER,
PASS_DEVICE_BOTH = PASS_DEVICE | PASS_NEITHER_BOTH,
PASS_DRIVER_DEVICE = PASS_DRIVER | PASS_NEITHER_DEVICE,
PASS_DRIVER_DRIVER = PASS_DRIVER | PASS_NEITHER_DRIVER,
PASS_DRIVER_BOTH = PASS_DRIVER | PASS_NEITHER_BOTH,
PASS_BOTH_DEVICE = PASS_BOTH | PASS_NEITHER_DEVICE,
PASS_BOTH_DRIVER = PASS_BOTH | PASS_NEITHER_DRIVER,
PASS_BOTH_BOTH = PASS_BOTH | PASS_NEITHER_BOTH,
};
bool hasBit(Success mask, Success bit) {
const uint32_t bitAsInt = static_cast<uint32_t>(bit);
CHECK(bitAsInt && (bitAsInt & (bitAsInt - 1)) == 0)
<< "second argument must be a single bit rather than " << static_cast<uint32_t>(bit);
return static_cast<uint32_t>(mask) & bitAsInt;
}
Success clearBit(Success mask, Success bit) {
const uint32_t bitAsInt = static_cast<uint32_t>(bit);
CHECK(bitAsInt && (bitAsInt & (bitAsInt - 1)) == 0)
<< "second argument must be a single bit rather than " << static_cast<uint32_t>(bit);
return static_cast<Success>(static_cast<uint32_t>(mask) & ~bitAsInt);
}
std::ostream& operator<<(std::ostream& os, Success success) {
switch (success) {
case Success::FAIL_LAUNCH:
return os << "FAIL_LAUNCH";
case Success::FAIL_WAIT:
return os << "FAIL_WAIT";
case Success::PASS_CPU:
return os << "PASS_CPU";
default:
break;
}
static const std::vector<std::pair<Success, const char*>> bits = {
{Success::PASS_BIT, "PASS"},
{Success::PASS_UNFENCED_DEVICE_BIT, "UNFENCED_DEVICE"},
{Success::PASS_UNFENCED_DRIVER_BIT, "UNFENCED_DRIVER"},
{Success::PASS_FENCED_DEVICE_BIT, "FENCED_DEVICE"},
{Success::PASS_FENCED_DRIVER_BIT, "FENCED_DRIVER"},
};
bool gotOutput = false;
for (const auto& b : bits) {
if (hasBit(success, b.first)) {
if (gotOutput) {
os << '|';
} else {
gotOutput = true;
}
os << b.second;
success = clearBit(success, b.first);
}
}
if (uint32_t successAsInt = static_cast<uint32_t>(success)) {
if (gotOutput) {
os << '|';
}
os << successAsInt;
}
return os;
}
// Returns (unfenced timing, fenced timing).
// Not for PASS_CPU.
std::pair<V1_2::Timing, V1_2::Timing> getExpectedTiming(Success s, bool fencedExecution) {
CHECK_NE(s, Success::PASS_CPU);
if (!hasBit(s, Success::PASS_BIT)) {
return {kBadTiming, kBadTiming};
}
std::pair<V1_2::Timing, V1_2::Timing> result;
result.first.timeOnDevice = hasBit(s, Success::PASS_UNFENCED_DEVICE_BIT)
? kGoodUnfencedTiming.timeOnDevice
: UINT64_MAX;
result.first.timeInDriver = hasBit(s, Success::PASS_UNFENCED_DRIVER_BIT)
? kGoodUnfencedTiming.timeInDriver
: UINT64_MAX;
if (fencedExecution) {
result.second.timeOnDevice = hasBit(s, Success::PASS_FENCED_DEVICE_BIT)
? kGoodFencedTiming.timeOnDevice
: UINT64_MAX;
result.second.timeInDriver = hasBit(s, Success::PASS_FENCED_DRIVER_BIT)
? kGoodFencedTiming.timeInDriver
: UINT64_MAX;
} else {
result.second = result.first;
}
return result;
}
// For these tests we don't care about actually running an inference -- we
// just want to placeholder up execution status and timing results, and control
// when the execution finishes.
class TestPreparedModelLatest : public SamplePreparedModel {
public:
TestPreparedModelLatest(const HidlModel& model, const SampleDriver* driver, Success success)
: SamplePreparedModel(model, driver, V1_1::ExecutionPreference::FAST_SINGLE_ANSWER, uid_t{},
nn::kDefaultPriority13),
mSuccess(success) {}
hardware::Return<V1_0::ErrorStatus> execute(
const V1_0::Request&, const sp<V1_0::IExecutionCallback>& callback) override {
switch (mSuccess) {
case Success::PASS_NEITHER:
std::thread([callback] {
dummyExecution();
callback->notify(V1_0::ErrorStatus::NONE);
}).detach();
return V1_0::ErrorStatus::NONE;
case Success::FAIL_LAUNCH:
dummyExecution();
callback->notify(V1_0::ErrorStatus::GENERAL_FAILURE);
return V1_0::ErrorStatus::GENERAL_FAILURE;
case Success::FAIL_WAIT:
std::thread([callback] {
dummyExecution();
callback->notify(V1_0::ErrorStatus::GENERAL_FAILURE);
}).detach();
return V1_0::ErrorStatus::NONE;
default:
ADD_FAILURE() << "Unexpected Success kind";
return V1_0::ErrorStatus::GENERAL_FAILURE;
}
}
hardware::Return<V1_0::ErrorStatus> execute_1_2(
const V1_0::Request&, V1_2::MeasureTiming measure,
const sp<V1_2::IExecutionCallback>& callback) override {
EXPECT_EQ(measure, V1_2::MeasureTiming::YES);
switch (mSuccess) {
case Success::PASS_NEITHER:
case Success::PASS_DEVICE:
case Success::PASS_DRIVER:
case Success::PASS_BOTH:
std::thread([this, callback] {
dummyExecution();
callback->notify_1_2(V1_0::ErrorStatus::NONE, {},
getExpectedTiming(mSuccess, false).first);
}).detach();
return V1_0::ErrorStatus::NONE;
case Success::FAIL_LAUNCH:
dummyExecution();
callback->notify(V1_0::ErrorStatus::GENERAL_FAILURE);
return V1_0::ErrorStatus::GENERAL_FAILURE;
case Success::FAIL_WAIT:
std::thread([callback] {
dummyExecution();
callback->notify(V1_0::ErrorStatus::GENERAL_FAILURE);
}).detach();
return V1_0::ErrorStatus::NONE;
default:
ADD_FAILURE() << "Unexpected Success kind";
return V1_0::ErrorStatus::GENERAL_FAILURE;
}
}
hardware::Return<V1_3::ErrorStatus> execute_1_3(
const V1_3::Request&, V1_2::MeasureTiming measure, const V1_3::OptionalTimePoint&,
const V1_3::OptionalTimeoutDuration&,
const sp<V1_3::IExecutionCallback>& callback) override {
// Use a placeholder V1_0::Request because execute_1_2 ignores request entirely.
const V1_0::ErrorStatus status = execute_1_2(V1_0::Request{}, measure, callback);
return convertToV1_3(status);
}
hardware::Return<void> executeSynchronously(const V1_0::Request&, V1_2::MeasureTiming measure,
executeSynchronously_cb cb) override {
EXPECT_EQ(measure, V1_2::MeasureTiming::YES);
switch (mSuccess) {
case Success::PASS_NEITHER:
case Success::PASS_DEVICE:
case Success::PASS_DRIVER:
case Success::PASS_BOTH:
dummyExecution();
cb(V1_0::ErrorStatus::NONE, {}, getExpectedTiming(mSuccess, false).first);
return hardware::Void();
case Success::FAIL_WAIT:
// While this is a synchronous execution method, the NNAPI
// runtime may call it even for asynchronous execution, so we
// need to tolerate Success::FAIL_WAIT here, not just
// Success::FAIL_LAUNCH.
FALLTHROUGH_INTENDED;
case Success::FAIL_LAUNCH:
dummyExecution();
cb(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kBadTiming);
return hardware::Void();
default:
ADD_FAILURE() << "Unexpected Success kind";
cb(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kBadTiming);
return hardware::Void();
}
}
hardware::Return<void> executeSynchronously_1_3(const V1_3::Request&,
V1_2::MeasureTiming measure,
const V1_3::OptionalTimePoint&,
const V1_3::OptionalTimeoutDuration&,
executeSynchronously_1_3_cb cb) override {
const auto wrappedCb = [&cb](V1_0::ErrorStatus status,
const hardware::hidl_vec<V1_2::OutputShape>& outputShapes,
V1_2::Timing timing) {
cb(convertToV1_3(status), outputShapes, timing);
};
// Use a placeholder V1_0::Request because executeSynchronously ignores request entirely.
return executeSynchronously(V1_0::Request{}, measure, wrappedCb);
}
// ExecutionBurstServer::create has an overload that will use
// IPreparedModel::executeSynchronously(), so we can rely on that, rather
// than having to implement ExecutionBurstServer::IExecutorWithCache.
hardware::Return<void> configureExecutionBurst(
const sp<V1_2::IBurstCallback>& callback,
const MQDescriptorSync<V1_2::FmqRequestDatum>& requestChannel,
const MQDescriptorSync<V1_2::FmqResultDatum>& resultChannel,
configureExecutionBurst_cb cb) override {
const sp<V1_2::IBurstContext> burst = ExecutionBurstServer::create(
callback, requestChannel, resultChannel, this, std::chrono::microseconds{0});
cb(burst == nullptr ? V1_0::ErrorStatus::GENERAL_FAILURE : V1_0::ErrorStatus::NONE, burst);
return hardware::Void();
}
hardware::Return<void> executeFenced(const V1_3::Request&,
const hardware::hidl_vec<hardware::hidl_handle>&,
V1_2::MeasureTiming measure,
const V1_3::OptionalTimePoint&,
const V1_3::OptionalTimeoutDuration&,
const V1_3::OptionalTimeoutDuration&,
executeFenced_cb callback) override {
EXPECT_EQ(measure, V1_2::MeasureTiming::YES);
if (hasBit(mSuccess, Success::PASS_BIT)) {
dummyExecution();
const auto expectedTiming = getExpectedTiming(mSuccess, true);
sp<SampleFencedExecutionCallback> fencedExecutionCallback =
new SampleFencedExecutionCallback(expectedTiming.first, expectedTiming.second,
V1_3::ErrorStatus::NONE);
callback(V1_3::ErrorStatus::NONE, hardware::hidl_handle(nullptr),
fencedExecutionCallback);
return hardware::Void();
}
switch (mSuccess) {
case Success::FAIL_WAIT:
// Due to the limitation of the SampleDriver,
// FAIL_WAIT behaves the same as FAIL_LAUNCH.
// If the SampleDriver is updated to return real
// sync fences, this must be updated.
FALLTHROUGH_INTENDED;
case Success::FAIL_LAUNCH:
dummyExecution();
callback(V1_3::ErrorStatus::GENERAL_FAILURE, hardware::hidl_handle(nullptr),
nullptr);
return hardware::Void();
default:
ADD_FAILURE() << "Unexpected Success kind";
return hardware::Void();
}
}
// We can place the TestPreparedModelLatest system in a "pause" mode where
// no execution will complete until the system is taken out of that mode.
// Initially, the system is not in that mode.
static void pauseExecutions(bool v) { mPauseExecutions.store(v); }
// This function is only guaranteed to work in the following pattern:
// Consider thread A as primary thread
// - thread A: pauseExecutions(true);
// - thread A: launch execution (as thread B)
// - thread A: waitForExecutionToBegin(), block until call to dummyExecution by
// thread B makes mExecutionsInFlight nonzero
// - thread B: dummyExecution(), which makes mExecutionsInFlight nonzero and blocks
// until thread A calls pauseExecutions(false)
// - thread A: waitForExecutionToBegin() returns
// - thread A: pauseExecutions(false), allowing dummyExecution() on thread B to continue
// - thread B: dummyExecution() zeroes mExecutionsInFlight and returns
// - thread B: thread exits
static void waitForExecutionToBegin() {
CHECK(mPauseExecutions.load());
while (mExecutionsInFlight.load() == 0) {
}
}
private:
Success mSuccess;
static std::atomic<bool> mPauseExecutions;
static std::atomic<unsigned int> mExecutionsInFlight;
static void dummyExecution() {
CHECK_EQ(mExecutionsInFlight.fetch_add(1), 0u) << "We do not support concurrent executions";
while (mPauseExecutions.load()) {
}
mExecutionsInFlight.fetch_sub(1);
}
};
std::atomic<bool> TestPreparedModelLatest::mPauseExecutions = false;
std::atomic<unsigned int> TestPreparedModelLatest::mExecutionsInFlight = 0;
using TestPreparedModel13 = TestPreparedModelLatest;
// Like TestPreparedModelLatest, but implementing 1.2
class TestPreparedModel12 : public V1_2::IPreparedModel {
public:
TestPreparedModel12(const HidlModel& model, const SampleDriver* driver, Success success)
: mLatestPreparedModel(new TestPreparedModelLatest(model, driver, success)) {}
hardware::Return<V1_0::ErrorStatus> execute(
const V1_0::Request& request, const sp<V1_0::IExecutionCallback>& callback) override {
return mLatestPreparedModel->execute(request, callback);
}
hardware::Return<V1_0::ErrorStatus> execute_1_2(
const V1_0::Request& request, V1_2::MeasureTiming measure,
const sp<V1_2::IExecutionCallback>& callback) override {
return mLatestPreparedModel->execute_1_2(request, measure, callback);
}
hardware::Return<void> executeSynchronously(const V1_0::Request& request,
V1_2::MeasureTiming measure,
executeSynchronously_cb cb) override {
return mLatestPreparedModel->executeSynchronously(request, measure, cb);
}
hardware::Return<void> configureExecutionBurst(
const sp<V1_2::IBurstCallback>& callback,
const MQDescriptorSync<V1_2::FmqRequestDatum>& requestChannel,
const MQDescriptorSync<V1_2::FmqResultDatum>& resultChannel,
configureExecutionBurst_cb cb) override {
return mLatestPreparedModel->configureExecutionBurst(callback, requestChannel,
resultChannel, cb);
}
private:
const sp<V1_3::IPreparedModel> mLatestPreparedModel;
};
// Like TestPreparedModelLatest, but implementing 1.0
class TestPreparedModel10 : public V1_0::IPreparedModel {
public:
TestPreparedModel10(const HidlModel& model, const SampleDriver* driver, Success success)
: mLatestPreparedModel(new TestPreparedModelLatest(model, driver, success)) {}
hardware::Return<V1_0::ErrorStatus> execute(
const V1_0::Request& request, const sp<V1_0::IExecutionCallback>& callback) override {
return mLatestPreparedModel->execute(request, callback);
}
private:
const sp<V1_3::IPreparedModel> mLatestPreparedModel;
};
// Behaves like SampleDriver, except that it produces customized IPrepareModel.
class TestDriver13 : public SampleDriver {
public:
TestDriver13(const std::string& name, Success success)
: SampleDriver(name.c_str()), mSuccess(success) {}
hardware::Return<void> getCapabilities_1_3(getCapabilities_1_3_cb _hidl_cb) override {
android::nn::initVLogMask();
V1_3::Capabilities capabilities = nn::makeCapabilities(0.75f);
_hidl_cb(V1_3::ErrorStatus::NONE, capabilities);
return hardware::Void();
}
hardware::Return<void> getSupportedOperations_1_3(const HidlModel& model,
getSupportedOperations_1_3_cb cb) override {
if (nn::validateModel(model)) {
std::vector<bool> supported(model.main.operations.size(), true);
cb(V1_3::ErrorStatus::NONE, supported);
} else {
cb(V1_3::ErrorStatus::INVALID_ARGUMENT, {});
}
return hardware::Void();
}
hardware::Return<void> getSupportedOperations_1_2(const V1_2::Model& model,
getSupportedOperations_1_2_cb cb) override {
if (nn::validateModel(model)) {
std::vector<bool> supported(model.operations.size(), true);
cb(V1_0::ErrorStatus::NONE, supported);
} else {
std::vector<bool> supported;
cb(V1_0::ErrorStatus::INVALID_ARGUMENT, supported);
}
return hardware::Void();
}
hardware::Return<V1_3::ErrorStatus> prepareModel_1_3(
const HidlModel& model, V1_1::ExecutionPreference, V1_3::Priority,
const V1_3::OptionalTimePoint&, const hardware::hidl_vec<hardware::hidl_handle>&,
const hardware::hidl_vec<hardware::hidl_handle>&, const nn::HalCacheToken&,
const sp<V1_3::IPreparedModelCallback>& callback) override {
callback->notify_1_3(V1_3::ErrorStatus::NONE,
new TestPreparedModel13(model, this, mSuccess));
return V1_3::ErrorStatus::NONE;
}
hardware::Return<V1_0::ErrorStatus> prepareModel_1_2(
const V1_2::Model& model, V1_1::ExecutionPreference,
const hardware::hidl_vec<hardware::hidl_handle>&,
const hardware::hidl_vec<hardware::hidl_handle>&, const nn::HalCacheToken&,
const sp<V1_2::IPreparedModelCallback>& callback) override {
callback->notify_1_2(V1_0::ErrorStatus::NONE,
new TestPreparedModel12(nn::convertToV1_3(model), this, mSuccess));
return V1_0::ErrorStatus::NONE;
}
hardware::Return<V1_0::ErrorStatus> prepareModel_1_1(
const V1_1::Model& model, V1_1::ExecutionPreference,
const sp<V1_0::IPreparedModelCallback>& callback) override {
callback->notify(V1_0::ErrorStatus::NONE,
new TestPreparedModel10(nn::convertToV1_3(model), this, mSuccess));
return V1_0::ErrorStatus::NONE;
}
hardware::Return<V1_0::ErrorStatus> prepareModel(
const V1_0::Model& model, const sp<V1_0::IPreparedModelCallback>& callback) override {
return prepareModel_1_1(nn::convertToV1_1(model),
V1_1::ExecutionPreference::FAST_SINGLE_ANSWER, callback);
}
private:
Success mSuccess;
};
// Like TestDriver, but implementing 1.1
class TestDriver11 : public V1_1::IDevice {
public:
TestDriver11(const std::string& name, Success success)
: mLatestDriver(new TestDriver13(name, success)) {}
hardware::Return<void> getCapabilities_1_1(getCapabilities_1_1_cb _hidl_cb) override {
return mLatestDriver->getCapabilities_1_1(_hidl_cb);
}
hardware::Return<void> getSupportedOperations_1_1(
const V1_1::Model& model, getSupportedOperations_1_1_cb _hidl_cb) override {
return mLatestDriver->getSupportedOperations_1_1(model, _hidl_cb);
}
hardware::Return<V1_0::ErrorStatus> prepareModel_1_1(
const V1_1::Model& model, V1_1::ExecutionPreference preference,
const sp<V1_0::IPreparedModelCallback>& actualCallback) override {
return mLatestDriver->prepareModel_1_1(model, preference, actualCallback);
}
hardware::Return<V1_0::DeviceStatus> getStatus() override { return mLatestDriver->getStatus(); }
hardware::Return<void> getCapabilities(getCapabilities_cb _hidl_cb) override {
return mLatestDriver->getCapabilities(_hidl_cb);
}
hardware::Return<void> getSupportedOperations(const V1_0::Model& model,
getSupportedOperations_cb _hidl_cb) override {
return mLatestDriver->getSupportedOperations(model, _hidl_cb);
}
hardware::Return<V1_0::ErrorStatus> prepareModel(
const V1_0::Model& model,
const sp<V1_0::IPreparedModelCallback>& actualCallback) override {
return mLatestDriver->prepareModel(model, actualCallback);
}
private:
const sp<V1_3::IDevice> mLatestDriver;
};
} // namespace test_drivers
/*-- End test drivers -------------------------------------------------------------------------*/
/*-- Begin timing tests -------------------------------------------------------------------------*/
namespace timing_tests {
using namespace test_drivers;
enum class DriverKind {
CPU,
OLD, // too old to support timing (1.1 or earlier)
NEW // new enough to support timing (1.2 or later)
};
std::ostream& operator<<(std::ostream& os, DriverKind kind) {
const char* names[] = {"CPU", "OLD", "NEW"};
const uint32_t index = static_cast<uint32_t>(kind);
CHECK(index < std::size(names));
return os << names[index];
}
enum class Compute { ASYNC, SYNC, BURST, FENCED };
std::ostream& operator<<(std::ostream& os, Compute compute) {
const char* names[] = {"ASYNC", "SYNC", "BURST", "FENCED"};
const uint32_t index = static_cast<uint32_t>(compute);
CHECK(index < std::size(names));
return os << names[index];
}
class TimingTest : public IntrospectionControlTest,
public ::testing::WithParamInterface<std::tuple<DriverKind, Success, Compute>> {
public:
TimingTest()
: kDriverKind(std::get<0>(GetParam())),
kSuccess(std::get<1>(GetParam())),
kCompute(std::get<2>(GetParam())) {}
protected:
const DriverKind kDriverKind;
const Success kSuccess;
const Compute kCompute;
};
TEST_P(TimingTest, Test) {
// There's no straightforward way to force CPU execution to fail.
ASSERT_EQ(kDriverKind == DriverKind::CPU, kSuccess == Success::PASS_CPU);
// FAIL_WAIT only makes sense for ASYNC and FENCED.
ASSERT_TRUE(kCompute == Compute::ASYNC || kCompute == Compute::FENCED ||
kSuccess != Success::FAIL_WAIT);
if (DeviceManager::get()->getUseCpuOnly() != (kDriverKind == DriverKind::CPU)) {
// We don't have an elegant way to request the CPU driver. Therefore,
// we rely on our test framework to make the choice between CPU and
// non-CPU.
GTEST_SKIP();
}
createSimpleAddModel(&mModel);
switch (kDriverKind) {
case DriverKind::CPU: {
// There should be only one driver -- the CPU
const std::string& name = DeviceManager::get()->getDrivers()[0]->getName();
ASSERT_TRUE(selectDeviceByName(name));
break;
}
case DriverKind::OLD: {
static const char name[] = "old";
DeviceManager::get()->forTest_registerDevice(
nn::makeSharedDevice(name, new TestDriver11(name, kSuccess)));
ASSERT_TRUE(selectDeviceByName(name));
break;
}
case DriverKind::NEW: {
static const char name[] = "new";
DeviceManager::get()->forTest_registerDevice(
nn::makeSharedDevice(name, new TestDriver13(name, kSuccess)));
ASSERT_TRUE(selectDeviceByName(name));
break;
}
default:
FAIL() << "Unexpected DriverKind";
}
EXPECT_EQ(prepareForExecution(true /*measureTiming*/), ANEURALNETWORKS_NO_ERROR);
float input1[2] = {1.0f, 2.0f};
float input2[2] = {3.0f, 4.0f};
float output[2];
EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 0, nullptr, input1, sizeof(input1)),
ANEURALNETWORKS_NO_ERROR);
EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 1, nullptr, input2, sizeof(input2)),
ANEURALNETWORKS_NO_ERROR);
EXPECT_EQ(ANeuralNetworksExecution_setOutput(mExecution, 0, nullptr, output, sizeof(output)),
ANEURALNETWORKS_NO_ERROR);
EXPECT_EQ(ANeuralNetworksExecution_setMeasureTiming(mExecution, true),
ANEURALNETWORKS_NO_ERROR);
auto Check = [](bool expectPass, int result) {
if (expectPass) {
ASSERT_EQ(result, ANEURALNETWORKS_NO_ERROR);
} else {
ASSERT_NE(result, ANEURALNETWORKS_NO_ERROR);
}
};
const bool isPass = hasBit(kSuccess, Success::PASS_BIT);
const int expectedGetDurationResultCode =
isPass ? ANEURALNETWORKS_NO_ERROR : ANEURALNETWORKS_BAD_STATE;
const auto getDurationWhileRunning = [this] {
if (kDriverKind == DriverKind::CPU) {
// Testing DriverKind::CPU would require modifying the CPU execution
// path to control execution completion, similarly to how this test
// case does with TestPreparedModel::dummyExecution(). This does not
// seem worthwhile -- it's intrusive into the runtime code solely
// for the sake of testing, and we do not expect that the code paths
// needed to ensure correct behavior of
// ANeuralNetworksExecution_getDuration() on a running execution
// would be any different for CPU than for actual drivers.
return;
}
TestPreparedModelLatest::waitForExecutionToBegin();
for (int durationCode :
std::vector{ANEURALNETWORKS_DURATION_ON_HARDWARE, ANEURALNETWORKS_DURATION_IN_DRIVER,
ANEURALNETWORKS_FENCED_DURATION_ON_HARDWARE,
ANEURALNETWORKS_FENCED_DURATION_IN_DRIVER}) {
uint64_t time;
// Cannot query duration while execution is running
EXPECT_EQ(ANeuralNetworksExecution_getDuration(mExecution, durationCode, &time),
ANEURALNETWORKS_BAD_STATE);
}
};
switch (kCompute) {
case Compute::ASYNC: {
// Ideally what we'd like to do here is
//
// Check(kSuccess != Success::FAIL_LAUNCH,
// ANeuralNetworksExecution_startCompute(mExecution, &mEvent));
// Check(isPass, ANeuralNetworksEvent_wait(mEvent));
//
// However, in the current implementation of the runtime, a launch
// failure at the HAL level does not show up as a launch failure at
// the NDK level ("startCompute"): The NNAPI runtime does not call a
// driver until it (the runtime) begins execution, so a launch
// failure at the HAL level looks like an execution failure at the
// NDK level ("wait").
SCOPED_TRACE("ASYNC startCompute");
TestPreparedModelLatest::pauseExecutions(true);
Check(true, // rather than kSuccess != Success::FAIL_LAUNCH
ANeuralNetworksExecution_startCompute(mExecution, &mEvent));
getDurationWhileRunning();
TestPreparedModelLatest::pauseExecutions(false);
SCOPED_TRACE("ASYNC wait");
Check(isPass, ANeuralNetworksEvent_wait(mEvent));
break;
}
case Compute::SYNC: {
SCOPED_TRACE("SYNC");
TestPreparedModelLatest::pauseExecutions(true);
std::thread run([this, Check, isPass] {
Check(isPass, ANeuralNetworksExecution_compute(mExecution));
});
getDurationWhileRunning();
TestPreparedModelLatest::pauseExecutions(false);
run.join();
break;
}
case Compute::BURST: {
SCOPED_TRACE("BURST");
ANeuralNetworksBurst* burst;
ASSERT_EQ(ANeuralNetworksBurst_create(mCompilation, &burst), ANEURALNETWORKS_NO_ERROR);
TestPreparedModelLatest::pauseExecutions(true);
std::thread run([this, Check, isPass, burst] {
Check(isPass, ANeuralNetworksExecution_burstCompute(mExecution, burst));
});
getDurationWhileRunning();
TestPreparedModelLatest::pauseExecutions(false);
run.join();
ANeuralNetworksBurst_free(burst);
break;
}
case Compute::FENCED: {
SCOPED_TRACE("FENCED startComputeWithDependencies");
TestPreparedModelLatest::pauseExecutions(true);
// Note, due to the limitation of SampleDriver implementation, the call is synchronous.
// If the SampleDriver is updated to return real sync fence, this must be updated.
std::thread run([this, Check, isPass] {
Check(isPass, ANeuralNetworksExecution_startComputeWithDependencies(
mExecution, nullptr, 0, 0, &mEvent));
});
getDurationWhileRunning();
TestPreparedModelLatest::pauseExecutions(false);
run.join();
SCOPED_TRACE("FENCED wait");
Check(isPass, ANeuralNetworksEvent_wait(mEvent));
break;
}
default:
FAIL() << "unreachable";
}
uint64_t timeOnHardware, timeInDriver, timeOnHardwareFenced, timeInDriverFenced;
EXPECT_EQ(ANeuralNetworksExecution_getDuration(mExecution, ANEURALNETWORKS_DURATION_ON_HARDWARE,
&timeOnHardware),
expectedGetDurationResultCode);
EXPECT_EQ(ANeuralNetworksExecution_getDuration(mExecution, ANEURALNETWORKS_DURATION_IN_DRIVER,
&timeInDriver),
expectedGetDurationResultCode);
EXPECT_EQ(
ANeuralNetworksExecution_getDuration(
mExecution, ANEURALNETWORKS_FENCED_DURATION_ON_HARDWARE, &timeOnHardwareFenced),
expectedGetDurationResultCode);
EXPECT_EQ(ANeuralNetworksExecution_getDuration(
mExecution, ANEURALNETWORKS_FENCED_DURATION_IN_DRIVER, &timeInDriverFenced),
expectedGetDurationResultCode);
switch (kDriverKind) {
case DriverKind::CPU: {
// TODO: Should we require timing to be reported as 0?
EXPECT_TRUE(timeOnHardware == 0 || timeOnHardware == UINT64_MAX)
<< "timeOnHardware = " << timeOnHardware;
EXPECT_TRUE(timeInDriver == 0 || timeInDriver == UINT64_MAX)
<< "timeInDriver = " << timeOnHardware;
EXPECT_TRUE(timeOnHardwareFenced == 0 || timeOnHardwareFenced == UINT64_MAX)
<< "timeOnHardwareFenced = " << timeOnHardwareFenced;
EXPECT_TRUE(timeInDriverFenced == 0 || timeInDriverFenced == UINT64_MAX)
<< "timeInDriver = " << timeInDriverFenced;
break;
}
case DriverKind::OLD: {
EXPECT_EQ(timeOnHardware, UINT64_MAX);
EXPECT_EQ(timeInDriver, UINT64_MAX);
EXPECT_EQ(timeOnHardwareFenced, UINT64_MAX);
EXPECT_EQ(timeInDriverFenced, UINT64_MAX);
break;
}
case DriverKind::NEW: {
auto microsToNanos = [](uint64_t micros) {
constexpr uint64_t kNanosPerMicro = 1000;
return micros == UINT64_MAX ? UINT64_MAX : kNanosPerMicro * micros;
};
auto expectedTiming = getExpectedTiming(kSuccess, kCompute == Compute::FENCED);
EXPECT_EQ(timeOnHardware, microsToNanos(expectedTiming.first.timeOnDevice));
EXPECT_EQ(timeInDriver, microsToNanos(expectedTiming.first.timeInDriver));
EXPECT_EQ(timeOnHardwareFenced, microsToNanos(expectedTiming.second.timeOnDevice));
EXPECT_EQ(timeInDriverFenced, microsToNanos(expectedTiming.second.timeInDriver));
break;
}
default:
FAIL() << "unreachable";
}
if (kCompute != Compute::FENCED) {
EXPECT_EQ(timeOnHardware, timeOnHardwareFenced);
EXPECT_EQ(timeInDriver, timeInDriverFenced);
}
auto expectTimingLe = [](uint64_t a, const char* aName, uint64_t b, const char* bName) {
if (a != UINT64_MAX && b != UINT64_MAX) {
EXPECT_LE(a, b) << aName << " exceeds " << bName;
}
};
#define EXPECT_TIMING_LE(a, b) expectTimingLe(a, #a, b, #b)
EXPECT_TIMING_LE(timeOnHardware, timeInDriver);
EXPECT_TIMING_LE(timeOnHardwareFenced, timeInDriverFenced);
EXPECT_TIMING_LE(timeOnHardwareFenced, timeOnHardware);
EXPECT_TIMING_LE(timeInDriverFenced, timeInDriver);
#undef EXPECT_TIMING_LE
}
auto kTimingTestUnfencedValues = ::testing::Values(
// NOTE: We cannot force CPU execution to fail
std::make_tuple(DriverKind::CPU, Success::PASS_CPU, Compute::ASYNC),
std::make_tuple(DriverKind::CPU, Success::PASS_CPU, Compute::SYNC),
std::make_tuple(DriverKind::CPU, Success::PASS_CPU, Compute::BURST),
// NOTE: OLD driver does not provide timing
std::make_tuple(DriverKind::OLD, Success::PASS_NEITHER, Compute::ASYNC),
std::make_tuple(DriverKind::OLD, Success::PASS_NEITHER, Compute::SYNC),
std::make_tuple(DriverKind::OLD, Success::PASS_NEITHER, Compute::BURST),
std::make_tuple(DriverKind::OLD, Success::FAIL_LAUNCH, Compute::ASYNC),
std::make_tuple(DriverKind::OLD, Success::FAIL_LAUNCH, Compute::SYNC),
std::make_tuple(DriverKind::OLD, Success::FAIL_LAUNCH, Compute::BURST),
// NOTE: Only ASYNC is paired with a wait
std::make_tuple(DriverKind::OLD, Success::FAIL_WAIT, Compute::ASYNC),
std::make_tuple(DriverKind::NEW, Success::PASS_NEITHER, Compute::ASYNC),
std::make_tuple(DriverKind::NEW, Success::PASS_NEITHER, Compute::SYNC),
std::make_tuple(DriverKind::NEW, Success::PASS_NEITHER, Compute::BURST),
std::make_tuple(DriverKind::NEW, Success::PASS_DEVICE, Compute::ASYNC),
std::make_tuple(DriverKind::NEW, Success::PASS_DEVICE, Compute::SYNC),
std::make_tuple(DriverKind::NEW, Success::PASS_DEVICE, Compute::BURST),
std::make_tuple(DriverKind::NEW, Success::PASS_DRIVER, Compute::ASYNC),
std::make_tuple(DriverKind::NEW, Success::PASS_DRIVER, Compute::SYNC),
std::make_tuple(DriverKind::NEW, Success::PASS_DRIVER, Compute::BURST),
std::make_tuple(DriverKind::NEW, Success::PASS_BOTH, Compute::ASYNC),
std::make_tuple(DriverKind::NEW, Success::PASS_BOTH, Compute::SYNC),
std::make_tuple(DriverKind::NEW, Success::PASS_BOTH, Compute::BURST),
std::make_tuple(DriverKind::NEW, Success::FAIL_LAUNCH, Compute::ASYNC),
std::make_tuple(DriverKind::NEW, Success::FAIL_LAUNCH, Compute::SYNC),
std::make_tuple(DriverKind::NEW, Success::FAIL_LAUNCH, Compute::BURST),
// NOTE: Only ASYNC is paired with a wait
std::make_tuple(DriverKind::NEW, Success::FAIL_WAIT, Compute::ASYNC));
auto kTimingTestFencedValues = ::testing::Values(
// NOTE: We cannot force CPU execution to fail
std::make_tuple(DriverKind::CPU, Success::PASS_CPU, Compute::FENCED),
// NOTE: OLD driver does not provide timing
std::make_tuple(DriverKind::OLD, Success::PASS_NEITHER, Compute::FENCED),
std::make_tuple(DriverKind::OLD, Success::FAIL_LAUNCH, Compute::FENCED),
std::make_tuple(DriverKind::NEW, Success::PASS_NEITHER, Compute::FENCED),
std::make_tuple(DriverKind::NEW, Success::PASS_DEVICE, Compute::FENCED),
std::make_tuple(DriverKind::NEW, Success::PASS_DRIVER, Compute::FENCED),
std::make_tuple(DriverKind::NEW, Success::PASS_BOTH, Compute::FENCED),
std::make_tuple(DriverKind::NEW, Success::PASS_NEITHER_DEVICE, Compute::FENCED),
std::make_tuple(DriverKind::NEW, Success::PASS_NEITHER_DRIVER, Compute::FENCED),
std::make_tuple(DriverKind::NEW, Success::PASS_NEITHER_BOTH, Compute::FENCED),
std::make_tuple(DriverKind::NEW, Success::PASS_DEVICE_DEVICE, Compute::FENCED),
std::make_tuple(DriverKind::NEW, Success::PASS_DEVICE_DRIVER, Compute::FENCED),
std::make_tuple(DriverKind::NEW, Success::PASS_DEVICE_BOTH, Compute::FENCED),
std::make_tuple(DriverKind::NEW, Success::PASS_DRIVER_DEVICE, Compute::FENCED),
std::make_tuple(DriverKind::NEW, Success::PASS_DRIVER_DRIVER, Compute::FENCED),
std::make_tuple(DriverKind::NEW, Success::PASS_DRIVER_BOTH, Compute::FENCED),
std::make_tuple(DriverKind::NEW, Success::PASS_BOTH_DEVICE, Compute::FENCED),
std::make_tuple(DriverKind::NEW, Success::PASS_BOTH_DRIVER, Compute::FENCED),
std::make_tuple(DriverKind::NEW, Success::PASS_BOTH_BOTH, Compute::FENCED),
std::make_tuple(DriverKind::NEW, Success::FAIL_LAUNCH, Compute::FENCED));
INSTANTIATE_TEST_SUITE_P(Unfenced, TimingTest, kTimingTestUnfencedValues);
INSTANTIATE_TEST_SUITE_P(Fenced, TimingTest, kTimingTestFencedValues);
} // namespace timing_tests
/*-- End timing tests -------------------------------------------------------------------------*/
const float kSimpleCeiling = 2.0f;
void createAddMaxModel(WrapperModel* model, bool reverseOrder) {
WrapperOperandType type0(WrapperType::TENSOR_FLOAT32, {2});
WrapperOperandType type1(WrapperType::INT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type0);
auto op2 = model->addOperand(&type0);
auto act = model->addOperand(&type1);
auto op3 = model->addOperand(&type0);
auto op4 = model->addOperand(&type0);
auto op5 = model->addOperand(&type0);
// Phase 2, operations
static int32_t act_init[] = {0};
model->setOperandValue(act, act_init, sizeof(act_init));
static float ceiling[] = {kSimpleCeiling, kSimpleCeiling};
model->setOperandValue(op4, ceiling, sizeof(ceiling));
if (reverseOrder) {
// In this case, add MAXIMUM first, but the execution order is still ADD -> MAXIMUM.
model->addOperation(ANEURALNETWORKS_MAXIMUM, {op3, op4}, {op5});
model->addOperation(ANEURALNETWORKS_ADD, {op1, op2, act}, {op3});
} else {
model->addOperation(ANEURALNETWORKS_ADD, {op1, op2, act}, {op3});
model->addOperation(ANEURALNETWORKS_MAXIMUM, {op3, op4}, {op5});
}
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs({op1, op2}, {op5});
model->finish();
ASSERT_TRUE(model->isValid());
}
TEST_F(IntrospectionControlTest, SlicingAddMax) {
// This is needed before we have the CPU fallback path being treated as a Device.
if (DeviceManager::get()->getUseCpuOnly()) {
GTEST_SKIP();
}
using namespace test_drivers;
static const char name[] = "driver11";
DeviceManager::get()->forTest_registerDevice(
nn::makeSharedDevice(name, new TestDriver11(name, Success::PASS_BOTH)));
ASSERT_TRUE(selectDeviceByName(name));
createAddMaxModel(&mModel, false);
EXPECT_TRUE(isSupportedOpListExpected({true, false}));
}
TEST_F(IntrospectionControlTest, SlicingMaxAdd) {
// This is needed before we have the CPU fallback path being treated as a Device.
if (DeviceManager::get()->getUseCpuOnly()) {
GTEST_SKIP();
}
using namespace test_drivers;
static const char name[] = "driver11";
DeviceManager::get()->forTest_registerDevice(
nn::makeSharedDevice(name, new TestDriver11(name, Success::PASS_BOTH)));
ASSERT_TRUE(selectDeviceByName(name));
createAddMaxModel(&mModel, true);
EXPECT_TRUE(isSupportedOpListExpected({false, true}));
}
const float kSimpleMultiplier = 2.0f;
void createAddMulModel(WrapperModel* model, bool reverseOrder) {
WrapperOperandType type0(WrapperType::TENSOR_FLOAT32, {2});
WrapperOperandType type1(WrapperType::INT32, {});
// Phase 1, operands
auto op1 = model->addOperand(&type0);
auto op2 = model->addOperand(&type0);
auto act = model->addOperand(&type1);
auto op3 = model->addOperand(&type0);
auto op4 = model->addOperand(&type0);
auto op5 = model->addOperand(&type0);
// Phase 2, operations
static int32_t act_init[] = {0};
model->setOperandValue(act, act_init, sizeof(act_init));
static float multiplier[] = {kSimpleMultiplier, kSimpleMultiplier};
model->setOperandValue(op4, multiplier, sizeof(multiplier));
if (reverseOrder) {
// In this case, add MUL first, but the execution order is still ADD -> MUL.
model->addOperation(ANEURALNETWORKS_MUL, {op3, op4, act}, {op5});
model->addOperation(ANEURALNETWORKS_ADD, {op1, op2, act}, {op3});
} else {
model->addOperation(ANEURALNETWORKS_ADD, {op1, op2, act}, {op3});
model->addOperation(ANEURALNETWORKS_MUL, {op3, op4, act}, {op5});
}
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs({op1, op2}, {op5});
model->finish();
ASSERT_TRUE(model->isValid());
}
TEST_F(IntrospectionControlTest, SlicingFullySupported) {
// This is needed before we have the CPU fallback path being treated as a Device.
if (DeviceManager::get()->getUseCpuOnly()) {
GTEST_SKIP();
}
using namespace test_drivers;
static const char name[] = "driver11";
DeviceManager::get()->forTest_registerDevice(
nn::makeSharedDevice(name, new TestDriver11(name, Success::PASS_BOTH)));
ASSERT_TRUE(selectDeviceByName(name));
createAddMulModel(&mModel, false);
EXPECT_TRUE(isSupportedOpListExpected({true, true}));
}
void createCondModel(WrapperModel* model, bool dynamicRank) {
const auto dimensions = dynamicRank ? std::vector<uint32_t>{} : std::vector<uint32_t>{1};
WrapperOperandType floatType(WrapperType::TENSOR_FLOAT32, dimensions);
WrapperOperandType boolType(WrapperType::TENSOR_BOOL8, {1});
// Phase 1, operands
auto op1 = model->addOperand(&floatType);
auto op2 = model->addOperand(&boolType);
// Phase 2, operations
model->addOperation(ANEURALNETWORKS_LESS, {op1, op1}, {op2});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs({op1}, {op2});
model->finish();
}
void addReluOperation(WrapperModel* model, std::vector<uint32_t>* modelInputIndexes,
std::vector<uint32_t>* modelOutputIndexes, bool dynamicRank) {
const auto dimensions = dynamicRank ? std::vector<uint32_t>{} : std::vector<uint32_t>{1};
WrapperOperandType type(WrapperType::TENSOR_FLOAT32, dimensions);
// Phase 1, operands
auto op1 = model->addOperand(&type);
auto op2 = model->addOperand(&type);
// Phase 2, operations
model->addOperation(ANEURALNETWORKS_RELU, {op1}, {op2});
// Phase 3, inputs and outputs
modelInputIndexes->push_back(op1);
modelOutputIndexes->push_back(op2);
}
void createReluModel(WrapperModel* model, bool dynamicRank) {
std::vector<uint32_t> modelInputIndexes, modelOutputIndexes;
addReluOperation(model, &modelInputIndexes, &modelOutputIndexes, dynamicRank);
model->identifyInputsAndOutputs(modelInputIndexes, modelOutputIndexes);
model->finish();
}
void addWhileOperation(std::vector<WrapperModel>* extraModels, WrapperModel* mainModel,
std::vector<uint32_t>* modelInputIndexes,
std::vector<uint32_t>* modelOutputIndexes, bool dynamicRank) {
const auto dimensions = dynamicRank ? std::vector<uint32_t>{} : std::vector<uint32_t>{1};
WrapperOperandType floatType(WrapperType::TENSOR_FLOAT32, dimensions);
WrapperOperandType modelType(WrapperType::MODEL, {});
extraModels->emplace_back();
extraModels->emplace_back();
WrapperModel* condModel = &extraModels->at(extraModels->size() - 2);
WrapperModel* bodyModel = &extraModels->at(extraModels->size() - 1);
createCondModel(condModel, dynamicRank);
createReluModel(bodyModel, dynamicRank);
ASSERT_TRUE(condModel->isValid());
ASSERT_TRUE(bodyModel->isValid());
// Phase 1, operands
const uint32_t op1 = mainModel->addOperand(&modelType);
const uint32_t op2 = mainModel->addOperand(&modelType);
const uint32_t op3 = mainModel->addOperand(&floatType);
const uint32_t op4 = mainModel->addOperand(&floatType);
mainModel->setOperandValueFromModel(op1, condModel);
mainModel->setOperandValueFromModel(op2, bodyModel);
// Phase 2, operations
mainModel->addOperation(ANEURALNETWORKS_WHILE, {op1, op2, op3}, {op4});
// Phase 3, inputs and outputs
modelInputIndexes->push_back(op3);
modelOutputIndexes->push_back(op4);
}
void createReluStaticWhileModel(std::vector<WrapperModel>* extraModels, WrapperModel* mainModel) {
std::vector<uint32_t> modelInputIndexes, modelOutputIndexes;
// Operation supported in Android API level 27
addReluOperation(mainModel, &modelInputIndexes, &modelOutputIndexes, /*dynamicRank=*/false);
// Operation supported in Android API level 30
addWhileOperation(extraModels, mainModel, &modelInputIndexes, &modelOutputIndexes,
/*dynamicRank=*/false);
mainModel->identifyInputsAndOutputs(modelInputIndexes, modelOutputIndexes);
mainModel->finish();
ASSERT_TRUE(mainModel->isValid());
}
TEST_F(IntrospectionControlTest, ControlFlowNotSupported) {
// This is needed before we have the CPU fallback path being treated as a Device.
if (DeviceManager::get()->getUseCpuOnly()) {
GTEST_SKIP();
}
using namespace test_drivers;
static const char name[] = "driver11";
DeviceManager::get()->forTest_registerDevice(
nn::makeSharedDevice(name, new TestDriver11(name, Success::PASS_BOTH)));
ASSERT_TRUE(selectDeviceByName(name));
std::vector<WrapperModel> extraModels;
createReluStaticWhileModel(&extraModels, &mModel);
EXPECT_TRUE(isSupportedOpListExpected({true, false}));
// Clear mModel early because it may reference `extraModels`.
mModel = WrapperModel{};
}
TEST_F(IntrospectionControlTest, ControlFlowSupported) {
// This is needed before we have the CPU fallback path being treated as a Device.
if (DeviceManager::get()->getUseCpuOnly()) {
GTEST_SKIP();
}
using namespace test_drivers;
static const char name[] = "driver13";
DeviceManager::get()->forTest_registerDevice(
nn::makeSharedDevice(name, new TestDriver13(name, Success::PASS_BOTH)));
ASSERT_TRUE(selectDeviceByName(name));
std::vector<WrapperModel> extraModels;
createReluStaticWhileModel(&extraModels, &mModel);
EXPECT_TRUE(isSupportedOpListExpected({true, true}));
// Clear mModel early because it may reference `extraModels`.
mModel = WrapperModel{};
}
void createStaticWhileDynamicWhileModel(std::vector<WrapperModel>* extraModels,
WrapperModel* mainModel) {
std::vector<uint32_t> modelInputIndexes, modelOutputIndexes;
// Operation supported in Android API level 30
addWhileOperation(extraModels, mainModel, &modelInputIndexes, &modelOutputIndexes,
/*dynamicRank=*/false);
// Operation supported only by NNAPI runtime
addWhileOperation(extraModels, mainModel, &modelInputIndexes, &modelOutputIndexes,
/*dynamicRank=*/true);
mainModel->identifyInputsAndOutputs(modelInputIndexes, modelOutputIndexes);
mainModel->finish();
ASSERT_TRUE(mainModel->isValid());
}
TEST_F(IntrospectionControlTest, ControlFlowFailedToSlice) {
// This is needed before we have the CPU fallback path being treated as a Device.
if (DeviceManager::get()->getUseCpuOnly()) {
GTEST_SKIP();
}
using namespace test_drivers;
static const char name[] = "driver13";
DeviceManager::get()->forTest_registerDevice(
nn::makeSharedDevice(name, new TestDriver13(name, Success::PASS_BOTH)));
ASSERT_TRUE(selectDeviceByName(name));
std::vector<WrapperModel> extraModels;
createStaticWhileDynamicWhileModel(&extraModels, &mModel);
EXPECT_TRUE(isSupportedOpListExpected({false, false}));
// Clear mModel early because it may reference `extraModels`.
mModel = WrapperModel{};
}
// TODO(miaowang): add a test to make sure ANNCompilation_create() has CPU
// fallback.
// This test verifies that a device that could only handle ADD would correctly report that an
// ADD->MUL model could not be fully supported.
TEST_F(IntrospectionControlTest, PartialModelNotSupported) {
// This is needed before we have the CPU fallback path being treated as a Device.
if (DeviceManager::get()->getUseCpuOnly()) {
GTEST_SKIP();
}
createAddMulModel(&mModel, false);
std::string addOnlyDriver = "test-onlyAdd";
std::vector<bool> addOnlyOp(android::nn::kNumberOfOperationTypes, false);
addOnlyOp[ANEURALNETWORKS_ADD] = true;
registerDevices({{addOnlyDriver, 0.9, addOnlyOp}});
EXPECT_TRUE(selectDeviceByName(addOnlyDriver));
EXPECT_TRUE(isSupportedOpListExpected({true, false}));
ANeuralNetworksModel* modelHandle = mModel.getHandle();
EXPECT_EQ(ANeuralNetworksCompilation_createForDevices(modelHandle, mDevices.data(),
mDevices.size(), &mCompilation),
ANEURALNETWORKS_NO_ERROR);
// The compilation must fail as there is no fallback when using
// Introspection API.
EXPECT_NE(ANeuralNetworksCompilation_finish(mCompilation), ANEURALNETWORKS_NO_ERROR);
}
// This test verifies that a device that could only handle ADD would correctly report that an
// ADD->MUL model could not be fully supported. Also verifies that the indices of returned
// supported op list correctly map to the order of operations being added by the user.
TEST_F(IntrospectionControlTest, PartialModelNotSupportedOrder) {
// This is needed before we have the CPU fallback path being treated as a Device.
if (DeviceManager::get()->getUseCpuOnly()) {
GTEST_SKIP();
}
createAddMulModel(&mModel, true);
std::string addOnlyDriver = "test-onlyAdd";
std::vector<bool> addOnlyOp(android::nn::kNumberOfOperationTypes, false);
addOnlyOp[ANEURALNETWORKS_ADD] = true;
registerDevices({{addOnlyDriver, 0.9, addOnlyOp}});
EXPECT_TRUE(selectDeviceByName(addOnlyDriver));
EXPECT_TRUE(isSupportedOpListExpected({false, true}));
}
// TODO(miaowang): update the test to make sure the model is actually running on the test devices.
// This test verifies that an ADD->MUL model is able to run on two selected devices that together
// can handle all operations.
TEST_F(IntrospectionControlTest, ModelNeedTwoDevices) {
// This is needed before we have the CPU fallback path being treated as a Device.
if (DeviceManager::get()->getUseCpuOnly()) {
GTEST_SKIP();
}
createAddMulModel(&mModel, false);
std::string addOnlyDriver = "test-onlyAdd";
std::vector<bool> addOnlyOp(android::nn::kNumberOfOperationTypes, false);
addOnlyOp[ANEURALNETWORKS_ADD] = true;
std::string mulOnlyDriver = "test-onlyMul";
std::vector<bool> mulOnlyOp(android::nn::kNumberOfOperationTypes, false);
mulOnlyOp[ANEURALNETWORKS_MUL] = true;
registerDevices({
{addOnlyDriver, 0.9, addOnlyOp},
{mulOnlyDriver, 0.9, mulOnlyOp},
});
EXPECT_TRUE(selectDeviceByName(addOnlyDriver));
EXPECT_TRUE(selectDeviceByName(mulOnlyDriver));
EXPECT_TRUE(isSupportedOpListExpected({true, true}));
EXPECT_EQ(prepareForExecution(), ANEURALNETWORKS_NO_ERROR);
float input1[2] = {1.0f, 2.0f};
float input2[2] = {3.0f, 4.0f};
float output[2];
EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 0, nullptr, input1, sizeof(input1)),
ANEURALNETWORKS_NO_ERROR);
EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 1, nullptr, input2, sizeof(input2)),
ANEURALNETWORKS_NO_ERROR);
EXPECT_EQ(ANeuralNetworksExecution_setOutput(mExecution, 0, nullptr, output, sizeof(output)),
ANEURALNETWORKS_NO_ERROR);
EXPECT_EQ(ANeuralNetworksExecution_startCompute(mExecution, &mEvent), ANEURALNETWORKS_NO_ERROR);
EXPECT_EQ(ANeuralNetworksEvent_wait(mEvent), ANEURALNETWORKS_NO_ERROR);
EXPECT_EQ(output[0], kSimpleMultiplier * (input1[0] + input2[0]));
EXPECT_EQ(output[1], kSimpleMultiplier * (input1[1] + input2[1]));
}
} // namespace