You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
156 lines
6.1 KiB
156 lines
6.1 KiB
/*
|
|
* Copyright (C) 2017 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "TestMemory.h"
|
|
|
|
#include <android-base/scopeguard.h>
|
|
#include <gtest/gtest.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/types.h>
|
|
#include <unistd.h>
|
|
|
|
#include "TestNeuralNetworksWrapper.h"
|
|
|
|
using WrapperCompilation = ::android::nn::test_wrapper::Compilation;
|
|
using WrapperExecution = ::android::nn::test_wrapper::Execution;
|
|
using WrapperMemory = ::android::nn::test_wrapper::Memory;
|
|
using WrapperModel = ::android::nn::test_wrapper::Model;
|
|
using WrapperOperandType = ::android::nn::test_wrapper::OperandType;
|
|
using WrapperResult = ::android::nn::test_wrapper::Result;
|
|
using WrapperType = ::android::nn::test_wrapper::Type;
|
|
|
|
namespace {
|
|
|
|
// Tests the various ways to pass weights and input/output data.
|
|
class MemoryTest : public ::testing::Test {
|
|
protected:
|
|
void SetUp() override {}
|
|
};
|
|
|
|
TEST_F(MemoryTest, TestFd) {
|
|
// Create a file that contains matrix2 and matrix3.
|
|
char path[] = "/data/local/tmp/TestMemoryXXXXXX";
|
|
int fd = mkstemp(path);
|
|
const uint32_t offsetForMatrix2 = 20;
|
|
const uint32_t offsetForMatrix3 = 200;
|
|
static_assert(offsetForMatrix2 + sizeof(matrix2) < offsetForMatrix3, "matrices overlap");
|
|
lseek(fd, offsetForMatrix2, SEEK_SET);
|
|
write(fd, matrix2, sizeof(matrix2));
|
|
lseek(fd, offsetForMatrix3, SEEK_SET);
|
|
write(fd, matrix3, sizeof(matrix3));
|
|
fsync(fd);
|
|
|
|
WrapperMemory weights(offsetForMatrix3 + sizeof(matrix3), PROT_READ, fd, 0);
|
|
ASSERT_TRUE(weights.isValid());
|
|
|
|
WrapperModel model;
|
|
WrapperOperandType matrixType(WrapperType::TENSOR_FLOAT32, {3, 4});
|
|
WrapperOperandType scalarType(WrapperType::INT32, {});
|
|
int32_t activation(0);
|
|
auto a = model.addOperand(&matrixType);
|
|
auto b = model.addOperand(&matrixType);
|
|
auto c = model.addOperand(&matrixType);
|
|
auto d = model.addOperand(&matrixType);
|
|
auto e = model.addOperand(&matrixType);
|
|
auto f = model.addOperand(&scalarType);
|
|
|
|
model.setOperandValueFromMemory(e, &weights, offsetForMatrix2, sizeof(Matrix3x4));
|
|
model.setOperandValueFromMemory(a, &weights, offsetForMatrix3, sizeof(Matrix3x4));
|
|
model.setOperandValue(f, &activation, sizeof(activation));
|
|
model.addOperation(ANEURALNETWORKS_ADD, {a, c, f}, {b});
|
|
model.addOperation(ANEURALNETWORKS_ADD, {b, e, f}, {d});
|
|
model.identifyInputsAndOutputs({c}, {d});
|
|
ASSERT_TRUE(model.isValid());
|
|
model.finish();
|
|
|
|
// Test the three node model.
|
|
Matrix3x4 actual;
|
|
memset(&actual, 0, sizeof(actual));
|
|
WrapperCompilation compilation2(&model);
|
|
ASSERT_EQ(compilation2.finish(), WrapperResult::NO_ERROR);
|
|
WrapperExecution execution2(&compilation2);
|
|
ASSERT_EQ(execution2.setInput(0, matrix1, sizeof(Matrix3x4)), WrapperResult::NO_ERROR);
|
|
ASSERT_EQ(execution2.setOutput(0, actual, sizeof(Matrix3x4)), WrapperResult::NO_ERROR);
|
|
ASSERT_EQ(execution2.compute(), WrapperResult::NO_ERROR);
|
|
ASSERT_EQ(CompareMatrices(expected3, actual), 0);
|
|
|
|
close(fd);
|
|
unlink(path);
|
|
}
|
|
|
|
// Hardware buffers are an Android concept, which aren't necessarily
|
|
// available on other platforms such as ChromeOS, which also build NNAPI.
|
|
#if defined(__ANDROID__)
|
|
TEST_F(MemoryTest, TestAHardwareBuffer) {
|
|
const uint32_t offsetForMatrix2 = 20;
|
|
const uint32_t offsetForMatrix3 = 200;
|
|
|
|
AHardwareBuffer_Desc desc{
|
|
.width = offsetForMatrix3 + sizeof(matrix3),
|
|
.height = 1,
|
|
.layers = 1,
|
|
.format = AHARDWAREBUFFER_FORMAT_BLOB,
|
|
.usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN,
|
|
};
|
|
AHardwareBuffer* buffer = nullptr;
|
|
ASSERT_EQ(AHardwareBuffer_allocate(&desc, &buffer), 0);
|
|
auto allocateGuard =
|
|
android::base::make_scope_guard([buffer]() { AHardwareBuffer_release(buffer); });
|
|
|
|
void* bufferPtr = nullptr;
|
|
ASSERT_EQ(AHardwareBuffer_lock(buffer, desc.usage, -1, NULL, &bufferPtr), 0);
|
|
memcpy((uint8_t*)bufferPtr + offsetForMatrix2, matrix2, sizeof(matrix2));
|
|
memcpy((uint8_t*)bufferPtr + offsetForMatrix3, matrix3, sizeof(matrix3));
|
|
ASSERT_EQ(AHardwareBuffer_unlock(buffer, nullptr), 0);
|
|
|
|
WrapperMemory weights(buffer);
|
|
ASSERT_TRUE(weights.isValid());
|
|
|
|
WrapperModel model;
|
|
WrapperOperandType matrixType(WrapperType::TENSOR_FLOAT32, {3, 4});
|
|
WrapperOperandType scalarType(WrapperType::INT32, {});
|
|
int32_t activation(0);
|
|
auto a = model.addOperand(&matrixType);
|
|
auto b = model.addOperand(&matrixType);
|
|
auto c = model.addOperand(&matrixType);
|
|
auto d = model.addOperand(&matrixType);
|
|
auto e = model.addOperand(&matrixType);
|
|
auto f = model.addOperand(&scalarType);
|
|
|
|
model.setOperandValueFromMemory(e, &weights, offsetForMatrix2, sizeof(Matrix3x4));
|
|
model.setOperandValueFromMemory(a, &weights, offsetForMatrix3, sizeof(Matrix3x4));
|
|
model.setOperandValue(f, &activation, sizeof(activation));
|
|
model.addOperation(ANEURALNETWORKS_ADD, {a, c, f}, {b});
|
|
model.addOperation(ANEURALNETWORKS_ADD, {b, e, f}, {d});
|
|
model.identifyInputsAndOutputs({c}, {d});
|
|
ASSERT_TRUE(model.isValid());
|
|
model.finish();
|
|
|
|
// Test the three node model.
|
|
Matrix3x4 actual;
|
|
memset(&actual, 0, sizeof(actual));
|
|
WrapperCompilation compilation2(&model);
|
|
ASSERT_EQ(compilation2.finish(), WrapperResult::NO_ERROR);
|
|
WrapperExecution execution2(&compilation2);
|
|
ASSERT_EQ(execution2.setInput(0, matrix1, sizeof(Matrix3x4)), WrapperResult::NO_ERROR);
|
|
ASSERT_EQ(execution2.setOutput(0, actual, sizeof(Matrix3x4)), WrapperResult::NO_ERROR);
|
|
ASSERT_EQ(execution2.compute(), WrapperResult::NO_ERROR);
|
|
ASSERT_EQ(CompareMatrices(expected3, actual), 0);
|
|
}
|
|
#endif
|
|
|
|
} // end namespace
|