You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1225 lines
43 KiB

/*
* Copyright 2010-2012, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "slang_backend.h"
#include <string>
#include <vector>
#include <iostream>
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclGroup.h"
#include "clang/AST/RecordLayout.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/TargetOptions.h"
#include "clang/CodeGen/ModuleBuilder.h"
#include "clang/Frontend/CodeGenOptions.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/MC/SubtargetFeature.h"
#include "slang_assert.h"
#include "slang.h"
#include "slang_bitcode_gen.h"
#include "slang_rs_context.h"
#include "slang_rs_export_foreach.h"
#include "slang_rs_export_func.h"
#include "slang_rs_export_reduce.h"
#include "slang_rs_export_type.h"
#include "slang_rs_export_var.h"
#include "slang_rs_metadata.h"
#include "rs_cc_options.h"
#include "StripUnkAttr/strip_unknown_attributes_pass.h"
namespace {
class VersionInfoPass : public llvm::ModulePass {
const clang::CodeGenOptions &mCodeGenOpts;
const char *getSlangLLVMVersion() const {
if (mCodeGenOpts.getDebugInfo() != clang::codegenoptions::NoDebugInfo)
return LLVM_VERSION_STRING;
return nullptr;
}
public:
static char ID;
VersionInfoPass(const clang::CodeGenOptions &codegenOpts)
: ModulePass(ID), mCodeGenOpts(codegenOpts) {}
virtual bool runOnModule(llvm::Module &M) override {
const char *versionString = getSlangLLVMVersion();
if (!versionString)
return false;
auto &ctx = M.getContext();
auto md = M.getOrInsertNamedMetadata("slang.llvm.version");
auto ver = llvm::MDString::get(ctx, versionString);
md->addOperand(
llvm::MDNode::get(ctx, llvm::ArrayRef<llvm::Metadata *>(ver)));
return true;
}
};
char VersionInfoPass::ID = 0;
llvm::ModulePass *createVersionInfoPass(const clang::CodeGenOptions &cgo) {
return new VersionInfoPass(cgo);
}
}
namespace slang {
void Backend::CreateFunctionPasses() {
if (!mPerFunctionPasses) {
mPerFunctionPasses = new llvm::legacy::FunctionPassManager(mpModule);
llvm::PassManagerBuilder PMBuilder;
PMBuilder.OptLevel = mCodeGenOpts.OptimizationLevel;
PMBuilder.populateFunctionPassManager(*mPerFunctionPasses);
}
}
void Backend::CreateModulePasses() {
if (!mPerModulePasses) {
mPerModulePasses = new llvm::legacy::PassManager();
llvm::PassManagerBuilder PMBuilder;
PMBuilder.OptLevel = mCodeGenOpts.OptimizationLevel;
PMBuilder.SizeLevel = mCodeGenOpts.OptimizeSize;
PMBuilder.DisableUnitAtATime = 0; // TODO Pirama confirm if this is right
if (mCodeGenOpts.UnrollLoops) {
PMBuilder.DisableUnrollLoops = 0;
} else {
PMBuilder.DisableUnrollLoops = 1;
}
PMBuilder.populateModulePassManager(*mPerModulePasses);
// Add a pass to strip off unknown/unsupported attributes.
mPerModulePasses->add(createStripUnknownAttributesPass());
if (!mContext->isCompatLib()) {
// The version info pass is used to ensure that debugging
// is matched between slang and bcc.
mPerModulePasses->add(createVersionInfoPass(mCodeGenOpts));
}
}
}
bool Backend::CreateCodeGenPasses() {
if ((mOT != Slang::OT_Assembly) && (mOT != Slang::OT_Object))
return true;
// Now we add passes for code emitting
if (mCodeGenPasses) {
return true;
} else {
mCodeGenPasses = new llvm::legacy::FunctionPassManager(mpModule);
}
// Create the TargetMachine for generating code.
std::string Triple = mpModule->getTargetTriple();
std::string Error;
const llvm::Target* TargetInfo =
llvm::TargetRegistry::lookupTarget(Triple, Error);
if (TargetInfo == nullptr) {
mDiagEngine.Report(clang::diag::err_fe_unable_to_create_target) << Error;
return false;
}
// Target Machine Options
llvm::TargetOptions Options;
// Use soft-float ABI for ARM (which is the target used by Slang during code
// generation). Codegen still uses hardware FPU by default. To use software
// floating point, add 'soft-float' feature to FeaturesStr below.
Options.FloatABIType = llvm::FloatABI::Soft;
// BCC needs all unknown symbols resolved at compilation time. So we don't
// need any relocation model.
llvm::Reloc::Model RM = llvm::Reloc::Static;
// This is set for the linker (specify how large of the virtual addresses we
// can access for all unknown symbols.)
llvm::CodeModel::Model CM;
if (mpModule->getDataLayout().getPointerSize() == 4) {
CM = llvm::CodeModel::Small;
} else {
// The target may have pointer size greater than 32 (e.g. x86_64
// architecture) may need large data address model
CM = llvm::CodeModel::Medium;
}
// Setup feature string
std::string FeaturesStr;
if (mTargetOpts.CPU.size() || mTargetOpts.Features.size()) {
llvm::SubtargetFeatures Features;
for (std::vector<std::string>::const_iterator
I = mTargetOpts.Features.begin(), E = mTargetOpts.Features.end();
I != E;
I++)
Features.AddFeature(*I);
FeaturesStr = Features.getString();
}
llvm::TargetMachine *TM =
TargetInfo->createTargetMachine(Triple, mTargetOpts.CPU, FeaturesStr,
Options, RM, CM);
// Register allocation policy:
// createFastRegisterAllocator: fast but bad quality
// createGreedyRegisterAllocator: not so fast but good quality
llvm::RegisterRegAlloc::setDefault((mCodeGenOpts.OptimizationLevel == 0) ?
llvm::createFastRegisterAllocator :
llvm::createGreedyRegisterAllocator);
llvm::CodeGenOpt::Level OptLevel = llvm::CodeGenOpt::Default;
if (mCodeGenOpts.OptimizationLevel == 0) {
OptLevel = llvm::CodeGenOpt::None;
} else if (mCodeGenOpts.OptimizationLevel == 3) {
OptLevel = llvm::CodeGenOpt::Aggressive;
}
llvm::TargetMachine::CodeGenFileType CGFT =
llvm::TargetMachine::CGFT_AssemblyFile;
if (mOT == Slang::OT_Object) {
CGFT = llvm::TargetMachine::CGFT_ObjectFile;
}
if (TM->addPassesToEmitFile(*mCodeGenPasses, mBufferOutStream,
CGFT, OptLevel)) {
mDiagEngine.Report(clang::diag::err_fe_unable_to_interface_with_target);
return false;
}
return true;
}
Backend::Backend(RSContext *Context, clang::DiagnosticsEngine *DiagEngine,
const RSCCOptions &Opts,
const clang::HeaderSearchOptions &HeaderSearchOpts,
const clang::PreprocessorOptions &PreprocessorOpts,
const clang::CodeGenOptions &CodeGenOpts,
const clang::TargetOptions &TargetOpts, PragmaList *Pragmas,
llvm::raw_ostream *OS, Slang::OutputType OT,
clang::SourceManager &SourceMgr, bool AllowRSPrefix,
bool IsFilterscript)
: ASTConsumer(), mTargetOpts(TargetOpts), mpModule(nullptr), mpOS(OS),
mOT(OT), mGen(nullptr), mPerFunctionPasses(nullptr),
mPerModulePasses(nullptr), mCodeGenPasses(nullptr),
mBufferOutStream(*mpOS), mContext(Context),
mSourceMgr(SourceMgr), mASTPrint(Opts.mASTPrint), mAllowRSPrefix(AllowRSPrefix),
mIsFilterscript(IsFilterscript), mExportVarMetadata(nullptr),
mExportFuncMetadata(nullptr), mExportForEachNameMetadata(nullptr),
mExportForEachSignatureMetadata(nullptr),
mExportReduceMetadata(nullptr),
mExportTypeMetadata(nullptr), mRSObjectSlotsMetadata(nullptr),
mRefCount(mContext->getASTContext()),
mASTChecker(Context, Context->getTargetAPI(), IsFilterscript),
mForEachHandler(Context),
mLLVMContext(slang::getGlobalLLVMContext()), mDiagEngine(*DiagEngine),
mCodeGenOpts(CodeGenOpts), mPragmas(Pragmas) {
mGen = CreateLLVMCodeGen(mDiagEngine, "", HeaderSearchOpts, PreprocessorOpts,
mCodeGenOpts, mLLVMContext);
}
void Backend::Initialize(clang::ASTContext &Ctx) {
mGen->Initialize(Ctx);
mpModule = mGen->GetModule();
}
void Backend::HandleTranslationUnit(clang::ASTContext &Ctx) {
HandleTranslationUnitPre(Ctx);
if (mASTPrint)
Ctx.getTranslationUnitDecl()->dump();
mGen->HandleTranslationUnit(Ctx);
// Here, we complete a translation unit (whole translation unit is now in LLVM
// IR). Now, interact with LLVM backend to generate actual machine code (asm
// or machine code, whatever.)
// Silently ignore if we weren't initialized for some reason.
if (!mpModule)
return;
llvm::Module *M = mGen->ReleaseModule();
if (!M) {
// The module has been released by IR gen on failures, do not double free.
mpModule = nullptr;
return;
}
slangAssert(mpModule == M &&
"Unexpected module change during LLVM IR generation");
// Insert #pragma information into metadata section of module
if (!mPragmas->empty()) {
llvm::NamedMDNode *PragmaMetadata =
mpModule->getOrInsertNamedMetadata(Slang::PragmaMetadataName);
for (PragmaList::const_iterator I = mPragmas->begin(), E = mPragmas->end();
I != E;
I++) {
llvm::SmallVector<llvm::Metadata*, 2> Pragma;
// Name goes first
Pragma.push_back(llvm::MDString::get(mLLVMContext, I->first));
// And then value
Pragma.push_back(llvm::MDString::get(mLLVMContext, I->second));
// Create MDNode and insert into PragmaMetadata
PragmaMetadata->addOperand(
llvm::MDNode::get(mLLVMContext, Pragma));
}
}
HandleTranslationUnitPost(mpModule);
// Create passes for optimization and code emission
// Create and run per-function passes
CreateFunctionPasses();
if (mPerFunctionPasses) {
mPerFunctionPasses->doInitialization();
for (llvm::Module::iterator I = mpModule->begin(), E = mpModule->end();
I != E;
I++)
if (!I->isDeclaration())
mPerFunctionPasses->run(*I);
mPerFunctionPasses->doFinalization();
}
// Create and run module passes
CreateModulePasses();
if (mPerModulePasses)
mPerModulePasses->run(*mpModule);
switch (mOT) {
case Slang::OT_Assembly:
case Slang::OT_Object: {
if (!CreateCodeGenPasses())
return;
mCodeGenPasses->doInitialization();
for (llvm::Module::iterator I = mpModule->begin(), E = mpModule->end();
I != E;
I++)
if (!I->isDeclaration())
mCodeGenPasses->run(*I);
mCodeGenPasses->doFinalization();
break;
}
case Slang::OT_LLVMAssembly: {
llvm::legacy::PassManager *LLEmitPM = new llvm::legacy::PassManager();
LLEmitPM->add(llvm::createPrintModulePass(mBufferOutStream));
LLEmitPM->run(*mpModule);
break;
}
case Slang::OT_Bitcode: {
writeBitcode(mBufferOutStream, *mpModule, getTargetAPI(),
mCodeGenOpts.OptimizationLevel, mCodeGenOpts.getDebugInfo());
break;
}
case Slang::OT_Nothing: {
return;
}
default: {
slangAssert(false && "Unknown output type");
}
}
}
// Insert explicit padding fields into struct to follow the current layout.
//
// A similar algorithm is present in PadHelperFunctionStruct().
void Backend::PadStruct(clang::RecordDecl* RD) {
// Example of padding:
//
// // ORIGINAL CODE // TRANSFORMED CODE
// struct foo { struct foo {
// int a; int a;
// // 4 bytes of padding char <RS_PADDING_FIELD_NAME>[4];
// long b; long b;
// int c; int c;
// // 4 bytes of (tail) padding char <RS_PADDING_FIELD_NAME>[4];
// }; };
// We collect all of RD's fields in a vector FieldsInfo. We
// represent tail padding as an entry in the FieldsInfo vector with a
// null FieldDecl.
typedef std::pair<size_t, clang::FieldDecl*> FieldInfoType; // (pre-field padding bytes, field)
std::vector<FieldInfoType> FieldsInfo;
// RenderScript is C99-based, so we only expect to see fields. We
// could iterate over fields, but instead let's iterate over
// everything, to verify that there are only fields.
for (clang::Decl* D : RD->decls()) {
clang::FieldDecl* FD = clang::dyn_cast<clang::FieldDecl>(D);
slangAssert(FD && "found a non field declaration within a struct");
FieldsInfo.push_back(std::make_pair(size_t(0), FD));
}
clang::ASTContext& ASTC = mContext->getASTContext();
// ASTContext caches record layout. We may transform the record in a way
// that would render this cached information incorrect. clang does
// not provide any way to invalidate this cached information. We
// take the following approach:
//
// 1. ASSUME that record layout has not yet been computed for RD.
//
// 2. Create a temporary clone of RD, and compute its layout.
// ASSUME that we know how to clone RD in a way that copies all the
// properties that are relevant to its layout.
//
// 3. Use the layout information from the temporary clone to
// transform RD.
//
// NOTE: ASTContext also caches TypeInfo (see
// ASTContext::getTypeInfo()). ASSUME that inserting padding
// fields doesn't change the type in any way that affects
// TypeInfo.
//
// NOTE: A RecordType knows its associated RecordDecl -- so even
// while we're manipulating RD, the associated RecordType
// still recognizes RD as its RecordDecl. ASSUME that we
// don't do anything during our manipulation that would cause
// the RecordType to be followed to RD while RD is in a
// partially transformed state.
// The assumptions above may be brittle, and if they are incorrect,
// we may get mysterious failures.
// create a temporary clone
clang::RecordDecl* RDForLayout =
clang::RecordDecl::Create(ASTC, clang::TTK_Struct, RD->getDeclContext(),
clang::SourceLocation(), clang::SourceLocation(),
nullptr /* IdentifierInfo */);
RDForLayout->startDefinition();
RDForLayout->setTypeForDecl(RD->getTypeForDecl());
if (RD->hasAttrs())
RDForLayout->setAttrs(RD->getAttrs());
RDForLayout->completeDefinition();
// move all fields from RD to RDForLayout
for (const auto &info : FieldsInfo) {
RD->removeDecl(info.second);
info.second->setLexicalDeclContext(RDForLayout);
RDForLayout->addDecl(info.second);
}
const clang::ASTRecordLayout& RL = ASTC.getASTRecordLayout(RDForLayout);
// An exportable type cannot contain a bitfield. However, it's
// possible that this current type might have a bitfield and yet
// share a common initial sequence with an exportable type, so even
// if the current type has a bitfield, the current type still
// needs to have explicit padding inserted (in case the two types
// under discussion are members of a union). We don't need to
// insert any padding after the bitfield, however, because that
// would be beyond the common initial sequence.
bool foundBitField = false;
// Is there any padding in this struct?
bool foundPadding = false;
unsigned fieldNo = 0;
uint64_t fieldPrePaddingOffset = 0; // byte offset of pre-field padding within struct
for (auto &info : FieldsInfo) {
const clang::FieldDecl* FD = info.second;
if ((foundBitField = FD->isBitField()))
break;
const uint64_t fieldOffset = RL.getFieldOffset(fieldNo) >> 3;
const size_t prePadding = fieldOffset - fieldPrePaddingOffset;
foundPadding |= (prePadding != 0);
info.first = prePadding;
// get ready for the next field
//
// assumes that getTypeSize() is the storage size of the Type -- for example,
// that it includes a struct's tail padding (if any)
//
fieldPrePaddingOffset = fieldOffset + (ASTC.getTypeSize(FD->getType()) >> 3);
++fieldNo;
}
if (!foundBitField) {
// In order to ensure that the front end (including reflected
// code) and back end agree on struct size (not just field
// offsets) we may need to add explicit tail padding, just as we'e
// added explicit padding between fields.
slangAssert(RL.getSize().getQuantity() >= fieldPrePaddingOffset);
if (const size_t tailPadding = RL.getSize().getQuantity() - fieldPrePaddingOffset) {
foundPadding = true;
FieldsInfo.push_back(std::make_pair(tailPadding, nullptr));
}
}
if (false /* change to "true" for extra debugging output */) {
if (foundPadding) {
std::cout << "PadStruct(" << RD->getNameAsString() << "):" << std::endl;
for (const auto &info : FieldsInfo)
std::cout << " " << info.first << ", " << (info.second ? info.second->getNameAsString() : "<tail>") << std::endl;
}
}
if (foundPadding && Slang::IsLocInRSHeaderFile(RD->getLocation(), mSourceMgr)) {
mContext->ReportError(RD->getLocation(), "system structure contains padding: '%0'")
<< RD->getName();
}
// now move fields from RDForLayout to RD, and add any necessary
// padding fields
const clang::QualType byteType = ASTC.getIntTypeForBitwidth(8, false /* not signed */);
clang::IdentifierInfo* const paddingIdentifierInfo = &ASTC.Idents.get(RS_PADDING_FIELD_NAME);
for (const auto &info : FieldsInfo) {
if (info.first != 0) {
// Create a padding field: "char <RS_PADDING_FIELD_NAME>[<info.first>];"
// TODO: Do we need to do anything else to keep this field from being shown in debugger?
// There's no source location, and the field is marked as implicit.
const clang::QualType paddingType =
ASTC.getConstantArrayType(byteType,
llvm::APInt(sizeof(info.first) << 3, info.first),
clang::ArrayType::Normal, 0 /* IndexTypeQuals */);
clang::FieldDecl* const FD =
clang::FieldDecl::Create(ASTC, RD, clang::SourceLocation(), clang::SourceLocation(),
paddingIdentifierInfo,
paddingType,
nullptr, // TypeSourceInfo*
nullptr, // BW (bitwidth)
false, // Mutable = false
clang::ICIS_NoInit);
FD->setImplicit(true);
RD->addDecl(FD);
}
if (info.second != nullptr) {
RDForLayout->removeDecl(info.second);
info.second->setLexicalDeclContext(RD);
RD->addDecl(info.second);
}
}
// There does not appear to be any safe way to delete a RecordDecl
// -- for example, there is no RecordDecl destructor to invalidate
// cached record layout, and if we were to get unlucky, some future
// RecordDecl could be allocated in the same place as a deleted
// RDForLayout and "inherit" the cached record layout from
// RDForLayout.
}
void Backend::HandleTagDeclDefinition(clang::TagDecl *D) {
// we want to insert explicit padding fields into structs per http://b/29154200 and http://b/28070272
switch (D->getTagKind()) {
case clang::TTK_Struct:
PadStruct(llvm::cast<clang::RecordDecl>(D));
break;
case clang::TTK_Union:
// cannot be part of an exported type
break;
case clang::TTK_Enum:
// a scalar
break;
case clang::TTK_Class:
case clang::TTK_Interface:
default:
slangAssert(false && "Unexpected TagTypeKind");
break;
}
mGen->HandleTagDeclDefinition(D);
}
void Backend::CompleteTentativeDefinition(clang::VarDecl *D) {
mGen->CompleteTentativeDefinition(D);
}
Backend::~Backend() {
delete mpModule;
delete mGen;
delete mPerFunctionPasses;
delete mPerModulePasses;
delete mCodeGenPasses;
}
// 1) Add zero initialization of local RS object types
void Backend::AnnotateFunction(clang::FunctionDecl *FD) {
if (FD &&
FD->hasBody() &&
!FD->isImplicit() &&
!Slang::IsLocInRSHeaderFile(FD->getLocation(), mSourceMgr)) {
mRefCount.Init();
mRefCount.SetDeclContext(FD);
mRefCount.HandleParamsAndLocals(FD);
}
}
bool Backend::HandleTopLevelDecl(clang::DeclGroupRef D) {
// Find and remember the types for rs_allocation and rs_script_call_t so
// they can be used later for translating rsForEach() calls.
for (clang::DeclGroupRef::iterator I = D.begin(), E = D.end();
(mContext->getAllocationType().isNull() ||
mContext->getScriptCallType().isNull()) &&
I != E; I++) {
if (clang::TypeDecl* TD = llvm::dyn_cast<clang::TypeDecl>(*I)) {
clang::StringRef TypeName = TD->getName();
if (TypeName.equals("rs_allocation")) {
mContext->setAllocationType(TD);
} else if (TypeName.equals("rs_script_call_t")) {
mContext->setScriptCallType(TD);
}
}
}
// Disallow user-defined functions with prefix "rs"
if (!mAllowRSPrefix) {
// Iterate all function declarations in the program.
for (clang::DeclGroupRef::iterator I = D.begin(), E = D.end();
I != E; I++) {
clang::FunctionDecl *FD = llvm::dyn_cast<clang::FunctionDecl>(*I);
if (FD == nullptr)
continue;
if (!FD->getName().startswith("rs")) // Check prefix
continue;
if (!Slang::IsLocInRSHeaderFile(FD->getLocation(), mSourceMgr))
mContext->ReportError(FD->getLocation(),
"invalid function name prefix, "
"\"rs\" is reserved: '%0'")
<< FD->getName();
}
}
for (clang::DeclGroupRef::iterator I = D.begin(), E = D.end(); I != E; I++) {
clang::FunctionDecl *FD = llvm::dyn_cast<clang::FunctionDecl>(*I);
if (FD) {
// Handle forward reference from pragma (see
// RSReducePragmaHandler::HandlePragma for backward reference).
mContext->markUsedByReducePragma(FD, RSContext::CheckNameYes);
if (FD->isGlobal()) {
// Check that we don't have any array parameters being misinterpreted as
// kernel pointers due to the C type system's array to pointer decay.
size_t numParams = FD->getNumParams();
for (size_t i = 0; i < numParams; i++) {
const clang::ParmVarDecl *PVD = FD->getParamDecl(i);
clang::QualType QT = PVD->getOriginalType();
if (QT->isArrayType()) {
mContext->ReportError(
PVD->getTypeSpecStartLoc(),
"exported function parameters may not have array type: %0")
<< QT;
}
}
AnnotateFunction(FD);
}
}
if (getTargetAPI() >= SLANG_FEATURE_SINGLE_SOURCE_API) {
if (FD && FD->hasBody() && !FD->isImplicit() &&
!Slang::IsLocInRSHeaderFile(FD->getLocation(), mSourceMgr)) {
if (FD->hasAttr<clang::RenderScriptKernelAttr>()) {
// Log functions with attribute "kernel" by their names, and assign
// them slot numbers. Any other function cannot be used in a
// rsForEach() or rsForEachWithOptions() call, including old-style
// kernel functions which are defined without the "kernel" attribute.
mContext->addForEach(FD);
}
// Look for any kernel launch calls and translate them into using the
// internal API.
// Report a compiler error on kernel launches inside a kernel.
mForEachHandler.handleForEachCalls(FD, getTargetAPI());
}
}
}
return mGen->HandleTopLevelDecl(D);
}
void Backend::HandleTranslationUnitPre(clang::ASTContext &C) {
clang::TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
if (!mContext->processReducePragmas(this))
return;
// If we have an invalid RS/FS AST, don't check further.
if (!mASTChecker.Validate()) {
return;
}
if (mIsFilterscript) {
mContext->addPragma("rs_fp_relaxed", "");
}
int version = mContext->getVersion();
if (version == 0) {
// Not setting a version is an error
mDiagEngine.Report(
mSourceMgr.getLocForEndOfFile(mSourceMgr.getMainFileID()),
mDiagEngine.getCustomDiagID(
clang::DiagnosticsEngine::Error,
"missing pragma for version in source file"));
} else {
slangAssert(version == 1);
}
if (mContext->getReflectJavaPackageName().empty()) {
mDiagEngine.Report(
mSourceMgr.getLocForEndOfFile(mSourceMgr.getMainFileID()),
mDiagEngine.getCustomDiagID(clang::DiagnosticsEngine::Error,
"missing \"#pragma rs "
"java_package_name(com.foo.bar)\" "
"in source file"));
return;
}
// Create a static global destructor if necessary (to handle RS object
// runtime cleanup).
clang::FunctionDecl *FD = mRefCount.CreateStaticGlobalDtor();
if (FD) {
HandleTopLevelDecl(clang::DeclGroupRef(FD));
}
// Process any static function declarations
for (clang::DeclContext::decl_iterator I = TUDecl->decls_begin(),
E = TUDecl->decls_end(); I != E; I++) {
if ((I->getKind() >= clang::Decl::firstFunction) &&
(I->getKind() <= clang::Decl::lastFunction)) {
clang::FunctionDecl *FD = llvm::dyn_cast<clang::FunctionDecl>(*I);
if (FD && !FD->isGlobal()) {
AnnotateFunction(FD);
}
}
}
}
///////////////////////////////////////////////////////////////////////////////
void Backend::dumpExportVarInfo(llvm::Module *M) {
int slotCount = 0;
if (mExportVarMetadata == nullptr)
mExportVarMetadata = M->getOrInsertNamedMetadata(RS_EXPORT_VAR_MN);
llvm::SmallVector<llvm::Metadata *, 2> ExportVarInfo;
// We emit slot information (#rs_object_slots) for any reference counted
// RS type or pointer (which can also be bound).
for (RSContext::const_export_var_iterator I = mContext->export_vars_begin(),
E = mContext->export_vars_end();
I != E;
I++) {
const RSExportVar *EV = *I;
const RSExportType *ET = EV->getType();
bool countsAsRSObject = false;
// Variable name
ExportVarInfo.push_back(
llvm::MDString::get(mLLVMContext, EV->getName().c_str()));
// Type name
switch (ET->getClass()) {
case RSExportType::ExportClassPrimitive: {
const RSExportPrimitiveType *PT =
static_cast<const RSExportPrimitiveType*>(ET);
ExportVarInfo.push_back(
llvm::MDString::get(
mLLVMContext, llvm::utostr(PT->getType())));
if (PT->isRSObjectType()) {
countsAsRSObject = true;
}
break;
}
case RSExportType::ExportClassPointer: {
ExportVarInfo.push_back(
llvm::MDString::get(
mLLVMContext, ("*" + static_cast<const RSExportPointerType*>(ET)
->getPointeeType()->getName()).c_str()));
break;
}
case RSExportType::ExportClassMatrix: {
ExportVarInfo.push_back(
llvm::MDString::get(
mLLVMContext, llvm::utostr(
/* TODO Strange value. This pushes just a number, quite
* different than the other cases. What is this used for?
* These are the metadata values that some partner drivers
* want to reference (for TBAA, etc.). We may want to look
* at whether these provide any reasonable value (or have
* distinct enough values to actually depend on).
*/
DataTypeRSMatrix2x2 +
static_cast<const RSExportMatrixType*>(ET)->getDim() - 2)));
break;
}
case RSExportType::ExportClassVector:
case RSExportType::ExportClassConstantArray:
case RSExportType::ExportClassRecord: {
ExportVarInfo.push_back(
llvm::MDString::get(mLLVMContext,
EV->getType()->getName().c_str()));
break;
}
}
mExportVarMetadata->addOperand(
llvm::MDNode::get(mLLVMContext, ExportVarInfo));
ExportVarInfo.clear();
if (mRSObjectSlotsMetadata == nullptr) {
mRSObjectSlotsMetadata =
M->getOrInsertNamedMetadata(RS_OBJECT_SLOTS_MN);
}
if (countsAsRSObject) {
mRSObjectSlotsMetadata->addOperand(llvm::MDNode::get(mLLVMContext,
llvm::MDString::get(mLLVMContext, llvm::utostr(slotCount))));
}
slotCount++;
}
}
// A similar algorithm is present in Backend::PadStruct().
static void PadHelperFunctionStruct(llvm::Module *M,
llvm::StructType **paddedStructType,
std::vector<unsigned> *origFieldNumToPaddedFieldNum,
llvm::StructType *origStructType) {
slangAssert(origFieldNumToPaddedFieldNum->empty());
origFieldNumToPaddedFieldNum->resize(2 * origStructType->getNumElements());
llvm::LLVMContext &llvmContext = M->getContext();
const llvm::DataLayout *DL = &M->getDataLayout();
const llvm::StructLayout *SL = DL->getStructLayout(origStructType);
// Field types -- including any padding fields we need to insert.
std::vector<llvm::Type *> paddedFieldTypes;
paddedFieldTypes.reserve(2 * origStructType->getNumElements());
// Is there any padding in this struct?
bool foundPadding = false;
llvm::Type *const byteType = llvm::Type::getInt8Ty(llvmContext);
unsigned origFieldNum = 0, paddedFieldNum = 0;
uint64_t fieldPrePaddingOffset = 0; // byte offset of pre-field padding within struct
for (llvm::Type *fieldType : origStructType->elements()) {
const uint64_t fieldOffset = SL->getElementOffset(origFieldNum);
const size_t prePadding = fieldOffset - fieldPrePaddingOffset;
if (prePadding != 0) {
foundPadding = true;
paddedFieldTypes.push_back(llvm::ArrayType::get(byteType, prePadding));
++paddedFieldNum;
}
paddedFieldTypes.push_back(fieldType);
(*origFieldNumToPaddedFieldNum)[origFieldNum] = paddedFieldNum;
// get ready for the next field
fieldPrePaddingOffset = fieldOffset + DL->getTypeAllocSize(fieldType);
++origFieldNum;
++paddedFieldNum;
}
// In order to ensure that the front end (including reflected code)
// and back end agree on struct size (not just field offsets) we may
// need to add explicit tail padding, just as we'e added explicit
// padding between fields.
slangAssert(SL->getSizeInBytes() >= fieldPrePaddingOffset);
if (const size_t tailPadding = SL->getSizeInBytes() - fieldPrePaddingOffset) {
foundPadding = true;
paddedFieldTypes.push_back(llvm::ArrayType::get(byteType, tailPadding));
}
*paddedStructType = (foundPadding
? llvm::StructType::get(llvmContext, paddedFieldTypes)
: origStructType);
}
void Backend::dumpExportFunctionInfo(llvm::Module *M) {
if (mExportFuncMetadata == nullptr)
mExportFuncMetadata =
M->getOrInsertNamedMetadata(RS_EXPORT_FUNC_MN);
llvm::SmallVector<llvm::Metadata *, 1> ExportFuncInfo;
for (RSContext::const_export_func_iterator
I = mContext->export_funcs_begin(),
E = mContext->export_funcs_end();
I != E;
I++) {
const RSExportFunc *EF = *I;
// Function name
if (!EF->hasParam()) {
ExportFuncInfo.push_back(llvm::MDString::get(mLLVMContext,
EF->getName().c_str()));
} else {
llvm::Function *F = M->getFunction(EF->getName());
llvm::Function *HelperFunction;
const std::string HelperFunctionName(".helper_" + EF->getName());
slangAssert(F && "Function marked as exported disappeared in Bitcode");
// Create helper function
{
llvm::StructType *OrigHelperFunctionParameterTy = nullptr;
llvm::StructType *PaddedHelperFunctionParameterTy = nullptr;
std::vector<unsigned> OrigFieldNumToPaddedFieldNum;
std::vector<bool> isPassedViaPtr;
if (!F->getArgumentList().empty()) {
std::vector<llvm::Type*> HelperFunctionParameterTys;
for (llvm::Function::arg_iterator AI = F->arg_begin(),
AE = F->arg_end();
AI != AE; AI++) {
if (AI->getType()->isPointerTy() &&
AI->getType()->getPointerElementType()->isStructTy()) {
HelperFunctionParameterTys.push_back(
AI->getType()->getPointerElementType());
isPassedViaPtr.push_back(true);
} else {
// on 64-bit architecture(s), a vector type could be too big
// to be passed in a register and instead passed
// via a pointer to a temporary copy
llvm::Type *Ty = AI->getType();
bool viaPtr = false;
if (Ty->isPointerTy() && Ty->getPointerElementType()) {
Ty = Ty->getPointerElementType();
viaPtr = true;
}
HelperFunctionParameterTys.push_back(Ty);
isPassedViaPtr.push_back(viaPtr);
}
}
OrigHelperFunctionParameterTy =
llvm::StructType::get(mLLVMContext, HelperFunctionParameterTys);
PadHelperFunctionStruct(M,
&PaddedHelperFunctionParameterTy, &OrigFieldNumToPaddedFieldNum,
OrigHelperFunctionParameterTy);
}
if (!EF->checkParameterPacketType(OrigHelperFunctionParameterTy)) {
fprintf(stderr, "Failed to export function %s: parameter type "
"mismatch during creation of helper function.\n",
EF->getName().c_str());
const RSExportRecordType *Expected = EF->getParamPacketType();
if (Expected) {
fprintf(stderr, "Expected:\n");
Expected->getLLVMType()->dump();
}
if (OrigHelperFunctionParameterTy) {
fprintf(stderr, "Got:\n");
OrigHelperFunctionParameterTy->dump();
}
abort();
}
std::vector<llvm::Type*> Params;
if (PaddedHelperFunctionParameterTy) {
llvm::PointerType *HelperFunctionParameterTyP =
llvm::PointerType::getUnqual(PaddedHelperFunctionParameterTy);
Params.push_back(HelperFunctionParameterTyP);
}
llvm::FunctionType * HelperFunctionType =
llvm::FunctionType::get(F->getReturnType(),
Params,
/* IsVarArgs = */false);
HelperFunction =
llvm::Function::Create(HelperFunctionType,
llvm::GlobalValue::ExternalLinkage,
HelperFunctionName,
M);
HelperFunction->addFnAttr(llvm::Attribute::NoInline);
HelperFunction->setCallingConv(F->getCallingConv());
// Create helper function body
{
llvm::Argument *HelperFunctionParameter =
&(*HelperFunction->arg_begin());
llvm::BasicBlock *BB =
llvm::BasicBlock::Create(mLLVMContext, "entry", HelperFunction);
llvm::IRBuilder<> *IB = new llvm::IRBuilder<>(BB);
llvm::SmallVector<llvm::Value*, 6> Params;
llvm::Value *Idx[2];
Idx[0] =
llvm::ConstantInt::get(llvm::Type::getInt32Ty(mLLVMContext), 0);
// getelementptr and load instruction for all elements in
// parameter .p
for (size_t origFieldNum = 0; origFieldNum < EF->getNumParameters(); origFieldNum++) {
// getelementptr
Idx[1] = llvm::ConstantInt::get(
llvm::Type::getInt32Ty(mLLVMContext), OrigFieldNumToPaddedFieldNum[origFieldNum]);
llvm::Value *Ptr = NULL;
Ptr = IB->CreateInBoundsGEP(HelperFunctionParameter, Idx);
// Load is only required for non-struct ptrs
if (isPassedViaPtr[origFieldNum]) {
Params.push_back(Ptr);
} else {
llvm::Value *V = IB->CreateLoad(Ptr);
Params.push_back(V);
}
}
// Call and pass the all elements as parameter to F
llvm::CallInst *CI = IB->CreateCall(F, Params);
CI->setCallingConv(F->getCallingConv());
if (F->getReturnType() == llvm::Type::getVoidTy(mLLVMContext)) {
IB->CreateRetVoid();
} else {
IB->CreateRet(CI);
}
delete IB;
}
}
ExportFuncInfo.push_back(
llvm::MDString::get(mLLVMContext, HelperFunctionName.c_str()));
}
mExportFuncMetadata->addOperand(
llvm::MDNode::get(mLLVMContext, ExportFuncInfo));
ExportFuncInfo.clear();
}
}
void Backend::dumpExportForEachInfo(llvm::Module *M) {
if (mExportForEachNameMetadata == nullptr) {
mExportForEachNameMetadata =
M->getOrInsertNamedMetadata(RS_EXPORT_FOREACH_NAME_MN);
}
if (mExportForEachSignatureMetadata == nullptr) {
mExportForEachSignatureMetadata =
M->getOrInsertNamedMetadata(RS_EXPORT_FOREACH_MN);
}
llvm::SmallVector<llvm::Metadata *, 1> ExportForEachName;
llvm::SmallVector<llvm::Metadata *, 1> ExportForEachInfo;
for (RSContext::const_export_foreach_iterator
I = mContext->export_foreach_begin(),
E = mContext->export_foreach_end();
I != E;
I++) {
const RSExportForEach *EFE = *I;
ExportForEachName.push_back(
llvm::MDString::get(mLLVMContext, EFE->getName().c_str()));
mExportForEachNameMetadata->addOperand(
llvm::MDNode::get(mLLVMContext, ExportForEachName));
ExportForEachName.clear();
ExportForEachInfo.push_back(
llvm::MDString::get(mLLVMContext,
llvm::utostr(EFE->getSignatureMetadata())));
mExportForEachSignatureMetadata->addOperand(
llvm::MDNode::get(mLLVMContext, ExportForEachInfo));
ExportForEachInfo.clear();
}
}
void Backend::dumpExportReduceInfo(llvm::Module *M) {
if (!mExportReduceMetadata) {
mExportReduceMetadata =
M->getOrInsertNamedMetadata(RS_EXPORT_REDUCE_MN);
}
llvm::SmallVector<llvm::Metadata *, 6> ExportReduceInfo;
// Add operand to ExportReduceInfo, padding out missing operands with
// nullptr.
auto addOperand = [&ExportReduceInfo](uint32_t Idx, llvm::Metadata *N) {
while (Idx > ExportReduceInfo.size())
ExportReduceInfo.push_back(nullptr);
ExportReduceInfo.push_back(N);
};
// Add string operand to ExportReduceInfo, padding out missing operands
// with nullptr.
// If string is empty, then do not add it unless Always is true.
auto addString = [&addOperand, this](uint32_t Idx, const std::string &S,
bool Always = true) {
if (Always || !S.empty())
addOperand(Idx, llvm::MDString::get(mLLVMContext, S));
};
// Add the description of the reduction kernels to the metadata node.
for (auto I = mContext->export_reduce_begin(),
E = mContext->export_reduce_end();
I != E; ++I) {
ExportReduceInfo.clear();
int Idx = 0;
addString(Idx++, (*I)->getNameReduce());
addOperand(Idx++, llvm::MDString::get(mLLVMContext, llvm::utostr((*I)->getAccumulatorTypeSize())));
llvm::SmallVector<llvm::Metadata *, 2> Accumulator;
Accumulator.push_back(
llvm::MDString::get(mLLVMContext, (*I)->getNameAccumulator()));
Accumulator.push_back(llvm::MDString::get(
mLLVMContext,
llvm::utostr((*I)->getAccumulatorSignatureMetadata())));
addOperand(Idx++, llvm::MDTuple::get(mLLVMContext, Accumulator));
addString(Idx++, (*I)->getNameInitializer(), false);
addString(Idx++, (*I)->getNameCombiner(), false);
addString(Idx++, (*I)->getNameOutConverter(), false);
addString(Idx++, (*I)->getNameHalter(), false);
mExportReduceMetadata->addOperand(
llvm::MDTuple::get(mLLVMContext, ExportReduceInfo));
}
}
void Backend::dumpExportTypeInfo(llvm::Module *M) {
llvm::SmallVector<llvm::Metadata *, 1> ExportTypeInfo;
for (RSContext::const_export_type_iterator
I = mContext->export_types_begin(),
E = mContext->export_types_end();
I != E;
I++) {
// First, dump type name list to export
const RSExportType *ET = I->getValue();
ExportTypeInfo.clear();
// Type name
ExportTypeInfo.push_back(
llvm::MDString::get(mLLVMContext, ET->getName().c_str()));
if (ET->getClass() == RSExportType::ExportClassRecord) {
const RSExportRecordType *ERT =
static_cast<const RSExportRecordType*>(ET);
if (mExportTypeMetadata == nullptr)
mExportTypeMetadata =
M->getOrInsertNamedMetadata(RS_EXPORT_TYPE_MN);
mExportTypeMetadata->addOperand(
llvm::MDNode::get(mLLVMContext, ExportTypeInfo));
// Now, export struct field information to %[struct name]
std::string StructInfoMetadataName("%");
StructInfoMetadataName.append(ET->getName());
llvm::NamedMDNode *StructInfoMetadata =
M->getOrInsertNamedMetadata(StructInfoMetadataName);
llvm::SmallVector<llvm::Metadata *, 3> FieldInfo;
slangAssert(StructInfoMetadata->getNumOperands() == 0 &&
"Metadata with same name was created before");
for (RSExportRecordType::const_field_iterator FI = ERT->fields_begin(),
FE = ERT->fields_end();
FI != FE;
FI++) {
const RSExportRecordType::Field *F = *FI;
// 1. field name
FieldInfo.push_back(llvm::MDString::get(mLLVMContext,
F->getName().c_str()));
// 2. field type name
FieldInfo.push_back(
llvm::MDString::get(mLLVMContext,
F->getType()->getName().c_str()));
StructInfoMetadata->addOperand(
llvm::MDNode::get(mLLVMContext, FieldInfo));
FieldInfo.clear();
}
} // ET->getClass() == RSExportType::ExportClassRecord
}
}
void Backend::HandleTranslationUnitPost(llvm::Module *M) {
if (!mContext->is64Bit()) {
M->setDataLayout("e-p:32:32-i64:64-v128:64:128-n32-S64");
}
if (!mContext->processExports())
return;
if (mContext->hasExportVar())
dumpExportVarInfo(M);
if (mContext->hasExportFunc())
dumpExportFunctionInfo(M);
if (mContext->hasExportForEach())
dumpExportForEachInfo(M);
if (mContext->hasExportReduce())
dumpExportReduceInfo(M);
if (mContext->hasExportType())
dumpExportTypeInfo(M);
}
} // namespace slang