You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

301 lines
10 KiB

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/time/time.h"
#include <stdint.h>
#include <sys/time.h>
#include <time.h>
#if defined(OS_ANDROID) && !defined(__LP64__)
#include <time64.h>
#endif
#include <unistd.h>
#include <limits>
#include "base/numerics/safe_math.h"
#include "base/synchronization/lock.h"
#include "build/build_config.h"
#if defined(OS_ANDROID)
#include "base/os_compat_android.h"
#elif defined(OS_NACL)
#include "base/os_compat_nacl.h"
#endif
#if defined(OS_MACOSX)
static_assert(sizeof(time_t) >= 8, "Y2038 problem!");
#endif
namespace {
// This prevents a crash on traversing the environment global and looking up
// the 'TZ' variable in libc. See: crbug.com/390567.
base::Lock* GetSysTimeToTimeStructLock() {
static auto* lock = new base::Lock();
return lock;
}
// Define a system-specific SysTime that wraps either to a time_t or
// a time64_t depending on the host system, and associated convertion.
// See crbug.com/162007
#if defined(OS_ANDROID) && !defined(__LP64__)
typedef time64_t SysTime;
SysTime SysTimeFromTimeStruct(struct tm* timestruct, bool is_local) {
base::AutoLock locked(*GetSysTimeToTimeStructLock());
if (is_local)
return mktime64(timestruct);
else
return timegm64(timestruct);
}
void SysTimeToTimeStruct(SysTime t, struct tm* timestruct, bool is_local) {
base::AutoLock locked(*GetSysTimeToTimeStructLock());
if (is_local)
localtime64_r(&t, timestruct);
else
gmtime64_r(&t, timestruct);
}
#elif defined(OS_AIX)
// The function timegm is not available on AIX.
time_t aix_timegm(struct tm* tm) {
time_t ret;
char* tz;
tz = getenv("TZ");
if (tz) {
tz = strdup(tz);
}
setenv("TZ", "GMT0", 1);
tzset();
ret = mktime(tm);
if (tz) {
setenv("TZ", tz, 1);
free(tz);
} else {
unsetenv("TZ");
}
tzset();
return ret;
}
typedef time_t SysTime;
SysTime SysTimeFromTimeStruct(struct tm* timestruct, bool is_local) {
base::AutoLock locked(*GetSysTimeToTimeStructLock());
if (is_local)
return mktime(timestruct);
else
return aix_timegm(timestruct);
}
void SysTimeToTimeStruct(SysTime t, struct tm* timestruct, bool is_local) {
base::AutoLock locked(*GetSysTimeToTimeStructLock());
if (is_local)
localtime_r(&t, timestruct);
else
gmtime_r(&t, timestruct);
}
#else // OS_ANDROID && !__LP64__
typedef time_t SysTime;
SysTime SysTimeFromTimeStruct(struct tm* timestruct, bool is_local) {
base::AutoLock locked(*GetSysTimeToTimeStructLock());
if (is_local)
return mktime(timestruct);
else
return timegm(timestruct);
}
void SysTimeToTimeStruct(SysTime t, struct tm* timestruct, bool is_local) {
base::AutoLock locked(*GetSysTimeToTimeStructLock());
if (is_local)
localtime_r(&t, timestruct);
else
gmtime_r(&t, timestruct);
}
#endif // OS_ANDROID
} // namespace
namespace base {
void Time::Explode(bool is_local, Exploded* exploded) const {
// Time stores times with microsecond resolution, but Exploded only carries
// millisecond resolution, so begin by being lossy. Adjust from Windows
// epoch (1601) to Unix epoch (1970);
int64_t microseconds = us_ - kTimeTToMicrosecondsOffset;
// The following values are all rounded towards -infinity.
int64_t milliseconds; // Milliseconds since epoch.
SysTime seconds; // Seconds since epoch.
int millisecond; // Exploded millisecond value (0-999).
if (microseconds >= 0) {
// Rounding towards -infinity <=> rounding towards 0, in this case.
milliseconds = microseconds / kMicrosecondsPerMillisecond;
seconds = milliseconds / kMillisecondsPerSecond;
millisecond = milliseconds % kMillisecondsPerSecond;
} else {
// Round these *down* (towards -infinity).
milliseconds = (microseconds - kMicrosecondsPerMillisecond + 1) /
kMicrosecondsPerMillisecond;
seconds =
(milliseconds - kMillisecondsPerSecond + 1) / kMillisecondsPerSecond;
// Make this nonnegative (and between 0 and 999 inclusive).
millisecond = milliseconds % kMillisecondsPerSecond;
if (millisecond < 0)
millisecond += kMillisecondsPerSecond;
}
struct tm timestruct;
SysTimeToTimeStruct(seconds, &timestruct, is_local);
exploded->year = timestruct.tm_year + 1900;
exploded->month = timestruct.tm_mon + 1;
exploded->day_of_week = timestruct.tm_wday;
exploded->day_of_month = timestruct.tm_mday;
exploded->hour = timestruct.tm_hour;
exploded->minute = timestruct.tm_min;
exploded->second = timestruct.tm_sec;
exploded->millisecond = millisecond;
}
// static
bool Time::FromExploded(bool is_local, const Exploded& exploded, Time* time) {
CheckedNumeric<int> month = exploded.month;
month--;
CheckedNumeric<int> year = exploded.year;
year -= 1900;
if (!month.IsValid() || !year.IsValid()) {
*time = Time(0);
return false;
}
struct tm timestruct;
timestruct.tm_sec = exploded.second;
timestruct.tm_min = exploded.minute;
timestruct.tm_hour = exploded.hour;
timestruct.tm_mday = exploded.day_of_month;
timestruct.tm_mon = month.ValueOrDie();
timestruct.tm_year = year.ValueOrDie();
timestruct.tm_wday = exploded.day_of_week; // mktime/timegm ignore this
timestruct.tm_yday = 0; // mktime/timegm ignore this
timestruct.tm_isdst = -1; // attempt to figure it out
#if !defined(OS_NACL) && !defined(OS_SOLARIS) && !defined(OS_AIX)
timestruct.tm_gmtoff = 0; // not a POSIX field, so mktime/timegm ignore
timestruct.tm_zone = nullptr; // not a POSIX field, so mktime/timegm ignore
#endif
SysTime seconds;
// Certain exploded dates do not really exist due to daylight saving times,
// and this causes mktime() to return implementation-defined values when
// tm_isdst is set to -1. On Android, the function will return -1, while the
// C libraries of other platforms typically return a liberally-chosen value.
// Handling this requires the special code below.
// SysTimeFromTimeStruct() modifies the input structure, save current value.
struct tm timestruct0 = timestruct;
seconds = SysTimeFromTimeStruct(&timestruct, is_local);
if (seconds == -1) {
// Get the time values with tm_isdst == 0 and 1, then select the closest one
// to UTC 00:00:00 that isn't -1.
timestruct = timestruct0;
timestruct.tm_isdst = 0;
int64_t seconds_isdst0 = SysTimeFromTimeStruct(&timestruct, is_local);
timestruct = timestruct0;
timestruct.tm_isdst = 1;
int64_t seconds_isdst1 = SysTimeFromTimeStruct(&timestruct, is_local);
// seconds_isdst0 or seconds_isdst1 can be -1 for some timezones.
// E.g. "CLST" (Chile Summer Time) returns -1 for 'tm_isdt == 1'.
if (seconds_isdst0 < 0)
seconds = seconds_isdst1;
else if (seconds_isdst1 < 0)
seconds = seconds_isdst0;
else
seconds = std::min(seconds_isdst0, seconds_isdst1);
}
// Handle overflow. Clamping the range to what mktime and timegm might
// return is the best that can be done here. It's not ideal, but it's better
// than failing here or ignoring the overflow case and treating each time
// overflow as one second prior to the epoch.
int64_t milliseconds = 0;
if (seconds == -1 && (exploded.year < 1969 || exploded.year > 1970)) {
// If exploded.year is 1969 or 1970, take -1 as correct, with the
// time indicating 1 second prior to the epoch. (1970 is allowed to handle
// time zone and DST offsets.) Otherwise, return the most future or past
// time representable. Assumes the time_t epoch is 1970-01-01 00:00:00 UTC.
//
// The minimum and maximum representible times that mktime and timegm could
// return are used here instead of values outside that range to allow for
// proper round-tripping between exploded and counter-type time
// representations in the presence of possible truncation to time_t by
// division and use with other functions that accept time_t.
//
// When representing the most distant time in the future, add in an extra
// 999ms to avoid the time being less than any other possible value that
// this function can return.
// On Android, SysTime is int64_t, special care must be taken to avoid
// overflows.
const int64_t min_seconds = (sizeof(SysTime) < sizeof(int64_t))
? std::numeric_limits<SysTime>::min()
: std::numeric_limits<int32_t>::min();
const int64_t max_seconds = (sizeof(SysTime) < sizeof(int64_t))
? std::numeric_limits<SysTime>::max()
: std::numeric_limits<int32_t>::max();
if (exploded.year < 1969) {
milliseconds = min_seconds * kMillisecondsPerSecond;
} else {
milliseconds = max_seconds * kMillisecondsPerSecond;
milliseconds += (kMillisecondsPerSecond - 1);
}
} else {
base::CheckedNumeric<int64_t> checked_millis = seconds;
checked_millis *= kMillisecondsPerSecond;
checked_millis += exploded.millisecond;
if (!checked_millis.IsValid()) {
*time = base::Time(0);
return false;
}
milliseconds = checked_millis.ValueOrDie();
}
// Adjust from Unix (1970) to Windows (1601) epoch avoiding overflows.
base::CheckedNumeric<int64_t> checked_microseconds_win_epoch = milliseconds;
checked_microseconds_win_epoch *= kMicrosecondsPerMillisecond;
checked_microseconds_win_epoch += kTimeTToMicrosecondsOffset;
if (!checked_microseconds_win_epoch.IsValid()) {
*time = base::Time(0);
return false;
}
base::Time converted_time(checked_microseconds_win_epoch.ValueOrDie());
// If |exploded.day_of_month| is set to 31 on a 28-30 day month, it will
// return the first day of the next month. Thus round-trip the time and
// compare the initial |exploded| with |utc_to_exploded| time.
base::Time::Exploded to_exploded;
if (!is_local)
converted_time.UTCExplode(&to_exploded);
else
converted_time.LocalExplode(&to_exploded);
if (ExplodedMostlyEquals(to_exploded, exploded)) {
*time = converted_time;
return true;
}
*time = Time(0);
return false;
}
} // namespace base