You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

564 lines
22 KiB

/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Provides C++ classes to more easily use the Neural Networks API.
// TODO(b/117845862): this should be auto generated from NeuralNetworksWrapper.h.
#ifndef ANDROID_FRAMEWORKS_ML_NN_RUNTIME_TEST_TEST_NEURAL_NETWORKS_WRAPPER_H
#define ANDROID_FRAMEWORKS_ML_NN_RUNTIME_TEST_TEST_NEURAL_NETWORKS_WRAPPER_H
#include <math.h>
#include <algorithm>
#include <memory>
#include <optional>
#include <string>
#include <utility>
#include <vector>
#include "NeuralNetworks.h"
#include "NeuralNetworksWrapper.h"
#include "NeuralNetworksWrapperExtensions.h"
#ifndef __NNAPI_FL5_MIN_ANDROID_API__
#define __NNAPI_FL5_MIN_ANDROID_API__ __ANDROID_API_FUTURE__
#endif
namespace android {
namespace nn {
namespace test_wrapper {
using wrapper::Event;
using wrapper::ExecutePreference;
using wrapper::ExecutePriority;
using wrapper::ExtensionModel;
using wrapper::ExtensionOperandParams;
using wrapper::ExtensionOperandType;
using wrapper::OperandType;
using wrapper::Result;
using wrapper::SymmPerChannelQuantParams;
using wrapper::Type;
class Memory {
public:
// Takes ownership of a ANeuralNetworksMemory
Memory(ANeuralNetworksMemory* memory) : mMemory(memory) {}
Memory(size_t size, int protect, int fd, size_t offset) {
mValid = ANeuralNetworksMemory_createFromFd(size, protect, fd, offset, &mMemory) ==
ANEURALNETWORKS_NO_ERROR;
}
Memory(AHardwareBuffer* buffer) {
mValid = ANeuralNetworksMemory_createFromAHardwareBuffer(buffer, &mMemory) ==
ANEURALNETWORKS_NO_ERROR;
}
virtual ~Memory() { ANeuralNetworksMemory_free(mMemory); }
// Disallow copy semantics to ensure the runtime object can only be freed
// once. Copy semantics could be enabled if some sort of reference counting
// or deep-copy system for runtime objects is added later.
Memory(const Memory&) = delete;
Memory& operator=(const Memory&) = delete;
// Move semantics to remove access to the runtime object from the wrapper
// object that is being moved. This ensures the runtime object will be
// freed only once.
Memory(Memory&& other) { *this = std::move(other); }
Memory& operator=(Memory&& other) {
if (this != &other) {
ANeuralNetworksMemory_free(mMemory);
mMemory = other.mMemory;
mValid = other.mValid;
other.mMemory = nullptr;
other.mValid = false;
}
return *this;
}
ANeuralNetworksMemory* get() const { return mMemory; }
bool isValid() const { return mValid; }
private:
ANeuralNetworksMemory* mMemory = nullptr;
bool mValid = true;
};
class Model {
public:
Model() {
// TODO handle the value returned by this call
ANeuralNetworksModel_create(&mModel);
}
~Model() { ANeuralNetworksModel_free(mModel); }
// Disallow copy semantics to ensure the runtime object can only be freed
// once. Copy semantics could be enabled if some sort of reference counting
// or deep-copy system for runtime objects is added later.
Model(const Model&) = delete;
Model& operator=(const Model&) = delete;
// Move semantics to remove access to the runtime object from the wrapper
// object that is being moved. This ensures the runtime object will be
// freed only once.
Model(Model&& other) { *this = std::move(other); }
Model& operator=(Model&& other) {
if (this != &other) {
ANeuralNetworksModel_free(mModel);
mModel = other.mModel;
mNextOperandId = other.mNextOperandId;
mValid = other.mValid;
mRelaxed = other.mRelaxed;
mFinished = other.mFinished;
other.mModel = nullptr;
other.mNextOperandId = 0;
other.mValid = false;
other.mRelaxed = false;
other.mFinished = false;
}
return *this;
}
Result finish() {
if (mValid) {
auto result = static_cast<Result>(ANeuralNetworksModel_finish(mModel));
if (result != Result::NO_ERROR) {
mValid = false;
}
mFinished = true;
return result;
} else {
return Result::BAD_STATE;
}
}
uint32_t addOperand(const OperandType* type) {
if (ANeuralNetworksModel_addOperand(mModel, &(type->operandType)) !=
ANEURALNETWORKS_NO_ERROR) {
mValid = false;
}
if (type->channelQuant) {
if (ANeuralNetworksModel_setOperandSymmPerChannelQuantParams(
mModel, mNextOperandId, &type->channelQuant.value().params) !=
ANEURALNETWORKS_NO_ERROR) {
mValid = false;
}
}
return mNextOperandId++;
}
template <typename T>
uint32_t addConstantOperand(const OperandType* type, const T& value) {
static_assert(sizeof(T) <= ANEURALNETWORKS_MAX_SIZE_OF_IMMEDIATELY_COPIED_VALUES,
"Values larger than ANEURALNETWORKS_MAX_SIZE_OF_IMMEDIATELY_COPIED_VALUES "
"not supported");
uint32_t index = addOperand(type);
setOperandValue(index, &value);
return index;
}
uint32_t addModelOperand(const Model* value) {
OperandType operandType(Type::MODEL, {});
uint32_t operand = addOperand(&operandType);
setOperandValueFromModel(operand, value);
return operand;
}
void setOperandValue(uint32_t index, const void* buffer, size_t length) {
if (ANeuralNetworksModel_setOperandValue(mModel, index, buffer, length) !=
ANEURALNETWORKS_NO_ERROR) {
mValid = false;
}
}
template <typename T>
void setOperandValue(uint32_t index, const T* value) {
static_assert(!std::is_pointer<T>(), "No operand may have a pointer as its value");
return setOperandValue(index, value, sizeof(T));
}
void setOperandValueFromMemory(uint32_t index, const Memory* memory, uint32_t offset,
size_t length) {
if (ANeuralNetworksModel_setOperandValueFromMemory(mModel, index, memory->get(), offset,
length) != ANEURALNETWORKS_NO_ERROR) {
mValid = false;
}
}
void setOperandValueFromModel(uint32_t index, const Model* value) {
if (ANeuralNetworksModel_setOperandValueFromModel(mModel, index, value->mModel) !=
ANEURALNETWORKS_NO_ERROR) {
mValid = false;
}
}
void addOperation(ANeuralNetworksOperationType type, const std::vector<uint32_t>& inputs,
const std::vector<uint32_t>& outputs) {
if (ANeuralNetworksModel_addOperation(mModel, type, static_cast<uint32_t>(inputs.size()),
inputs.data(), static_cast<uint32_t>(outputs.size()),
outputs.data()) != ANEURALNETWORKS_NO_ERROR) {
mValid = false;
}
}
void identifyInputsAndOutputs(const std::vector<uint32_t>& inputs,
const std::vector<uint32_t>& outputs) {
if (ANeuralNetworksModel_identifyInputsAndOutputs(
mModel, static_cast<uint32_t>(inputs.size()), inputs.data(),
static_cast<uint32_t>(outputs.size()),
outputs.data()) != ANEURALNETWORKS_NO_ERROR) {
mValid = false;
}
}
void relaxComputationFloat32toFloat16(bool isRelax) {
if (ANeuralNetworksModel_relaxComputationFloat32toFloat16(mModel, isRelax) ==
ANEURALNETWORKS_NO_ERROR) {
mRelaxed = isRelax;
}
}
ANeuralNetworksModel* getHandle() const { return mModel; }
bool isValid() const { return mValid; }
bool isRelaxed() const { return mRelaxed; }
bool isFinished() const { return mFinished; }
protected:
ANeuralNetworksModel* mModel = nullptr;
// We keep track of the operand ID as a convenience to the caller.
uint32_t mNextOperandId = 0;
bool mValid = true;
bool mRelaxed = false;
bool mFinished = false;
};
class Compilation {
public:
// On success, createForDevice(s) will return Result::NO_ERROR and the created compilation;
// otherwise, it will return the error code and Compilation object wrapping a nullptr handle.
static std::pair<Result, Compilation> createForDevice(const Model* model,
const ANeuralNetworksDevice* device) {
return createForDevices(model, {device});
}
static std::pair<Result, Compilation> createForDevices(
const Model* model, const std::vector<const ANeuralNetworksDevice*>& devices) {
ANeuralNetworksCompilation* compilation = nullptr;
const Result result = static_cast<Result>(ANeuralNetworksCompilation_createForDevices(
model->getHandle(), devices.empty() ? nullptr : devices.data(), devices.size(),
&compilation));
return {result, Compilation(compilation)};
}
Compilation(const Model* model) {
int result = ANeuralNetworksCompilation_create(model->getHandle(), &mCompilation);
if (result != 0) {
// TODO Handle the error
}
}
Compilation() {}
~Compilation() { ANeuralNetworksCompilation_free(mCompilation); }
// Disallow copy semantics to ensure the runtime object can only be freed
// once. Copy semantics could be enabled if some sort of reference counting
// or deep-copy system for runtime objects is added later.
Compilation(const Compilation&) = delete;
Compilation& operator=(const Compilation&) = delete;
// Move semantics to remove access to the runtime object from the wrapper
// object that is being moved. This ensures the runtime object will be
// freed only once.
Compilation(Compilation&& other) { *this = std::move(other); }
Compilation& operator=(Compilation&& other) {
if (this != &other) {
ANeuralNetworksCompilation_free(mCompilation);
mCompilation = other.mCompilation;
other.mCompilation = nullptr;
}
return *this;
}
Result setPreference(ExecutePreference preference) {
return static_cast<Result>(ANeuralNetworksCompilation_setPreference(
mCompilation, static_cast<int32_t>(preference)));
}
Result setPriority(ExecutePriority priority) {
return static_cast<Result>(ANeuralNetworksCompilation_setPriority(
mCompilation, static_cast<int32_t>(priority)));
}
Result setCaching(const std::string& cacheDir, const std::vector<uint8_t>& token) {
if (token.size() != ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN) {
return Result::BAD_DATA;
}
return static_cast<Result>(ANeuralNetworksCompilation_setCaching(
mCompilation, cacheDir.c_str(), token.data()));
}
Result finish() { return static_cast<Result>(ANeuralNetworksCompilation_finish(mCompilation)); }
Result getPreferredMemoryAlignmentForInput(uint32_t index, uint32_t* alignment) const {
if (__builtin_available(android __NNAPI_FL5_MIN_ANDROID_API__, *)) {
return static_cast<Result>(
NNAPI_CALL(ANeuralNetworksCompilation_getPreferredMemoryAlignmentForInput(
mCompilation, index, alignment)));
} else {
return Result::FEATURE_LEVEL_TOO_LOW;
}
};
Result getPreferredMemoryPaddingForInput(uint32_t index, uint32_t* padding) const {
if (__builtin_available(android __NNAPI_FL5_MIN_ANDROID_API__, *)) {
return static_cast<Result>(
NNAPI_CALL(ANeuralNetworksCompilation_getPreferredMemoryPaddingForInput(
mCompilation, index, padding)));
} else {
return Result::FEATURE_LEVEL_TOO_LOW;
}
};
Result getPreferredMemoryAlignmentForOutput(uint32_t index, uint32_t* alignment) const {
if (__builtin_available(android __NNAPI_FL5_MIN_ANDROID_API__, *)) {
return static_cast<Result>(
NNAPI_CALL(ANeuralNetworksCompilation_getPreferredMemoryAlignmentForOutput(
mCompilation, index, alignment)));
} else {
return Result::FEATURE_LEVEL_TOO_LOW;
}
};
Result getPreferredMemoryPaddingForOutput(uint32_t index, uint32_t* padding) const {
if (__builtin_available(android __NNAPI_FL5_MIN_ANDROID_API__, *)) {
return static_cast<Result>(
NNAPI_CALL(ANeuralNetworksCompilation_getPreferredMemoryPaddingForOutput(
mCompilation, index, padding)));
} else {
return Result::FEATURE_LEVEL_TOO_LOW;
}
};
ANeuralNetworksCompilation* getHandle() const { return mCompilation; }
protected:
// Takes the ownership of ANeuralNetworksCompilation.
Compilation(ANeuralNetworksCompilation* compilation) : mCompilation(compilation) {}
ANeuralNetworksCompilation* mCompilation = nullptr;
};
class Execution {
public:
Execution(const Compilation* compilation) : mCompilation(compilation->getHandle()) {
int result = ANeuralNetworksExecution_create(compilation->getHandle(), &mExecution);
if (result != 0) {
// TODO Handle the error
}
}
~Execution() { ANeuralNetworksExecution_free(mExecution); }
// Disallow copy semantics to ensure the runtime object can only be freed
// once. Copy semantics could be enabled if some sort of reference counting
// or deep-copy system for runtime objects is added later.
Execution(const Execution&) = delete;
Execution& operator=(const Execution&) = delete;
// Move semantics to remove access to the runtime object from the wrapper
// object that is being moved. This ensures the runtime object will be
// freed only once.
Execution(Execution&& other) { *this = std::move(other); }
Execution& operator=(Execution&& other) {
if (this != &other) {
ANeuralNetworksExecution_free(mExecution);
mCompilation = other.mCompilation;
other.mCompilation = nullptr;
mExecution = other.mExecution;
other.mExecution = nullptr;
}
return *this;
}
Result setInput(uint32_t index, const void* buffer, size_t length,
const ANeuralNetworksOperandType* type = nullptr) {
return static_cast<Result>(
ANeuralNetworksExecution_setInput(mExecution, index, type, buffer, length));
}
template <typename T>
Result setInput(uint32_t index, const T* value,
const ANeuralNetworksOperandType* type = nullptr) {
static_assert(!std::is_pointer<T>(), "No operand may have a pointer as its value");
return setInput(index, value, sizeof(T), type);
}
Result setInputFromMemory(uint32_t index, const Memory* memory, uint32_t offset,
uint32_t length, const ANeuralNetworksOperandType* type = nullptr) {
return static_cast<Result>(ANeuralNetworksExecution_setInputFromMemory(
mExecution, index, type, memory->get(), offset, length));
}
Result setOutput(uint32_t index, void* buffer, size_t length,
const ANeuralNetworksOperandType* type = nullptr) {
return static_cast<Result>(
ANeuralNetworksExecution_setOutput(mExecution, index, type, buffer, length));
}
template <typename T>
Result setOutput(uint32_t index, T* value, const ANeuralNetworksOperandType* type = nullptr) {
static_assert(!std::is_pointer<T>(), "No operand may have a pointer as its value");
return setOutput(index, value, sizeof(T), type);
}
Result setOutputFromMemory(uint32_t index, const Memory* memory, uint32_t offset,
uint32_t length, const ANeuralNetworksOperandType* type = nullptr) {
return static_cast<Result>(ANeuralNetworksExecution_setOutputFromMemory(
mExecution, index, type, memory->get(), offset, length));
}
Result setLoopTimeout(uint64_t duration) {
return static_cast<Result>(ANeuralNetworksExecution_setLoopTimeout(mExecution, duration));
}
Result enableInputAndOutputPadding(bool enable) {
if (__builtin_available(android __NNAPI_FL5_MIN_ANDROID_API__, *)) {
return static_cast<Result>(
ANeuralNetworksExecution_enableInputAndOutputPadding(mExecution, enable));
} else {
return Result::FEATURE_LEVEL_TOO_LOW;
}
}
Result setReusable(bool reusable) {
if (__builtin_available(android __NNAPI_FL5_MIN_ANDROID_API__, *)) {
return static_cast<Result>(
NNAPI_CALL(ANeuralNetworksExecution_setReusable(mExecution, reusable)));
} else {
return Result::FEATURE_LEVEL_TOO_LOW;
}
}
Result startCompute(Event* event) {
ANeuralNetworksEvent* ev = nullptr;
Result result = static_cast<Result>(ANeuralNetworksExecution_startCompute(mExecution, &ev));
event->set(ev);
return result;
}
Result startComputeWithDependencies(const std::vector<const Event*>& dependencies,
uint64_t duration, Event* event) {
std::vector<const ANeuralNetworksEvent*> deps(dependencies.size());
std::transform(dependencies.begin(), dependencies.end(), deps.begin(),
[](const Event* e) { return e->getHandle(); });
ANeuralNetworksEvent* ev = nullptr;
Result result = static_cast<Result>(ANeuralNetworksExecution_startComputeWithDependencies(
mExecution, deps.data(), deps.size(), duration, &ev));
event->set(ev);
return result;
}
// By default, compute() uses the synchronous API. Either an argument or
// setComputeMode() can be used to change the behavior of compute() to
// either:
// - use the asynchronous or fenced API and then wait for computation to complete
// or
// - use the burst API
// Returns the previous ComputeMode.
enum class ComputeMode { SYNC, ASYNC, BURST, FENCED };
static ComputeMode setComputeMode(ComputeMode mode) {
ComputeMode oldComputeMode = mComputeMode;
mComputeMode = mode;
return oldComputeMode;
}
static ComputeMode getComputeMode() { return mComputeMode; }
Result compute(ComputeMode computeMode = mComputeMode) {
switch (computeMode) {
case ComputeMode::SYNC: {
return static_cast<Result>(ANeuralNetworksExecution_compute(mExecution));
}
case ComputeMode::ASYNC: {
ANeuralNetworksEvent* event = nullptr;
Result result = static_cast<Result>(
ANeuralNetworksExecution_startCompute(mExecution, &event));
if (result != Result::NO_ERROR) {
return result;
}
// TODO how to manage the lifetime of events when multiple waiters is not
// clear.
result = static_cast<Result>(ANeuralNetworksEvent_wait(event));
ANeuralNetworksEvent_free(event);
return result;
}
case ComputeMode::BURST: {
ANeuralNetworksBurst* burst = nullptr;
Result result =
static_cast<Result>(ANeuralNetworksBurst_create(mCompilation, &burst));
if (result != Result::NO_ERROR) {
return result;
}
result = static_cast<Result>(
ANeuralNetworksExecution_burstCompute(mExecution, burst));
ANeuralNetworksBurst_free(burst);
return result;
}
case ComputeMode::FENCED: {
ANeuralNetworksEvent* event = nullptr;
Result result =
static_cast<Result>(ANeuralNetworksExecution_startComputeWithDependencies(
mExecution, nullptr, 0, 0, &event));
if (result != Result::NO_ERROR) {
return result;
}
result = static_cast<Result>(ANeuralNetworksEvent_wait(event));
ANeuralNetworksEvent_free(event);
return result;
}
}
return Result::BAD_DATA;
}
Result getOutputOperandDimensions(uint32_t index, std::vector<uint32_t>* dimensions) {
uint32_t rank = 0;
Result result = static_cast<Result>(
ANeuralNetworksExecution_getOutputOperandRank(mExecution, index, &rank));
dimensions->resize(rank);
if ((result != Result::NO_ERROR && result != Result::OUTPUT_INSUFFICIENT_SIZE) ||
rank == 0) {
return result;
}
result = static_cast<Result>(ANeuralNetworksExecution_getOutputOperandDimensions(
mExecution, index, dimensions->data()));
return result;
}
ANeuralNetworksExecution* getHandle() { return mExecution; };
private:
ANeuralNetworksCompilation* mCompilation = nullptr;
ANeuralNetworksExecution* mExecution = nullptr;
// Initialized to ComputeMode::SYNC in TestNeuralNetworksWrapper.cpp.
static ComputeMode mComputeMode;
};
} // namespace test_wrapper
} // namespace nn
} // namespace android
#endif // ANDROID_FRAMEWORKS_ML_NN_RUNTIME_TEST_TEST_NEURAL_NETWORKS_WRAPPER_H