You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

242 lines
9.5 KiB

/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// This test only tests internal APIs, and has dependencies on internal header
// files, including NN API HIDL definitions.
// It is not part of CTS.
#include <android/sharedmem.h>
#include <gtest/gtest.h>
#include <fstream>
#include <string>
#include "Manager.h"
#include "Memory.h"
#include "TestMemory.h"
#include "TestNeuralNetworksWrapper.h"
using WrapperCompilation = ::android::nn::test_wrapper::Compilation;
using WrapperExecution = ::android::nn::test_wrapper::Execution;
using WrapperMemory = ::android::nn::test_wrapper::Memory;
using WrapperModel = ::android::nn::test_wrapper::Model;
using WrapperOperandType = ::android::nn::test_wrapper::OperandType;
using WrapperResult = ::android::nn::test_wrapper::Result;
using WrapperType = ::android::nn::test_wrapper::Type;
namespace {
// Tests to ensure that various kinds of memory leaks do not occur.
//
// The fixture checks that no anonymous shared memory regions are leaked by
// comparing the count of /dev/ashmem mappings in SetUp and TearDown. This could
// break if the test or framework starts lazily instantiating something that
// creates a mapping - at that point the way the test works needs to be
// reinvestigated. The filename /dev/ashmem is a documented part of the Android
// kernel interface (see
// https://source.android.com/devices/architecture/kernel/reqs-interfaces).
//
// (We can also get very unlucky and mask a memory leak by unrelated unmapping
// somewhere else. This seems unlikely enough to not deal with.)
class MemoryLeakTest : public ::testing::Test {
protected:
void SetUp() override;
void TearDown() override;
private:
size_t GetAshmemMappingsCount();
size_t mStartingMapCount = 0;
bool mIsCpuOnly;
};
void MemoryLeakTest::SetUp() {
mIsCpuOnly = android::nn::DeviceManager::get()->getUseCpuOnly();
mStartingMapCount = GetAshmemMappingsCount();
}
void MemoryLeakTest::TearDown() {
android::nn::DeviceManager::get()->setUseCpuOnly(mIsCpuOnly);
const size_t endingMapCount = GetAshmemMappingsCount();
ASSERT_EQ(mStartingMapCount, endingMapCount);
}
size_t MemoryLeakTest::GetAshmemMappingsCount() {
std::ifstream mappingsStream("/proc/self/maps");
if (!mappingsStream.good()) {
// errno is set by std::ifstream on Linux
ADD_FAILURE() << "Failed to open /proc/self/maps: " << std::strerror(errno);
return 0;
}
std::string line;
int mapCount = 0;
while (std::getline(mappingsStream, line)) {
if (line.find("/dev/ashmem") != std::string::npos) {
++mapCount;
}
}
return mapCount;
}
// As well as serving as a functional test for ASharedMemory, also
// serves as a regression test for http://b/69685100 "RunTimePoolInfo
// leaks shared memory regions".
//
// TODO: test non-zero offset.
TEST_F(MemoryLeakTest, TestASharedMemory) {
// Layout where to place matrix2 and matrix3 in the memory we'll allocate.
// We have gaps to test that we don't assume contiguity.
constexpr uint32_t offsetForMatrix2 = 20;
constexpr uint32_t offsetForMatrix3 = offsetForMatrix2 + sizeof(matrix2) + 30;
constexpr uint32_t weightsSize = offsetForMatrix3 + sizeof(matrix3) + 60;
int weightsFd = ASharedMemory_create("weights", weightsSize);
ASSERT_GT(weightsFd, -1);
uint8_t* weightsData =
(uint8_t*)mmap(nullptr, weightsSize, PROT_READ | PROT_WRITE, MAP_SHARED, weightsFd, 0);
ASSERT_NE(weightsData, nullptr);
memcpy(weightsData + offsetForMatrix2, matrix2, sizeof(matrix2));
memcpy(weightsData + offsetForMatrix3, matrix3, sizeof(matrix3));
WrapperMemory weights(weightsSize, PROT_READ | PROT_WRITE, weightsFd, 0);
ASSERT_TRUE(weights.isValid());
WrapperModel model;
WrapperOperandType matrixType(WrapperType::TENSOR_FLOAT32, {3, 4});
WrapperOperandType scalarType(WrapperType::INT32, {});
int32_t activation(0);
auto a = model.addOperand(&matrixType);
auto b = model.addOperand(&matrixType);
auto c = model.addOperand(&matrixType);
auto d = model.addOperand(&matrixType);
auto e = model.addOperand(&matrixType);
auto f = model.addOperand(&scalarType);
model.setOperandValueFromMemory(e, &weights, offsetForMatrix2, sizeof(Matrix3x4));
model.setOperandValueFromMemory(a, &weights, offsetForMatrix3, sizeof(Matrix3x4));
model.setOperandValue(f, &activation, sizeof(activation));
model.addOperation(ANEURALNETWORKS_ADD, {a, c, f}, {b});
model.addOperation(ANEURALNETWORKS_ADD, {b, e, f}, {d});
model.identifyInputsAndOutputs({c}, {d});
ASSERT_TRUE(model.isValid());
model.finish();
// Test the two node model.
constexpr uint32_t offsetForMatrix1 = 20;
constexpr size_t inputSize = offsetForMatrix1 + sizeof(Matrix3x4);
int inputFd = ASharedMemory_create("input", inputSize);
ASSERT_GT(inputFd, -1);
uint8_t* inputData =
(uint8_t*)mmap(nullptr, inputSize, PROT_READ | PROT_WRITE, MAP_SHARED, inputFd, 0);
ASSERT_NE(inputData, nullptr);
memcpy(inputData + offsetForMatrix1, matrix1, sizeof(Matrix3x4));
WrapperMemory input(inputSize, PROT_READ, inputFd, 0);
ASSERT_TRUE(input.isValid());
constexpr uint32_t offsetForActual = 32;
constexpr size_t outputSize = offsetForActual + sizeof(Matrix3x4);
int outputFd = ASharedMemory_create("output", outputSize);
ASSERT_GT(outputFd, -1);
uint8_t* outputData =
(uint8_t*)mmap(nullptr, outputSize, PROT_READ | PROT_WRITE, MAP_SHARED, outputFd, 0);
ASSERT_NE(outputData, nullptr);
memset(outputData, 0, outputSize);
WrapperMemory actual(outputSize, PROT_READ | PROT_WRITE, outputFd, 0);
ASSERT_TRUE(actual.isValid());
WrapperCompilation compilation2(&model);
ASSERT_EQ(compilation2.finish(), WrapperResult::NO_ERROR);
WrapperExecution execution2(&compilation2);
ASSERT_EQ(execution2.setInputFromMemory(0, &input, offsetForMatrix1, sizeof(Matrix3x4)),
WrapperResult::NO_ERROR);
ASSERT_EQ(execution2.setOutputFromMemory(0, &actual, offsetForActual, sizeof(Matrix3x4)),
WrapperResult::NO_ERROR);
ASSERT_EQ(execution2.compute(), WrapperResult::NO_ERROR);
ASSERT_EQ(
CompareMatrices(expected3, *reinterpret_cast<Matrix3x4*>(outputData + offsetForActual)),
0);
munmap(weightsData, weightsSize);
munmap(inputData, inputSize);
munmap(outputData, outputSize);
close(weightsFd);
close(inputFd);
close(outputFd);
}
#ifndef NNTEST_ONLY_PUBLIC_API
// Regression test for http://b/73663843, conv_2d trying to allocate too much memory.
TEST_F(MemoryLeakTest, convTooLarge) {
android::nn::DeviceManager::get()->setUseCpuOnly(true);
WrapperModel model;
// This kernel/input size will make convQuant8 allocate 12 * 13 * 13 * 128 * 92 * 92, which is
// just outside of signed int range (0x82F56000) - this will fail due to CPU implementation
// limitations
WrapperOperandType type3(WrapperType::INT32, {});
WrapperOperandType type2(WrapperType::TENSOR_INT32, {128}, 0.25, 0);
WrapperOperandType type0(WrapperType::TENSOR_QUANT8_ASYMM, {12, 104, 104, 128}, 0.5, 0);
WrapperOperandType type4(WrapperType::TENSOR_QUANT8_ASYMM, {12, 92, 92, 128}, 1.0, 0);
WrapperOperandType type1(WrapperType::TENSOR_QUANT8_ASYMM, {128, 13, 13, 128}, 0.5, 0);
// Operands
auto op1 = model.addOperand(&type0);
auto op2 = model.addOperand(&type1);
auto op3 = model.addOperand(&type2);
auto pad0 = model.addOperand(&type3);
auto act = model.addOperand(&type3);
auto stride = model.addOperand(&type3);
auto op4 = model.addOperand(&type4);
// Operations
uint8_t op2_init[128 * 13 * 13 * 128] = {};
model.setOperandValue(op2, op2_init, sizeof(op2_init));
int32_t op3_init[128] = {};
model.setOperandValue(op3, op3_init, sizeof(op3_init));
int32_t pad0_init[] = {0};
model.setOperandValue(pad0, pad0_init, sizeof(pad0_init));
int32_t act_init[] = {0};
model.setOperandValue(act, act_init, sizeof(act_init));
int32_t stride_init[] = {1};
model.setOperandValue(stride, stride_init, sizeof(stride_init));
model.addOperation(ANEURALNETWORKS_CONV_2D,
{op1, op2, op3, pad0, pad0, pad0, pad0, stride, stride, act}, {op4});
// Inputs and outputs
model.identifyInputsAndOutputs({op1}, {op4});
ASSERT_TRUE(model.isValid());
model.finish();
// Compilation
WrapperCompilation compilation(&model);
ASSERT_EQ(WrapperResult::NO_ERROR, compilation.finish());
WrapperExecution execution(&compilation);
// Set input and outputs
static uint8_t input[12 * 104 * 104 * 128] = {};
ASSERT_EQ(WrapperResult::NO_ERROR, execution.setInput(0, input, sizeof(input)));
static uint8_t output[12 * 92 * 92 * 128] = {};
ASSERT_EQ(WrapperResult::NO_ERROR, execution.setOutput(0, output, sizeof(output)));
// This shouldn't segfault
WrapperResult r = execution.compute();
ASSERT_EQ(WrapperResult::OP_FAILED, r);
}
#endif // NNTEST_ONLY_PUBLIC_API
} // end namespace