You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2061 lines
94 KiB

/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "load_store_analysis.h"
#include <array>
#include <string_view>
#include <unordered_map>
#include <unordered_set>
#include "base/scoped_arena_allocator.h"
#include "class_root.h"
#include "dex/dex_file_types.h"
#include "dex/method_reference.h"
#include "entrypoints/quick/quick_entrypoints_enum.h"
#include "execution_subgraph.h"
#include "execution_subgraph_test.h"
#include "gtest/gtest.h"
#include "handle.h"
#include "handle_scope.h"
#include "nodes.h"
#include "optimizing/data_type.h"
#include "optimizing_unit_test.h"
#include "scoped_thread_state_change.h"
namespace art {
class LoadStoreAnalysisTest : public CommonCompilerTest, public OptimizingUnitTestHelper {
public:
LoadStoreAnalysisTest() {}
AdjacencyListGraph SetupFromAdjacencyList(
const std::string_view entry_name,
const std::string_view exit_name,
const std::vector<AdjacencyListGraph::Edge>& adj) {
return AdjacencyListGraph(graph_, GetAllocator(), entry_name, exit_name, adj);
}
bool IsValidSubgraph(const ExecutionSubgraph* esg) {
return ExecutionSubgraphTestHelper::CalculateValidity(graph_, esg);
}
bool IsValidSubgraph(const ExecutionSubgraph& esg) {
return ExecutionSubgraphTestHelper::CalculateValidity(graph_, &esg);
}
void CheckReachability(const AdjacencyListGraph& adj,
const std::vector<AdjacencyListGraph::Edge>& reach);
};
TEST_F(LoadStoreAnalysisTest, ArrayHeapLocations) {
CreateGraph();
HBasicBlock* entry = new (GetAllocator()) HBasicBlock(graph_);
graph_->AddBlock(entry);
graph_->SetEntryBlock(entry);
// entry:
// array ParameterValue
// index ParameterValue
// c1 IntConstant
// c2 IntConstant
// c3 IntConstant
// array_get1 ArrayGet [array, c1]
// array_get2 ArrayGet [array, c2]
// array_set1 ArraySet [array, c1, c3]
// array_set2 ArraySet [array, index, c3]
HInstruction* array = new (GetAllocator()) HParameterValue(
graph_->GetDexFile(), dex::TypeIndex(0), 0, DataType::Type::kReference);
HInstruction* index = new (GetAllocator()) HParameterValue(
graph_->GetDexFile(), dex::TypeIndex(1), 1, DataType::Type::kInt32);
HInstruction* c1 = graph_->GetIntConstant(1);
HInstruction* c2 = graph_->GetIntConstant(2);
HInstruction* c3 = graph_->GetIntConstant(3);
HInstruction* array_get1 = new (GetAllocator()) HArrayGet(array, c1, DataType::Type::kInt32, 0);
HInstruction* array_get2 = new (GetAllocator()) HArrayGet(array, c2, DataType::Type::kInt32, 0);
HInstruction* array_set1 =
new (GetAllocator()) HArraySet(array, c1, c3, DataType::Type::kInt32, 0);
HInstruction* array_set2 =
new (GetAllocator()) HArraySet(array, index, c3, DataType::Type::kInt32, 0);
entry->AddInstruction(array);
entry->AddInstruction(index);
entry->AddInstruction(array_get1);
entry->AddInstruction(array_get2);
entry->AddInstruction(array_set1);
entry->AddInstruction(array_set2);
// Test HeapLocationCollector initialization.
// Should be no heap locations, no operations on the heap.
ScopedArenaAllocator allocator(graph_->GetArenaStack());
HeapLocationCollector heap_location_collector(graph_, &allocator, LoadStoreAnalysisType::kFull);
ASSERT_EQ(heap_location_collector.GetNumberOfHeapLocations(), 0U);
ASSERT_FALSE(heap_location_collector.HasHeapStores());
// Test that after visiting the graph_, it must see following heap locations
// array[c1], array[c2], array[index]; and it should see heap stores.
heap_location_collector.VisitBasicBlock(entry);
ASSERT_EQ(heap_location_collector.GetNumberOfHeapLocations(), 3U);
ASSERT_TRUE(heap_location_collector.HasHeapStores());
// Test queries on HeapLocationCollector's ref info and index records.
ReferenceInfo* ref = heap_location_collector.FindReferenceInfoOf(array);
DataType::Type type = DataType::Type::kInt32;
size_t field = HeapLocation::kInvalidFieldOffset;
size_t vec = HeapLocation::kScalar;
size_t class_def = HeapLocation::kDeclaringClassDefIndexForArrays;
size_t loc1 = heap_location_collector.FindHeapLocationIndex(
ref, type, field, c1, vec, class_def);
size_t loc2 = heap_location_collector.FindHeapLocationIndex(
ref, type, field, c2, vec, class_def);
size_t loc3 = heap_location_collector.FindHeapLocationIndex(
ref, type, field, index, vec, class_def);
// must find this reference info for array in HeapLocationCollector.
ASSERT_TRUE(ref != nullptr);
// must find these heap locations;
// and array[1], array[2], array[3] should be different heap locations.
ASSERT_TRUE(loc1 != HeapLocationCollector::kHeapLocationNotFound);
ASSERT_TRUE(loc2 != HeapLocationCollector::kHeapLocationNotFound);
ASSERT_TRUE(loc3 != HeapLocationCollector::kHeapLocationNotFound);
ASSERT_TRUE(loc1 != loc2);
ASSERT_TRUE(loc2 != loc3);
ASSERT_TRUE(loc1 != loc3);
// Test alias relationships after building aliasing matrix.
// array[1] and array[2] clearly should not alias;
// array[index] should alias with the others, because index is an unknow value.
heap_location_collector.BuildAliasingMatrix();
ASSERT_FALSE(heap_location_collector.MayAlias(loc1, loc2));
ASSERT_TRUE(heap_location_collector.MayAlias(loc1, loc3));
ASSERT_TRUE(heap_location_collector.MayAlias(loc1, loc3));
EXPECT_TRUE(CheckGraph(graph_));
}
TEST_F(LoadStoreAnalysisTest, FieldHeapLocations) {
CreateGraph();
HBasicBlock* entry = new (GetAllocator()) HBasicBlock(graph_);
graph_->AddBlock(entry);
graph_->SetEntryBlock(entry);
// entry:
// object ParameterValue
// c1 IntConstant
// set_field10 InstanceFieldSet [object, c1, 10]
// get_field10 InstanceFieldGet [object, 10]
// get_field20 InstanceFieldGet [object, 20]
HInstruction* c1 = graph_->GetIntConstant(1);
HInstruction* object = new (GetAllocator()) HParameterValue(graph_->GetDexFile(),
dex::TypeIndex(0),
0,
DataType::Type::kReference);
HInstanceFieldSet* set_field10 = new (GetAllocator()) HInstanceFieldSet(object,
c1,
nullptr,
DataType::Type::kInt32,
MemberOffset(32),
false,
kUnknownFieldIndex,
kUnknownClassDefIndex,
graph_->GetDexFile(),
0);
HInstanceFieldGet* get_field10 = new (GetAllocator()) HInstanceFieldGet(object,
nullptr,
DataType::Type::kInt32,
MemberOffset(32),
false,
kUnknownFieldIndex,
kUnknownClassDefIndex,
graph_->GetDexFile(),
0);
HInstanceFieldGet* get_field20 = new (GetAllocator()) HInstanceFieldGet(object,
nullptr,
DataType::Type::kInt32,
MemberOffset(20),
false,
kUnknownFieldIndex,
kUnknownClassDefIndex,
graph_->GetDexFile(),
0);
entry->AddInstruction(object);
entry->AddInstruction(set_field10);
entry->AddInstruction(get_field10);
entry->AddInstruction(get_field20);
// Test HeapLocationCollector initialization.
// Should be no heap locations, no operations on the heap.
ScopedArenaAllocator allocator(graph_->GetArenaStack());
HeapLocationCollector heap_location_collector(graph_, &allocator, LoadStoreAnalysisType::kFull);
ASSERT_EQ(heap_location_collector.GetNumberOfHeapLocations(), 0U);
ASSERT_FALSE(heap_location_collector.HasHeapStores());
// Test that after visiting the graph, it must see following heap locations
// object.field10, object.field20 and it should see heap stores.
heap_location_collector.VisitBasicBlock(entry);
ASSERT_EQ(heap_location_collector.GetNumberOfHeapLocations(), 2U);
ASSERT_TRUE(heap_location_collector.HasHeapStores());
// Test queries on HeapLocationCollector's ref info and index records.
ReferenceInfo* ref = heap_location_collector.FindReferenceInfoOf(object);
size_t loc1 = heap_location_collector.GetFieldHeapLocation(object, &get_field10->GetFieldInfo());
size_t loc2 = heap_location_collector.GetFieldHeapLocation(object, &get_field20->GetFieldInfo());
// must find references info for object and in HeapLocationCollector.
ASSERT_TRUE(ref != nullptr);
// must find these heap locations.
ASSERT_TRUE(loc1 != HeapLocationCollector::kHeapLocationNotFound);
ASSERT_TRUE(loc2 != HeapLocationCollector::kHeapLocationNotFound);
// different fields of same object.
ASSERT_TRUE(loc1 != loc2);
// accesses to different fields of the same object should not alias.
ASSERT_FALSE(heap_location_collector.MayAlias(loc1, loc2));
EXPECT_TRUE(CheckGraph(graph_));
}
TEST_F(LoadStoreAnalysisTest, ArrayIndexAliasingTest) {
CreateGraph();
HBasicBlock* entry = new (GetAllocator()) HBasicBlock(graph_);
graph_->AddBlock(entry);
graph_->SetEntryBlock(entry);
graph_->BuildDominatorTree();
HInstruction* array = new (GetAllocator()) HParameterValue(
graph_->GetDexFile(), dex::TypeIndex(0), 0, DataType::Type::kReference);
HInstruction* index = new (GetAllocator()) HParameterValue(
graph_->GetDexFile(), dex::TypeIndex(1), 1, DataType::Type::kInt32);
HInstruction* c0 = graph_->GetIntConstant(0);
HInstruction* c1 = graph_->GetIntConstant(1);
HInstruction* c_neg1 = graph_->GetIntConstant(-1);
HInstruction* add0 = new (GetAllocator()) HAdd(DataType::Type::kInt32, index, c0);
HInstruction* add1 = new (GetAllocator()) HAdd(DataType::Type::kInt32, index, c1);
HInstruction* sub0 = new (GetAllocator()) HSub(DataType::Type::kInt32, index, c0);
HInstruction* sub1 = new (GetAllocator()) HSub(DataType::Type::kInt32, index, c1);
HInstruction* sub_neg1 = new (GetAllocator()) HSub(DataType::Type::kInt32, index, c_neg1);
HInstruction* rev_sub1 = new (GetAllocator()) HSub(DataType::Type::kInt32, c1, index);
HInstruction* arr_set1 = new (GetAllocator()) HArraySet(array, c0, c0, DataType::Type::kInt32, 0);
HInstruction* arr_set2 = new (GetAllocator()) HArraySet(array, c1, c0, DataType::Type::kInt32, 0);
HInstruction* arr_set3 =
new (GetAllocator()) HArraySet(array, add0, c0, DataType::Type::kInt32, 0);
HInstruction* arr_set4 =
new (GetAllocator()) HArraySet(array, add1, c0, DataType::Type::kInt32, 0);
HInstruction* arr_set5 =
new (GetAllocator()) HArraySet(array, sub0, c0, DataType::Type::kInt32, 0);
HInstruction* arr_set6 =
new (GetAllocator()) HArraySet(array, sub1, c0, DataType::Type::kInt32, 0);
HInstruction* arr_set7 =
new (GetAllocator()) HArraySet(array, rev_sub1, c0, DataType::Type::kInt32, 0);
HInstruction* arr_set8 =
new (GetAllocator()) HArraySet(array, sub_neg1, c0, DataType::Type::kInt32, 0);
entry->AddInstruction(array);
entry->AddInstruction(index);
entry->AddInstruction(add0);
entry->AddInstruction(add1);
entry->AddInstruction(sub0);
entry->AddInstruction(sub1);
entry->AddInstruction(sub_neg1);
entry->AddInstruction(rev_sub1);
entry->AddInstruction(arr_set1); // array[0] = c0
entry->AddInstruction(arr_set2); // array[1] = c0
entry->AddInstruction(arr_set3); // array[i+0] = c0
entry->AddInstruction(arr_set4); // array[i+1] = c0
entry->AddInstruction(arr_set5); // array[i-0] = c0
entry->AddInstruction(arr_set6); // array[i-1] = c0
entry->AddInstruction(arr_set7); // array[1-i] = c0
entry->AddInstruction(arr_set8); // array[i-(-1)] = c0
ScopedArenaAllocator allocator(graph_->GetArenaStack());
LoadStoreAnalysis lsa(graph_, nullptr, &allocator, LoadStoreAnalysisType::kBasic);
lsa.Run();
const HeapLocationCollector& heap_location_collector = lsa.GetHeapLocationCollector();
// LSA/HeapLocationCollector should see those ArrayGet instructions.
ASSERT_EQ(heap_location_collector.GetNumberOfHeapLocations(), 8U);
ASSERT_TRUE(heap_location_collector.HasHeapStores());
// Test queries on HeapLocationCollector's aliasing matrix after load store analysis.
size_t loc1 = HeapLocationCollector::kHeapLocationNotFound;
size_t loc2 = HeapLocationCollector::kHeapLocationNotFound;
// Test alias: array[0] and array[1]
loc1 = heap_location_collector.GetArrayHeapLocation(arr_set1);
loc2 = heap_location_collector.GetArrayHeapLocation(arr_set2);
ASSERT_FALSE(heap_location_collector.MayAlias(loc1, loc2));
// Test alias: array[i+0] and array[i-0]
loc1 = heap_location_collector.GetArrayHeapLocation(arr_set3);
loc2 = heap_location_collector.GetArrayHeapLocation(arr_set5);
ASSERT_TRUE(heap_location_collector.MayAlias(loc1, loc2));
// Test alias: array[i+1] and array[i-1]
loc1 = heap_location_collector.GetArrayHeapLocation(arr_set4);
loc2 = heap_location_collector.GetArrayHeapLocation(arr_set6);
ASSERT_FALSE(heap_location_collector.MayAlias(loc1, loc2));
// Test alias: array[i+1] and array[1-i]
loc1 = heap_location_collector.GetArrayHeapLocation(arr_set4);
loc2 = heap_location_collector.GetArrayHeapLocation(arr_set7);
ASSERT_TRUE(heap_location_collector.MayAlias(loc1, loc2));
// Test alias: array[i+1] and array[i-(-1)]
loc1 = heap_location_collector.GetArrayHeapLocation(arr_set4);
loc2 = heap_location_collector.GetArrayHeapLocation(arr_set8);
ASSERT_TRUE(heap_location_collector.MayAlias(loc1, loc2));
EXPECT_TRUE(CheckGraphSkipRefTypeInfoChecks(graph_));
}
TEST_F(LoadStoreAnalysisTest, ArrayAliasingTest) {
CreateGraph();
HBasicBlock* entry = new (GetAllocator()) HBasicBlock(graph_);
graph_->AddBlock(entry);
graph_->SetEntryBlock(entry);
graph_->BuildDominatorTree();
HInstruction* array = new (GetAllocator()) HParameterValue(
graph_->GetDexFile(), dex::TypeIndex(0), 0, DataType::Type::kReference);
HInstruction* index = new (GetAllocator()) HParameterValue(
graph_->GetDexFile(), dex::TypeIndex(1), 1, DataType::Type::kInt32);
HInstruction* c0 = graph_->GetIntConstant(0);
HInstruction* c1 = graph_->GetIntConstant(1);
HInstruction* c6 = graph_->GetIntConstant(6);
HInstruction* c8 = graph_->GetIntConstant(8);
HInstruction* arr_set_0 = new (GetAllocator()) HArraySet(array,
c0,
c0,
DataType::Type::kInt32,
0);
HInstruction* arr_set_1 = new (GetAllocator()) HArraySet(array,
c1,
c0,
DataType::Type::kInt32,
0);
HInstruction* arr_set_i = new (GetAllocator()) HArraySet(array,
index,
c0,
DataType::Type::kInt32,
0);
HVecOperation* v1 = new (GetAllocator()) HVecReplicateScalar(GetAllocator(),
c1,
DataType::Type::kInt32,
4,
kNoDexPc);
HVecOperation* v2 = new (GetAllocator()) HVecReplicateScalar(GetAllocator(),
c1,
DataType::Type::kInt32,
2,
kNoDexPc);
HInstruction* i_add6 = new (GetAllocator()) HAdd(DataType::Type::kInt32, index, c6);
HInstruction* i_add8 = new (GetAllocator()) HAdd(DataType::Type::kInt32, index, c8);
HInstruction* vstore_0 = new (GetAllocator()) HVecStore(
GetAllocator(),
array,
c0,
v1,
DataType::Type::kInt32,
SideEffects::ArrayWriteOfType(DataType::Type::kInt32),
4,
kNoDexPc);
HInstruction* vstore_1 = new (GetAllocator()) HVecStore(
GetAllocator(),
array,
c1,
v1,
DataType::Type::kInt32,
SideEffects::ArrayWriteOfType(DataType::Type::kInt32),
4,
kNoDexPc);
HInstruction* vstore_8 = new (GetAllocator()) HVecStore(
GetAllocator(),
array,
c8,
v1,
DataType::Type::kInt32,
SideEffects::ArrayWriteOfType(DataType::Type::kInt32),
4,
kNoDexPc);
HInstruction* vstore_i = new (GetAllocator()) HVecStore(
GetAllocator(),
array,
index,
v1,
DataType::Type::kInt32,
SideEffects::ArrayWriteOfType(DataType::Type::kInt32),
4,
kNoDexPc);
HInstruction* vstore_i_add6 = new (GetAllocator()) HVecStore(
GetAllocator(),
array,
i_add6,
v1,
DataType::Type::kInt32,
SideEffects::ArrayWriteOfType(DataType::Type::kInt32),
4,
kNoDexPc);
HInstruction* vstore_i_add8 = new (GetAllocator()) HVecStore(
GetAllocator(),
array,
i_add8,
v1,
DataType::Type::kInt32,
SideEffects::ArrayWriteOfType(DataType::Type::kInt32),
4,
kNoDexPc);
HInstruction* vstore_i_add6_vlen2 = new (GetAllocator()) HVecStore(
GetAllocator(),
array,
i_add6,
v2,
DataType::Type::kInt32,
SideEffects::ArrayWriteOfType(DataType::Type::kInt32),
2,
kNoDexPc);
entry->AddInstruction(array);
entry->AddInstruction(index);
entry->AddInstruction(arr_set_0);
entry->AddInstruction(arr_set_1);
entry->AddInstruction(arr_set_i);
entry->AddInstruction(v1);
entry->AddInstruction(v2);
entry->AddInstruction(i_add6);
entry->AddInstruction(i_add8);
entry->AddInstruction(vstore_0);
entry->AddInstruction(vstore_1);
entry->AddInstruction(vstore_8);
entry->AddInstruction(vstore_i);
entry->AddInstruction(vstore_i_add6);
entry->AddInstruction(vstore_i_add8);
entry->AddInstruction(vstore_i_add6_vlen2);
ScopedArenaAllocator allocator(graph_->GetArenaStack());
LoadStoreAnalysis lsa(graph_, nullptr, &allocator, LoadStoreAnalysisType::kBasic);
lsa.Run();
const HeapLocationCollector& heap_location_collector = lsa.GetHeapLocationCollector();
// LSA/HeapLocationCollector should see those instructions.
ASSERT_EQ(heap_location_collector.GetNumberOfHeapLocations(), 10U);
ASSERT_TRUE(heap_location_collector.HasHeapStores());
// Test queries on HeapLocationCollector's aliasing matrix after load store analysis.
size_t loc1, loc2;
// Test alias: array[0] and array[0,1,2,3]
loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_0);
loc2 = heap_location_collector.GetArrayHeapLocation(vstore_0);
ASSERT_TRUE(heap_location_collector.MayAlias(loc1, loc2));
// Test alias: array[0] and array[1,2,3,4]
loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_0);
loc2 = heap_location_collector.GetArrayHeapLocation(vstore_1);
ASSERT_FALSE(heap_location_collector.MayAlias(loc1, loc2));
// Test alias: array[0] and array[8,9,10,11]
loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_0);
loc2 = heap_location_collector.GetArrayHeapLocation(vstore_8);
ASSERT_FALSE(heap_location_collector.MayAlias(loc1, loc2));
// Test alias: array[1] and array[8,9,10,11]
loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_1);
loc2 = heap_location_collector.GetArrayHeapLocation(vstore_8);
ASSERT_FALSE(heap_location_collector.MayAlias(loc1, loc2));
// Test alias: array[1] and array[0,1,2,3]
loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_1);
loc2 = heap_location_collector.GetArrayHeapLocation(vstore_0);
ASSERT_TRUE(heap_location_collector.MayAlias(loc1, loc2));
// Test alias: array[0,1,2,3] and array[8,9,10,11]
loc1 = heap_location_collector.GetArrayHeapLocation(vstore_0);
loc2 = heap_location_collector.GetArrayHeapLocation(vstore_8);
ASSERT_FALSE(heap_location_collector.MayAlias(loc1, loc2));
// Test alias: array[0,1,2,3] and array[1,2,3,4]
loc1 = heap_location_collector.GetArrayHeapLocation(vstore_0);
loc2 = heap_location_collector.GetArrayHeapLocation(vstore_1);
ASSERT_TRUE(heap_location_collector.MayAlias(loc1, loc2));
// Test alias: array[0] and array[i,i+1,i+2,i+3]
loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_0);
loc2 = heap_location_collector.GetArrayHeapLocation(vstore_i);
ASSERT_TRUE(heap_location_collector.MayAlias(loc1, loc2));
// Test alias: array[i] and array[0,1,2,3]
loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_i);
loc2 = heap_location_collector.GetArrayHeapLocation(vstore_0);
ASSERT_TRUE(heap_location_collector.MayAlias(loc1, loc2));
// Test alias: array[i] and array[i,i+1,i+2,i+3]
loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_i);
loc2 = heap_location_collector.GetArrayHeapLocation(vstore_i);
ASSERT_TRUE(heap_location_collector.MayAlias(loc1, loc2));
// Test alias: array[i] and array[i+8,i+9,i+10,i+11]
loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_i);
loc2 = heap_location_collector.GetArrayHeapLocation(vstore_i_add8);
ASSERT_FALSE(heap_location_collector.MayAlias(loc1, loc2));
// Test alias: array[i+6,i+7,i+8,i+9] and array[i+8,i+9,i+10,i+11]
// Test partial overlap.
loc1 = heap_location_collector.GetArrayHeapLocation(vstore_i_add6);
loc2 = heap_location_collector.GetArrayHeapLocation(vstore_i_add8);
ASSERT_TRUE(heap_location_collector.MayAlias(loc1, loc2));
// Test alias: array[i+6,i+7] and array[i,i+1,i+2,i+3]
// Test different vector lengths.
loc1 = heap_location_collector.GetArrayHeapLocation(vstore_i_add6_vlen2);
loc2 = heap_location_collector.GetArrayHeapLocation(vstore_i);
ASSERT_FALSE(heap_location_collector.MayAlias(loc1, loc2));
// Test alias: array[i+6,i+7] and array[i+8,i+9,i+10,i+11]
loc1 = heap_location_collector.GetArrayHeapLocation(vstore_i_add6_vlen2);
loc2 = heap_location_collector.GetArrayHeapLocation(vstore_i_add8);
ASSERT_FALSE(heap_location_collector.MayAlias(loc1, loc2));
}
TEST_F(LoadStoreAnalysisTest, ArrayIndexCalculationOverflowTest) {
CreateGraph();
HBasicBlock* entry = new (GetAllocator()) HBasicBlock(graph_);
graph_->AddBlock(entry);
graph_->SetEntryBlock(entry);
graph_->BuildDominatorTree();
HInstruction* array = new (GetAllocator()) HParameterValue(
graph_->GetDexFile(), dex::TypeIndex(0), 0, DataType::Type::kReference);
HInstruction* index = new (GetAllocator()) HParameterValue(
graph_->GetDexFile(), dex::TypeIndex(1), 1, DataType::Type::kInt32);
HInstruction* c0 = graph_->GetIntConstant(0);
HInstruction* c_0x80000000 = graph_->GetIntConstant(0x80000000);
HInstruction* c_0x10 = graph_->GetIntConstant(0x10);
HInstruction* c_0xFFFFFFF0 = graph_->GetIntConstant(0xFFFFFFF0);
HInstruction* c_0x7FFFFFFF = graph_->GetIntConstant(0x7FFFFFFF);
HInstruction* c_0x80000001 = graph_->GetIntConstant(0x80000001);
// `index+0x80000000` and `index-0x80000000` array indices MAY alias.
HInstruction* add_0x80000000 = new (GetAllocator()) HAdd(
DataType::Type::kInt32, index, c_0x80000000);
HInstruction* sub_0x80000000 = new (GetAllocator()) HSub(
DataType::Type::kInt32, index, c_0x80000000);
HInstruction* arr_set_1 = new (GetAllocator()) HArraySet(
array, add_0x80000000, c0, DataType::Type::kInt32, 0);
HInstruction* arr_set_2 = new (GetAllocator()) HArraySet(
array, sub_0x80000000, c0, DataType::Type::kInt32, 0);
// `index+0x10` and `index-0xFFFFFFF0` array indices MAY alias.
HInstruction* add_0x10 = new (GetAllocator()) HAdd(DataType::Type::kInt32, index, c_0x10);
HInstruction* sub_0xFFFFFFF0 = new (GetAllocator()) HSub(
DataType::Type::kInt32, index, c_0xFFFFFFF0);
HInstruction* arr_set_3 = new (GetAllocator()) HArraySet(
array, add_0x10, c0, DataType::Type::kInt32, 0);
HInstruction* arr_set_4 = new (GetAllocator()) HArraySet(
array, sub_0xFFFFFFF0, c0, DataType::Type::kInt32, 0);
// `index+0x7FFFFFFF` and `index-0x80000001` array indices MAY alias.
HInstruction* add_0x7FFFFFFF = new (GetAllocator()) HAdd(
DataType::Type::kInt32, index, c_0x7FFFFFFF);
HInstruction* sub_0x80000001 = new (GetAllocator()) HSub(
DataType::Type::kInt32, index, c_0x80000001);
HInstruction* arr_set_5 = new (GetAllocator()) HArraySet(
array, add_0x7FFFFFFF, c0, DataType::Type::kInt32, 0);
HInstruction* arr_set_6 = new (GetAllocator()) HArraySet(
array, sub_0x80000001, c0, DataType::Type::kInt32, 0);
// `index+0` and `index-0` array indices MAY alias.
HInstruction* add_0 = new (GetAllocator()) HAdd(DataType::Type::kInt32, index, c0);
HInstruction* sub_0 = new (GetAllocator()) HSub(DataType::Type::kInt32, index, c0);
HInstruction* arr_set_7 = new (GetAllocator()) HArraySet(
array, add_0, c0, DataType::Type::kInt32, 0);
HInstruction* arr_set_8 = new (GetAllocator()) HArraySet(
array, sub_0, c0, DataType::Type::kInt32, 0);
entry->AddInstruction(array);
entry->AddInstruction(index);
entry->AddInstruction(add_0x80000000);
entry->AddInstruction(sub_0x80000000);
entry->AddInstruction(add_0x10);
entry->AddInstruction(sub_0xFFFFFFF0);
entry->AddInstruction(add_0x7FFFFFFF);
entry->AddInstruction(sub_0x80000001);
entry->AddInstruction(add_0);
entry->AddInstruction(sub_0);
entry->AddInstruction(arr_set_1);
entry->AddInstruction(arr_set_2);
entry->AddInstruction(arr_set_3);
entry->AddInstruction(arr_set_4);
entry->AddInstruction(arr_set_5);
entry->AddInstruction(arr_set_6);
entry->AddInstruction(arr_set_7);
entry->AddInstruction(arr_set_8);
ScopedArenaAllocator allocator(graph_->GetArenaStack());
LoadStoreAnalysis lsa(graph_, nullptr, &allocator, LoadStoreAnalysisType::kBasic);
lsa.Run();
const HeapLocationCollector& heap_location_collector = lsa.GetHeapLocationCollector();
// LSA/HeapLocationCollector should see those ArrayGet instructions.
ASSERT_EQ(heap_location_collector.GetNumberOfHeapLocations(), 8U);
ASSERT_TRUE(heap_location_collector.HasHeapStores());
// Test queries on HeapLocationCollector's aliasing matrix after load store analysis.
size_t loc1 = HeapLocationCollector::kHeapLocationNotFound;
size_t loc2 = HeapLocationCollector::kHeapLocationNotFound;
// Test alias: array[i+0x80000000] and array[i-0x80000000]
loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_1);
loc2 = heap_location_collector.GetArrayHeapLocation(arr_set_2);
ASSERT_TRUE(heap_location_collector.MayAlias(loc1, loc2));
// Test alias: array[i+0x10] and array[i-0xFFFFFFF0]
loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_3);
loc2 = heap_location_collector.GetArrayHeapLocation(arr_set_4);
ASSERT_TRUE(heap_location_collector.MayAlias(loc1, loc2));
// Test alias: array[i+0x7FFFFFFF] and array[i-0x80000001]
loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_5);
loc2 = heap_location_collector.GetArrayHeapLocation(arr_set_6);
ASSERT_TRUE(heap_location_collector.MayAlias(loc1, loc2));
// Test alias: array[i+0] and array[i-0]
loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_7);
loc2 = heap_location_collector.GetArrayHeapLocation(arr_set_8);
ASSERT_TRUE(heap_location_collector.MayAlias(loc1, loc2));
// Should not alias:
loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_2);
loc2 = heap_location_collector.GetArrayHeapLocation(arr_set_6);
ASSERT_FALSE(heap_location_collector.MayAlias(loc1, loc2));
// Should not alias:
loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_7);
loc2 = heap_location_collector.GetArrayHeapLocation(arr_set_2);
ASSERT_FALSE(heap_location_collector.MayAlias(loc1, loc2));
}
TEST_F(LoadStoreAnalysisTest, TestHuntOriginalRef) {
CreateGraph();
HBasicBlock* entry = new (GetAllocator()) HBasicBlock(graph_);
graph_->AddBlock(entry);
graph_->SetEntryBlock(entry);
// Different ways where orignal array reference are transformed & passed to ArrayGet.
// ParameterValue --> ArrayGet
// ParameterValue --> BoundType --> ArrayGet
// ParameterValue --> BoundType --> NullCheck --> ArrayGet
// ParameterValue --> BoundType --> NullCheck --> IntermediateAddress --> ArrayGet
HInstruction* c1 = graph_->GetIntConstant(1);
HInstruction* array = new (GetAllocator()) HParameterValue(graph_->GetDexFile(),
dex::TypeIndex(0),
0,
DataType::Type::kReference);
HInstruction* array_get1 = new (GetAllocator()) HArrayGet(array,
c1,
DataType::Type::kInt32,
0);
HInstruction* bound_type = new (GetAllocator()) HBoundType(array);
HInstruction* array_get2 = new (GetAllocator()) HArrayGet(bound_type,
c1,
DataType::Type::kInt32,
0);
HInstruction* null_check = new (GetAllocator()) HNullCheck(bound_type, 0);
HInstruction* array_get3 = new (GetAllocator()) HArrayGet(null_check,
c1,
DataType::Type::kInt32,
0);
HInstruction* inter_addr = new (GetAllocator()) HIntermediateAddress(null_check, c1, 0);
HInstruction* array_get4 = new (GetAllocator()) HArrayGet(inter_addr,
c1,
DataType::Type::kInt32,
0);
entry->AddInstruction(array);
entry->AddInstruction(array_get1);
entry->AddInstruction(bound_type);
entry->AddInstruction(array_get2);
entry->AddInstruction(null_check);
entry->AddInstruction(array_get3);
entry->AddInstruction(inter_addr);
entry->AddInstruction(array_get4);
ScopedArenaAllocator allocator(graph_->GetArenaStack());
HeapLocationCollector heap_location_collector(graph_, &allocator, LoadStoreAnalysisType::kFull);
heap_location_collector.VisitBasicBlock(entry);
// Test that the HeapLocationCollector should be able to tell
// that there is only ONE array location, no matter how many
// times the original reference has been transformed by BoundType,
// NullCheck, IntermediateAddress, etc.
ASSERT_EQ(heap_location_collector.GetNumberOfHeapLocations(), 1U);
size_t loc1 = heap_location_collector.GetArrayHeapLocation(array_get1);
size_t loc2 = heap_location_collector.GetArrayHeapLocation(array_get2);
size_t loc3 = heap_location_collector.GetArrayHeapLocation(array_get3);
size_t loc4 = heap_location_collector.GetArrayHeapLocation(array_get4);
ASSERT_TRUE(loc1 != HeapLocationCollector::kHeapLocationNotFound);
ASSERT_EQ(loc1, loc2);
ASSERT_EQ(loc1, loc3);
ASSERT_EQ(loc1, loc4);
}
void LoadStoreAnalysisTest::CheckReachability(const AdjacencyListGraph& adj,
const std::vector<AdjacencyListGraph::Edge>& reach) {
uint32_t cnt = 0;
for (HBasicBlock* blk : graph_->GetBlocks()) {
if (adj.HasBlock(blk)) {
for (HBasicBlock* other : graph_->GetBlocks()) {
if (other == nullptr) {
continue;
}
if (adj.HasBlock(other)) {
bool contains_edge =
std::find(reach.begin(),
reach.end(),
AdjacencyListGraph::Edge { adj.GetName(blk), adj.GetName(other) }) !=
reach.end();
if (graph_->PathBetween(blk, other)) {
cnt++;
EXPECT_TRUE(contains_edge) << "Unexpected edge found between " << adj.GetName(blk)
<< " and " << adj.GetName(other);
} else {
EXPECT_FALSE(contains_edge) << "Expected edge not found between " << adj.GetName(blk)
<< " and " << adj.GetName(other);
}
} else if (graph_->PathBetween(blk, other)) {
ADD_FAILURE() << "block " << adj.GetName(blk)
<< " has path to non-adjacency-graph block id: " << other->GetBlockId();
}
}
} else {
for (HBasicBlock* other : graph_->GetBlocks()) {
if (other == nullptr) {
continue;
}
EXPECT_FALSE(graph_->PathBetween(blk, other))
<< "Reachable blocks outside of adjacency-list";
}
}
}
EXPECT_EQ(cnt, reach.size());
}
TEST_F(LoadStoreAnalysisTest, ReachabilityTest1) {
CreateGraph();
AdjacencyListGraph blks(SetupFromAdjacencyList(
"entry",
"exit",
{ { "entry", "left" }, { "entry", "right" }, { "left", "exit" }, { "right", "exit" } }));
CheckReachability(blks,
{
{ "entry", "left" },
{ "entry", "right" },
{ "entry", "exit" },
{ "right", "exit" },
{ "left", "exit" },
});
}
TEST_F(LoadStoreAnalysisTest, ReachabilityTest2) {
CreateGraph();
AdjacencyListGraph blks(SetupFromAdjacencyList(
"entry",
"exit",
{ { "entry", "loop-header" }, { "loop-header", "loop" }, { "loop", "loop-header" } }));
CheckReachability(blks,
{
{ "entry", "loop-header" },
{ "entry", "loop" },
{ "loop-header", "loop-header" },
{ "loop-header", "loop" },
{ "loop", "loop-header" },
{ "loop", "loop" },
});
}
TEST_F(LoadStoreAnalysisTest, ReachabilityTest3) {
CreateGraph();
AdjacencyListGraph blks(SetupFromAdjacencyList("entry",
"exit",
{ { "entry", "loop-header" },
{ "loop-header", "loop" },
{ "loop", "loop-header" },
{ "entry", "right" },
{ "right", "exit" } }));
CheckReachability(blks,
{
{ "entry", "loop-header" },
{ "entry", "loop" },
{ "entry", "right" },
{ "entry", "exit" },
{ "loop-header", "loop-header" },
{ "loop-header", "loop" },
{ "loop", "loop-header" },
{ "loop", "loop" },
{ "right", "exit" },
});
}
static bool AreExclusionsIndependent(HGraph* graph, const ExecutionSubgraph* esg) {
auto excluded = esg->GetExcludedCohorts();
if (excluded.size() < 2) {
return true;
}
for (auto first = excluded.begin(); first != excluded.end(); ++first) {
for (auto second = excluded.begin(); second != excluded.end(); ++second) {
if (first == second) {
continue;
}
for (const HBasicBlock* entry : first->EntryBlocks()) {
for (const HBasicBlock* exit : second->ExitBlocks()) {
if (graph->PathBetween(exit, entry)) {
return false;
}
}
}
}
}
return true;
}
// // ENTRY
// obj = new Obj();
// if (parameter_value) {
// // LEFT
// call_func(obj);
// } else {
// // RIGHT
// obj.field = 1;
// }
// // EXIT
// obj.field;
TEST_F(LoadStoreAnalysisTest, PartialEscape) {
CreateGraph();
AdjacencyListGraph blks(SetupFromAdjacencyList(
"entry",
"exit",
{ { "entry", "left" }, { "entry", "right" }, { "left", "exit" }, { "right", "exit" } }));
HBasicBlock* entry = blks.Get("entry");
HBasicBlock* left = blks.Get("left");
HBasicBlock* right = blks.Get("right");
HBasicBlock* exit = blks.Get("exit");
HInstruction* bool_value = new (GetAllocator())
HParameterValue(graph_->GetDexFile(), dex::TypeIndex(1), 1, DataType::Type::kBool);
HInstruction* c0 = graph_->GetIntConstant(0);
HInstruction* cls = new (GetAllocator()) HLoadClass(graph_->GetCurrentMethod(),
dex::TypeIndex(10),
graph_->GetDexFile(),
ScopedNullHandle<mirror::Class>(),
false,
0,
false);
HInstruction* new_inst =
new (GetAllocator()) HNewInstance(cls,
0,
dex::TypeIndex(10),
graph_->GetDexFile(),
false,
QuickEntrypointEnum::kQuickAllocObjectInitialized);
HInstruction* if_inst = new (GetAllocator()) HIf(bool_value);
entry->AddInstruction(bool_value);
entry->AddInstruction(cls);
entry->AddInstruction(new_inst);
entry->AddInstruction(if_inst);
HInstruction* call_left = new (GetAllocator())
HInvokeStaticOrDirect(GetAllocator(),
1,
DataType::Type::kVoid,
0,
{ nullptr, 0 },
nullptr,
{},
InvokeType::kStatic,
{ nullptr, 0 },
HInvokeStaticOrDirect::ClinitCheckRequirement::kNone);
HInstruction* goto_left = new (GetAllocator()) HGoto();
call_left->AsInvoke()->SetRawInputAt(0, new_inst);
left->AddInstruction(call_left);
left->AddInstruction(goto_left);
HInstruction* write_right = new (GetAllocator()) HInstanceFieldSet(new_inst,
c0,
nullptr,
DataType::Type::kInt32,
MemberOffset(32),
false,
0,
0,
graph_->GetDexFile(),
0);
HInstruction* goto_right = new (GetAllocator()) HGoto();
right->AddInstruction(write_right);
right->AddInstruction(goto_right);
HInstruction* read_final = new (GetAllocator()) HInstanceFieldGet(new_inst,
nullptr,
DataType::Type::kInt32,
MemberOffset(32),
false,
0,
0,
graph_->GetDexFile(),
0);
exit->AddInstruction(read_final);
ScopedArenaAllocator allocator(graph_->GetArenaStack());
LoadStoreAnalysis lsa(graph_, nullptr, &allocator, LoadStoreAnalysisType::kFull);
lsa.Run();
const HeapLocationCollector& heap_location_collector = lsa.GetHeapLocationCollector();
ReferenceInfo* info = heap_location_collector.FindReferenceInfoOf(new_inst);
ASSERT_TRUE(info->IsPartialSingleton());
const ExecutionSubgraph* esg = info->GetNoEscapeSubgraph();
ASSERT_TRUE(esg->IsValid());
ASSERT_TRUE(IsValidSubgraph(esg));
ASSERT_TRUE(AreExclusionsIndependent(graph_, esg));
std::unordered_set<const HBasicBlock*> contents(esg->ReachableBlocks().begin(),
esg->ReachableBlocks().end());
ASSERT_EQ(contents.size(), 3u);
ASSERT_TRUE(contents.find(blks.Get("left")) == contents.end());
ASSERT_TRUE(contents.find(blks.Get("right")) != contents.end());
ASSERT_TRUE(contents.find(blks.Get("entry")) != contents.end());
ASSERT_TRUE(contents.find(blks.Get("exit")) != contents.end());
}
// // ENTRY
// obj = new Obj();
// if (parameter_value) {
// // LEFT
// call_func(obj);
// } else {
// // RIGHT
// obj.field = 1;
// }
// // EXIT
// obj.field2;
TEST_F(LoadStoreAnalysisTest, PartialEscape2) {
CreateGraph();
AdjacencyListGraph blks(SetupFromAdjacencyList(
"entry",
"exit",
{ { "entry", "left" }, { "entry", "right" }, { "left", "exit" }, { "right", "exit" } }));
HBasicBlock* entry = blks.Get("entry");
HBasicBlock* left = blks.Get("left");
HBasicBlock* right = blks.Get("right");
HBasicBlock* exit = blks.Get("exit");
HInstruction* bool_value = new (GetAllocator())
HParameterValue(graph_->GetDexFile(), dex::TypeIndex(1), 1, DataType::Type::kBool);
HInstruction* c0 = graph_->GetIntConstant(0);
HInstruction* cls = new (GetAllocator()) HLoadClass(graph_->GetCurrentMethod(),
dex::TypeIndex(10),
graph_->GetDexFile(),
ScopedNullHandle<mirror::Class>(),
false,
0,
false);
HInstruction* new_inst =
new (GetAllocator()) HNewInstance(cls,
0,
dex::TypeIndex(10),
graph_->GetDexFile(),
false,
QuickEntrypointEnum::kQuickAllocObjectInitialized);
HInstruction* if_inst = new (GetAllocator()) HIf(bool_value);
entry->AddInstruction(bool_value);
entry->AddInstruction(cls);
entry->AddInstruction(new_inst);
entry->AddInstruction(if_inst);
HInstruction* call_left = new (GetAllocator())
HInvokeStaticOrDirect(GetAllocator(),
1,
DataType::Type::kVoid,
0,
{ nullptr, 0 },
nullptr,
{},
InvokeType::kStatic,
{ nullptr, 0 },
HInvokeStaticOrDirect::ClinitCheckRequirement::kNone);
HInstruction* goto_left = new (GetAllocator()) HGoto();
call_left->AsInvoke()->SetRawInputAt(0, new_inst);
left->AddInstruction(call_left);
left->AddInstruction(goto_left);
HInstruction* write_right = new (GetAllocator()) HInstanceFieldSet(new_inst,
c0,
nullptr,
DataType::Type::kInt32,
MemberOffset(32),
false,
0,
0,
graph_->GetDexFile(),
0);
HInstruction* goto_right = new (GetAllocator()) HGoto();
right->AddInstruction(write_right);
right->AddInstruction(goto_right);
HInstruction* read_final = new (GetAllocator()) HInstanceFieldGet(new_inst,
nullptr,
DataType::Type::kInt32,
MemberOffset(16),
false,
0,
0,
graph_->GetDexFile(),
0);
exit->AddInstruction(read_final);
ScopedArenaAllocator allocator(graph_->GetArenaStack());
LoadStoreAnalysis lsa(graph_, nullptr, &allocator, LoadStoreAnalysisType::kFull);
lsa.Run();
const HeapLocationCollector& heap_location_collector = lsa.GetHeapLocationCollector();
ReferenceInfo* info = heap_location_collector.FindReferenceInfoOf(new_inst);
ASSERT_TRUE(info->IsPartialSingleton());
const ExecutionSubgraph* esg = info->GetNoEscapeSubgraph();
ASSERT_TRUE(esg->IsValid());
ASSERT_TRUE(IsValidSubgraph(esg));
ASSERT_TRUE(AreExclusionsIndependent(graph_, esg));
std::unordered_set<const HBasicBlock*> contents(esg->ReachableBlocks().begin(),
esg->ReachableBlocks().end());
ASSERT_EQ(contents.size(), 3u);
ASSERT_TRUE(contents.find(blks.Get("left")) == contents.end());
ASSERT_TRUE(contents.find(blks.Get("right")) != contents.end());
ASSERT_TRUE(contents.find(blks.Get("entry")) != contents.end());
ASSERT_TRUE(contents.find(blks.Get("exit")) != contents.end());
}
// // ENTRY
// obj = new Obj();
// obj.field = 10;
// if (parameter_value) {
// // LEFT
// call_func(obj);
// } else {
// // RIGHT
// obj.field = 20;
// }
// // EXIT
// obj.field;
TEST_F(LoadStoreAnalysisTest, PartialEscape3) {
CreateGraph();
AdjacencyListGraph blks(SetupFromAdjacencyList(
"entry",
"exit",
{ { "entry", "left" }, { "entry", "right" }, { "left", "exit" }, { "right", "exit" } }));
HBasicBlock* entry = blks.Get("entry");
HBasicBlock* left = blks.Get("left");
HBasicBlock* right = blks.Get("right");
HBasicBlock* exit = blks.Get("exit");
HInstruction* bool_value = new (GetAllocator())
HParameterValue(graph_->GetDexFile(), dex::TypeIndex(1), 1, DataType::Type::kBool);
HInstruction* c10 = graph_->GetIntConstant(10);
HInstruction* c20 = graph_->GetIntConstant(20);
HInstruction* cls = new (GetAllocator()) HLoadClass(graph_->GetCurrentMethod(),
dex::TypeIndex(10),
graph_->GetDexFile(),
ScopedNullHandle<mirror::Class>(),
false,
0,
false);
HInstruction* new_inst =
new (GetAllocator()) HNewInstance(cls,
0,
dex::TypeIndex(10),
graph_->GetDexFile(),
false,
QuickEntrypointEnum::kQuickAllocObjectInitialized);
HInstruction* write_entry = new (GetAllocator()) HInstanceFieldSet(new_inst,
c10,
nullptr,
DataType::Type::kInt32,
MemberOffset(32),
false,
0,
0,
graph_->GetDexFile(),
0);
HInstruction* if_inst = new (GetAllocator()) HIf(bool_value);
entry->AddInstruction(bool_value);
entry->AddInstruction(cls);
entry->AddInstruction(new_inst);
entry->AddInstruction(write_entry);
entry->AddInstruction(if_inst);
HInstruction* call_left = new (GetAllocator())
HInvokeStaticOrDirect(GetAllocator(),
1,
DataType::Type::kVoid,
0,
{ nullptr, 0 },
nullptr,
{},
InvokeType::kStatic,
{ nullptr, 0 },
HInvokeStaticOrDirect::ClinitCheckRequirement::kNone);
HInstruction* goto_left = new (GetAllocator()) HGoto();
call_left->AsInvoke()->SetRawInputAt(0, new_inst);
left->AddInstruction(call_left);
left->AddInstruction(goto_left);
HInstruction* write_right = new (GetAllocator()) HInstanceFieldSet(new_inst,
c20,
nullptr,
DataType::Type::kInt32,
MemberOffset(32),
false,
0,
0,
graph_->GetDexFile(),
0);
HInstruction* goto_right = new (GetAllocator()) HGoto();
right->AddInstruction(write_right);
right->AddInstruction(goto_right);
HInstruction* read_final = new (GetAllocator()) HInstanceFieldGet(new_inst,
nullptr,
DataType::Type::kInt32,
MemberOffset(32),
false,
0,
0,
graph_->GetDexFile(),
0);
exit->AddInstruction(read_final);
ScopedArenaAllocator allocator(graph_->GetArenaStack());
LoadStoreAnalysis lsa(graph_, nullptr, &allocator, LoadStoreAnalysisType::kFull);
lsa.Run();
const HeapLocationCollector& heap_location_collector = lsa.GetHeapLocationCollector();
ReferenceInfo* info = heap_location_collector.FindReferenceInfoOf(new_inst);
ASSERT_TRUE(info->IsPartialSingleton());
const ExecutionSubgraph* esg = info->GetNoEscapeSubgraph();
ASSERT_TRUE(esg->IsValid());
ASSERT_TRUE(IsValidSubgraph(esg));
ASSERT_TRUE(AreExclusionsIndependent(graph_, esg));
std::unordered_set<const HBasicBlock*> contents(esg->ReachableBlocks().begin(),
esg->ReachableBlocks().end());
ASSERT_EQ(contents.size(), 3u);
ASSERT_TRUE(contents.find(blks.Get("left")) == contents.end());
ASSERT_TRUE(contents.find(blks.Get("right")) != contents.end());
ASSERT_TRUE(contents.find(blks.Get("entry")) != contents.end());
ASSERT_TRUE(contents.find(blks.Get("exit")) != contents.end());
}
// For simplicity Partial LSE considers check-casts to escape. It means we don't
// need to worry about inserting throws.
// // ENTRY
// obj = new Obj();
// obj.field = 10;
// if (parameter_value) {
// // LEFT
// (Foo)obj;
// } else {
// // RIGHT
// obj.field = 20;
// }
// // EXIT
// obj.field;
TEST_F(LoadStoreAnalysisTest, PartialEscape4) {
CreateGraph();
AdjacencyListGraph blks(SetupFromAdjacencyList(
"entry",
"exit",
{ { "entry", "left" }, { "entry", "right" }, { "left", "exit" }, { "right", "exit" } }));
HBasicBlock* entry = blks.Get("entry");
HBasicBlock* left = blks.Get("left");
HBasicBlock* right = blks.Get("right");
HBasicBlock* exit = blks.Get("exit");
HInstruction* bool_value = new (GetAllocator())
HParameterValue(graph_->GetDexFile(), dex::TypeIndex(1), 1, DataType::Type::kBool);
HInstruction* c10 = graph_->GetIntConstant(10);
HInstruction* c20 = graph_->GetIntConstant(20);
HInstruction* cls = MakeClassLoad();
HInstruction* new_inst = MakeNewInstance(cls);
HInstruction* write_entry = MakeIFieldSet(new_inst, c10, MemberOffset(32));
HInstruction* if_inst = new (GetAllocator()) HIf(bool_value);
entry->AddInstruction(bool_value);
entry->AddInstruction(cls);
entry->AddInstruction(new_inst);
entry->AddInstruction(write_entry);
entry->AddInstruction(if_inst);
ScopedNullHandle<mirror::Class> null_klass_;
HInstruction* cls2 = MakeClassLoad();
HInstruction* check_cast = new (GetAllocator()) HCheckCast(
new_inst, cls2, TypeCheckKind::kExactCheck, null_klass_, 0, GetAllocator(), nullptr, nullptr);
HInstruction* goto_left = new (GetAllocator()) HGoto();
left->AddInstruction(cls2);
left->AddInstruction(check_cast);
left->AddInstruction(goto_left);
HInstruction* write_right = MakeIFieldSet(new_inst, c20, MemberOffset(32));
HInstruction* goto_right = new (GetAllocator()) HGoto();
right->AddInstruction(write_right);
right->AddInstruction(goto_right);
HInstruction* read_final = MakeIFieldGet(new_inst, DataType::Type::kInt32, MemberOffset(32));
exit->AddInstruction(read_final);
ScopedArenaAllocator allocator(graph_->GetArenaStack());
LoadStoreAnalysis lsa(graph_, nullptr, &allocator, LoadStoreAnalysisType::kFull);
lsa.Run();
const HeapLocationCollector& heap_location_collector = lsa.GetHeapLocationCollector();
ReferenceInfo* info = heap_location_collector.FindReferenceInfoOf(new_inst);
ASSERT_TRUE(info->IsPartialSingleton());
const ExecutionSubgraph* esg = info->GetNoEscapeSubgraph();
ASSERT_TRUE(esg->IsValid());
ASSERT_TRUE(IsValidSubgraph(esg));
ASSERT_TRUE(AreExclusionsIndependent(graph_, esg));
std::unordered_set<const HBasicBlock*> contents(esg->ReachableBlocks().begin(),
esg->ReachableBlocks().end());
ASSERT_EQ(contents.size(), 3u);
ASSERT_TRUE(contents.find(blks.Get("left")) == contents.end());
ASSERT_TRUE(contents.find(blks.Get("right")) != contents.end());
ASSERT_TRUE(contents.find(blks.Get("entry")) != contents.end());
ASSERT_TRUE(contents.find(blks.Get("exit")) != contents.end());
}
// For simplicity Partial LSE considers instance-ofs with bitvectors to escape.
// // ENTRY
// obj = new Obj();
// obj.field = 10;
// if (parameter_value) {
// // LEFT
// obj instanceof /*bitvector*/ Foo;
// } else {
// // RIGHT
// obj.field = 20;
// }
// // EXIT
// obj.field;
TEST_F(LoadStoreAnalysisTest, PartialEscape5) {
ScopedObjectAccess soa(Thread::Current());
VariableSizedHandleScope vshs(soa.Self());
CreateGraph(&vshs);
AdjacencyListGraph blks(SetupFromAdjacencyList(
"entry",
"exit",
{ { "entry", "left" }, { "entry", "right" }, { "left", "exit" }, { "right", "exit" } }));
HBasicBlock* entry = blks.Get("entry");
HBasicBlock* left = blks.Get("left");
HBasicBlock* right = blks.Get("right");
HBasicBlock* exit = blks.Get("exit");
HInstruction* bool_value = new (GetAllocator())
HParameterValue(graph_->GetDexFile(), dex::TypeIndex(1), 1, DataType::Type::kBool);
HInstruction* c10 = graph_->GetIntConstant(10);
HInstruction* c20 = graph_->GetIntConstant(20);
HIntConstant* bs1 = graph_->GetIntConstant(0xffff);
HIntConstant* bs2 = graph_->GetIntConstant(0x00ff);
HInstruction* cls = MakeClassLoad();
HInstruction* null_const = graph_->GetNullConstant();
HInstruction* new_inst = MakeNewInstance(cls);
HInstruction* write_entry = MakeIFieldSet(new_inst, c10, MemberOffset(32));
HInstruction* if_inst = new (GetAllocator()) HIf(bool_value);
entry->AddInstruction(bool_value);
entry->AddInstruction(cls);
entry->AddInstruction(new_inst);
entry->AddInstruction(write_entry);
entry->AddInstruction(if_inst);
ScopedNullHandle<mirror::Class> null_klass_;
HInstruction* instanceof = new (GetAllocator()) HInstanceOf(new_inst,
null_const,
TypeCheckKind::kBitstringCheck,
null_klass_,
0,
GetAllocator(),
bs1,
bs2);
HInstruction* goto_left = new (GetAllocator()) HGoto();
left->AddInstruction(instanceof);
left->AddInstruction(goto_left);
HInstruction* write_right = MakeIFieldSet(new_inst, c20, MemberOffset(32));
HInstruction* goto_right = new (GetAllocator()) HGoto();
right->AddInstruction(write_right);
right->AddInstruction(goto_right);
HInstruction* read_final = MakeIFieldGet(new_inst, DataType::Type::kInt32, MemberOffset(32));
exit->AddInstruction(read_final);
ScopedArenaAllocator allocator(graph_->GetArenaStack());
LoadStoreAnalysis lsa(graph_, nullptr, &allocator, LoadStoreAnalysisType::kFull);
lsa.Run();
const HeapLocationCollector& heap_location_collector = lsa.GetHeapLocationCollector();
ReferenceInfo* info = heap_location_collector.FindReferenceInfoOf(new_inst);
ASSERT_TRUE(info->IsPartialSingleton());
const ExecutionSubgraph* esg = info->GetNoEscapeSubgraph();
ASSERT_TRUE(esg->IsValid());
ASSERT_TRUE(IsValidSubgraph(esg));
ASSERT_TRUE(AreExclusionsIndependent(graph_, esg));
std::unordered_set<const HBasicBlock*> contents(esg->ReachableBlocks().begin(),
esg->ReachableBlocks().end());
ASSERT_EQ(contents.size(), 3u);
ASSERT_TRUE(contents.find(blks.Get("left")) == contents.end());
ASSERT_TRUE(contents.find(blks.Get("right")) != contents.end());
ASSERT_TRUE(contents.find(blks.Get("entry")) != contents.end());
ASSERT_TRUE(contents.find(blks.Get("exit")) != contents.end());
}
// before we had predicated-set we needed to be able to remove the store as
// well. This test makes sure that still works.
// // ENTRY
// obj = new Obj();
// if (parameter_value) {
// // LEFT
// call_func(obj);
// } else {
// // RIGHT
// obj.f1 = 0;
// }
// // EXIT
// // call_func prevents the elimination of this store.
// obj.f2 = 0;
TEST_F(LoadStoreAnalysisTest, TotalEscapeAdjacentNoPredicated) {
CreateGraph();
AdjacencyListGraph blks(SetupFromAdjacencyList(
"entry",
"exit",
{{"entry", "left"}, {"entry", "right"}, {"left", "exit"}, {"right", "exit"}}));
HBasicBlock* entry = blks.Get("entry");
HBasicBlock* left = blks.Get("left");
HBasicBlock* right = blks.Get("right");
HBasicBlock* exit = blks.Get("exit");
HInstruction* bool_value = new (GetAllocator())
HParameterValue(graph_->GetDexFile(), dex::TypeIndex(1), 1, DataType::Type::kBool);
HInstruction* c0 = graph_->GetIntConstant(0);
HInstruction* cls = new (GetAllocator()) HLoadClass(graph_->GetCurrentMethod(),
dex::TypeIndex(10),
graph_->GetDexFile(),
ScopedNullHandle<mirror::Class>(),
false,
0,
false);
HInstruction* new_inst =
new (GetAllocator()) HNewInstance(cls,
0,
dex::TypeIndex(10),
graph_->GetDexFile(),
false,
QuickEntrypointEnum::kQuickAllocObjectInitialized);
HInstruction* if_inst = new (GetAllocator()) HIf(bool_value);
entry->AddInstruction(bool_value);
entry->AddInstruction(cls);
entry->AddInstruction(new_inst);
entry->AddInstruction(if_inst);
HInstruction* call_left = new (GetAllocator())
HInvokeStaticOrDirect(GetAllocator(),
1,
DataType::Type::kVoid,
0,
{nullptr, 0},
nullptr,
{},
InvokeType::kStatic,
{nullptr, 0},
HInvokeStaticOrDirect::ClinitCheckRequirement::kNone);
HInstruction* goto_left = new (GetAllocator()) HGoto();
call_left->AsInvoke()->SetRawInputAt(0, new_inst);
left->AddInstruction(call_left);
left->AddInstruction(goto_left);
HInstruction* write_right = new (GetAllocator()) HInstanceFieldSet(new_inst,
c0,
nullptr,
DataType::Type::kInt32,
MemberOffset(32),
false,
0,
0,
graph_->GetDexFile(),
0);
HInstruction* goto_right = new (GetAllocator()) HGoto();
right->AddInstruction(write_right);
right->AddInstruction(goto_right);
HInstruction* write_final = new (GetAllocator()) HInstanceFieldSet(new_inst,
c0,
nullptr,
DataType::Type::kInt32,
MemberOffset(16),
false,
0,
0,
graph_->GetDexFile(),
0);
exit->AddInstruction(write_final);
ScopedArenaAllocator allocator(graph_->GetArenaStack());
graph_->ClearDominanceInformation();
graph_->BuildDominatorTree();
LoadStoreAnalysis lsa(
graph_, nullptr, &allocator, LoadStoreAnalysisType::kNoPredicatedInstructions);
lsa.Run();
const HeapLocationCollector& heap_location_collector = lsa.GetHeapLocationCollector();
ReferenceInfo* info = heap_location_collector.FindReferenceInfoOf(new_inst);
ASSERT_FALSE(info->IsPartialSingleton());
}
// With predicated-set we can (partially) remove the store as well.
// // ENTRY
// obj = new Obj();
// if (parameter_value) {
// // LEFT
// call_func(obj);
// } else {
// // RIGHT
// obj.f1 = 0;
// }
// // EXIT
// // call_func prevents the elimination of this store.
// obj.f2 = 0;
TEST_F(LoadStoreAnalysisTest, TotalEscapeAdjacent) {
CreateGraph();
AdjacencyListGraph blks(SetupFromAdjacencyList(
"entry",
"exit",
{ { "entry", "left" }, { "entry", "right" }, { "left", "exit" }, { "right", "exit" } }));
HBasicBlock* entry = blks.Get("entry");
HBasicBlock* left = blks.Get("left");
HBasicBlock* right = blks.Get("right");
HBasicBlock* exit = blks.Get("exit");
HInstruction* bool_value = new (GetAllocator())
HParameterValue(graph_->GetDexFile(), dex::TypeIndex(1), 1, DataType::Type::kBool);
HInstruction* c0 = graph_->GetIntConstant(0);
HInstruction* cls = new (GetAllocator()) HLoadClass(graph_->GetCurrentMethod(),
dex::TypeIndex(10),
graph_->GetDexFile(),
ScopedNullHandle<mirror::Class>(),
false,
0,
false);
HInstruction* new_inst =
new (GetAllocator()) HNewInstance(cls,
0,
dex::TypeIndex(10),
graph_->GetDexFile(),
false,
QuickEntrypointEnum::kQuickAllocObjectInitialized);
HInstruction* if_inst = new (GetAllocator()) HIf(bool_value);
entry->AddInstruction(bool_value);
entry->AddInstruction(cls);
entry->AddInstruction(new_inst);
entry->AddInstruction(if_inst);
HInstruction* call_left = new (GetAllocator())
HInvokeStaticOrDirect(GetAllocator(),
1,
DataType::Type::kVoid,
0,
{ nullptr, 0 },
nullptr,
{},
InvokeType::kStatic,
{ nullptr, 0 },
HInvokeStaticOrDirect::ClinitCheckRequirement::kNone);
HInstruction* goto_left = new (GetAllocator()) HGoto();
call_left->AsInvoke()->SetRawInputAt(0, new_inst);
left->AddInstruction(call_left);
left->AddInstruction(goto_left);
HInstruction* write_right = new (GetAllocator()) HInstanceFieldSet(new_inst,
c0,
nullptr,
DataType::Type::kInt32,
MemberOffset(32),
false,
0,
0,
graph_->GetDexFile(),
0);
HInstruction* goto_right = new (GetAllocator()) HGoto();
right->AddInstruction(write_right);
right->AddInstruction(goto_right);
HInstruction* write_final = new (GetAllocator()) HInstanceFieldSet(new_inst,
c0,
nullptr,
DataType::Type::kInt32,
MemberOffset(16),
false,
0,
0,
graph_->GetDexFile(),
0);
exit->AddInstruction(write_final);
ScopedArenaAllocator allocator(graph_->GetArenaStack());
graph_->ClearDominanceInformation();
graph_->BuildDominatorTree();
LoadStoreAnalysis lsa(graph_, nullptr, &allocator, LoadStoreAnalysisType::kFull);
lsa.Run();
const HeapLocationCollector& heap_location_collector = lsa.GetHeapLocationCollector();
ReferenceInfo* info = heap_location_collector.FindReferenceInfoOf(new_inst);
ASSERT_TRUE(info->IsPartialSingleton());
const ExecutionSubgraph* esg = info->GetNoEscapeSubgraph();
EXPECT_TRUE(esg->IsValid()) << esg->GetExcludedCohorts();
EXPECT_TRUE(IsValidSubgraph(esg));
std::unordered_set<const HBasicBlock*> contents(esg->ReachableBlocks().begin(),
esg->ReachableBlocks().end());
EXPECT_EQ(contents.size(), 3u);
EXPECT_TRUE(contents.find(blks.Get("left")) == contents.end());
EXPECT_FALSE(contents.find(blks.Get("right")) == contents.end());
EXPECT_FALSE(contents.find(blks.Get("entry")) == contents.end());
EXPECT_FALSE(contents.find(blks.Get("exit")) == contents.end());
}
// // ENTRY
// obj = new Obj();
// if (parameter_value) {
// // LEFT
// call_func(obj);
// } else {
// // RIGHT
// obj.f0 = 0;
// call_func2(obj);
// }
// // EXIT
// obj.f0;
TEST_F(LoadStoreAnalysisTest, TotalEscape) {
CreateGraph();
AdjacencyListGraph blks(SetupFromAdjacencyList(
"entry",
"exit",
{ { "entry", "left" }, { "entry", "right" }, { "left", "exit" }, { "right", "exit" } }));
HBasicBlock* entry = blks.Get("entry");
HBasicBlock* left = blks.Get("left");
HBasicBlock* right = blks.Get("right");
HBasicBlock* exit = blks.Get("exit");
HInstruction* bool_value = new (GetAllocator())
HParameterValue(graph_->GetDexFile(), dex::TypeIndex(1), 1, DataType::Type::kBool);
HInstruction* c0 = graph_->GetIntConstant(0);
HInstruction* cls = new (GetAllocator()) HLoadClass(graph_->GetCurrentMethod(),
dex::TypeIndex(10),
graph_->GetDexFile(),
ScopedNullHandle<mirror::Class>(),
false,
0,
false);
HInstruction* new_inst =
new (GetAllocator()) HNewInstance(cls,
0,
dex::TypeIndex(10),
graph_->GetDexFile(),
false,
QuickEntrypointEnum::kQuickAllocObjectInitialized);
HInstruction* if_inst = new (GetAllocator()) HIf(bool_value);
entry->AddInstruction(bool_value);
entry->AddInstruction(cls);
entry->AddInstruction(new_inst);
entry->AddInstruction(if_inst);
HInstruction* call_left = new (GetAllocator())
HInvokeStaticOrDirect(GetAllocator(),
1,
DataType::Type::kVoid,
0,
{ nullptr, 0 },
nullptr,
{},
InvokeType::kStatic,
{ nullptr, 0 },
HInvokeStaticOrDirect::ClinitCheckRequirement::kNone);
HInstruction* goto_left = new (GetAllocator()) HGoto();
call_left->AsInvoke()->SetRawInputAt(0, new_inst);
left->AddInstruction(call_left);
left->AddInstruction(goto_left);
HInstruction* call_right = new (GetAllocator())
HInvokeStaticOrDirect(GetAllocator(),
1,
DataType::Type::kVoid,
0,
{ nullptr, 0 },
nullptr,
{},
InvokeType::kStatic,
{ nullptr, 0 },
HInvokeStaticOrDirect::ClinitCheckRequirement::kNone);
HInstruction* write_right = new (GetAllocator()) HInstanceFieldSet(new_inst,
c0,
nullptr,
DataType::Type::kInt32,
MemberOffset(32),
false,
0,
0,
graph_->GetDexFile(),
0);
HInstruction* goto_right = new (GetAllocator()) HGoto();
call_right->AsInvoke()->SetRawInputAt(0, new_inst);
right->AddInstruction(write_right);
right->AddInstruction(call_right);
right->AddInstruction(goto_right);
HInstruction* read_final = new (GetAllocator()) HInstanceFieldGet(new_inst,
nullptr,
DataType::Type::kInt32,
MemberOffset(32),
false,
0,
0,
graph_->GetDexFile(),
0);
exit->AddInstruction(read_final);
ScopedArenaAllocator allocator(graph_->GetArenaStack());
LoadStoreAnalysis lsa(graph_, nullptr, &allocator, LoadStoreAnalysisType::kFull);
lsa.Run();
const HeapLocationCollector& heap_location_collector = lsa.GetHeapLocationCollector();
ReferenceInfo* info = heap_location_collector.FindReferenceInfoOf(new_inst);
ASSERT_FALSE(info->IsPartialSingleton());
}
// // ENTRY
// obj = new Obj();
// obj.foo = 0;
// // EXIT
// return obj;
TEST_F(LoadStoreAnalysisTest, TotalEscape2) {
CreateGraph();
AdjacencyListGraph blks(SetupFromAdjacencyList("entry", "exit", { { "entry", "exit" } }));
HBasicBlock* entry = blks.Get("entry");
HBasicBlock* exit = blks.Get("exit");
HInstruction* c0 = graph_->GetIntConstant(0);
HInstruction* cls = new (GetAllocator()) HLoadClass(graph_->GetCurrentMethod(),
dex::TypeIndex(10),
graph_->GetDexFile(),
ScopedNullHandle<mirror::Class>(),
false,
0,
false);
HInstruction* new_inst =
new (GetAllocator()) HNewInstance(cls,
0,
dex::TypeIndex(10),
graph_->GetDexFile(),
false,
QuickEntrypointEnum::kQuickAllocObjectInitialized);
HInstruction* write_start = new (GetAllocator()) HInstanceFieldSet(new_inst,
c0,
nullptr,
DataType::Type::kInt32,
MemberOffset(32),
false,
0,
0,
graph_->GetDexFile(),
0);
HInstruction* goto_inst = new (GetAllocator()) HGoto();
entry->AddInstruction(cls);
entry->AddInstruction(new_inst);
entry->AddInstruction(write_start);
entry->AddInstruction(goto_inst);
HInstruction* return_final = new (GetAllocator()) HReturn(new_inst);
exit->AddInstruction(return_final);
ScopedArenaAllocator allocator(graph_->GetArenaStack());
LoadStoreAnalysis lsa(graph_, nullptr, &allocator, LoadStoreAnalysisType::kFull);
lsa.Run();
const HeapLocationCollector& heap_location_collector = lsa.GetHeapLocationCollector();
ReferenceInfo* info = heap_location_collector.FindReferenceInfoOf(new_inst);
ASSERT_FALSE(info->IsPartialSingleton());
}
// // ENTRY
// obj = new Obj();
// if (parameter_value) {
// // HIGH_LEFT
// call_func(obj);
// } else {
// // HIGH_RIGHT
// obj.f0 = 1;
// }
// // MID
// obj.f0 *= 2;
// if (parameter_value2) {
// // LOW_LEFT
// call_func(obj);
// } else {
// // LOW_RIGHT
// obj.f0 = 1;
// }
// // EXIT
// obj.f0
TEST_F(LoadStoreAnalysisTest, DoubleDiamondEscape) {
CreateGraph();
AdjacencyListGraph blks(SetupFromAdjacencyList("entry",
"exit",
{ { "entry", "high_left" },
{ "entry", "high_right" },
{ "low_left", "exit" },
{ "low_right", "exit" },
{ "high_right", "mid" },
{ "high_left", "mid" },
{ "mid", "low_left" },
{ "mid", "low_right" } }));
HBasicBlock* entry = blks.Get("entry");
HBasicBlock* high_left = blks.Get("high_left");
HBasicBlock* high_right = blks.Get("high_right");
HBasicBlock* mid = blks.Get("mid");
HBasicBlock* low_left = blks.Get("low_left");
HBasicBlock* low_right = blks.Get("low_right");
HBasicBlock* exit = blks.Get("exit");
HInstruction* bool_value1 = new (GetAllocator())
HParameterValue(graph_->GetDexFile(), dex::TypeIndex(1), 1, DataType::Type::kBool);
HInstruction* bool_value2 = new (GetAllocator())
HParameterValue(graph_->GetDexFile(), dex::TypeIndex(1), 2, DataType::Type::kBool);
HInstruction* c0 = graph_->GetIntConstant(0);
HInstruction* c2 = graph_->GetIntConstant(2);
HInstruction* cls = new (GetAllocator()) HLoadClass(graph_->GetCurrentMethod(),
dex::TypeIndex(10),
graph_->GetDexFile(),
ScopedNullHandle<mirror::Class>(),
false,
0,
false);
HInstruction* new_inst =
new (GetAllocator()) HNewInstance(cls,
0,
dex::TypeIndex(10),
graph_->GetDexFile(),
false,
QuickEntrypointEnum::kQuickAllocObjectInitialized);
HInstruction* if_inst = new (GetAllocator()) HIf(bool_value1);
entry->AddInstruction(bool_value1);
entry->AddInstruction(bool_value2);
entry->AddInstruction(cls);
entry->AddInstruction(new_inst);
entry->AddInstruction(if_inst);
HInstruction* call_left = new (GetAllocator())
HInvokeStaticOrDirect(GetAllocator(),
1,
DataType::Type::kVoid,
0,
{ nullptr, 0 },
nullptr,
{},
InvokeType::kStatic,
{ nullptr, 0 },
HInvokeStaticOrDirect::ClinitCheckRequirement::kNone);
HInstruction* goto_left = new (GetAllocator()) HGoto();
call_left->AsInvoke()->SetRawInputAt(0, new_inst);
high_left->AddInstruction(call_left);
high_left->AddInstruction(goto_left);
HInstruction* write_right = new (GetAllocator()) HInstanceFieldSet(new_inst,
c0,
nullptr,
DataType::Type::kInt32,
MemberOffset(32),
false,
0,
0,
graph_->GetDexFile(),
0);
HInstruction* goto_right = new (GetAllocator()) HGoto();
high_right->AddInstruction(write_right);
high_right->AddInstruction(goto_right);
HInstruction* read_mid = new (GetAllocator()) HInstanceFieldGet(new_inst,
nullptr,
DataType::Type::kInt32,
MemberOffset(32),
false,
0,
0,
graph_->GetDexFile(),
0);
HInstruction* mul_mid = new (GetAllocator()) HMul(DataType::Type::kInt32, read_mid, c2);
HInstruction* write_mid = new (GetAllocator()) HInstanceFieldSet(new_inst,
mul_mid,
nullptr,
DataType::Type::kInt32,
MemberOffset(32),
false,
0,
0,
graph_->GetDexFile(),
0);
HInstruction* if_mid = new (GetAllocator()) HIf(bool_value2);
mid->AddInstruction(read_mid);
mid->AddInstruction(mul_mid);
mid->AddInstruction(write_mid);
mid->AddInstruction(if_mid);
HInstruction* call_low_left = new (GetAllocator())
HInvokeStaticOrDirect(GetAllocator(),
1,
DataType::Type::kVoid,
0,
{ nullptr, 0 },
nullptr,
{},
InvokeType::kStatic,
{ nullptr, 0 },
HInvokeStaticOrDirect::ClinitCheckRequirement::kNone);
HInstruction* goto_low_left = new (GetAllocator()) HGoto();
call_low_left->AsInvoke()->SetRawInputAt(0, new_inst);
low_left->AddInstruction(call_low_left);
low_left->AddInstruction(goto_low_left);
HInstruction* write_low_right = new (GetAllocator()) HInstanceFieldSet(new_inst,
c0,
nullptr,
DataType::Type::kInt32,
MemberOffset(32),
false,
0,
0,
graph_->GetDexFile(),
0);
HInstruction* goto_low_right = new (GetAllocator()) HGoto();
low_right->AddInstruction(write_low_right);
low_right->AddInstruction(goto_low_right);
HInstruction* read_final = new (GetAllocator()) HInstanceFieldGet(new_inst,
nullptr,
DataType::Type::kInt32,
MemberOffset(32),
false,
0,
0,
graph_->GetDexFile(),
0);
exit->AddInstruction(read_final);
ScopedArenaAllocator allocator(graph_->GetArenaStack());
LoadStoreAnalysis lsa(graph_, nullptr, &allocator, LoadStoreAnalysisType::kFull);
lsa.Run();
const HeapLocationCollector& heap_location_collector = lsa.GetHeapLocationCollector();
ReferenceInfo* info = heap_location_collector.FindReferenceInfoOf(new_inst);
ASSERT_FALSE(info->IsPartialSingleton());
}
// // ENTRY
// Obj new_inst = new Obj();
// new_inst.foo = 12;
// Obj obj;
// Obj out;
// if (param1) {
// // LEFT_START
// if (param2) {
// // LEFT_LEFT
// obj = new_inst;
// } else {
// // LEFT_RIGHT
// obj = obj_param;
// }
// // LEFT_MERGE
// // technically the phi is enough to cause an escape but might as well be
// // thorough.
// // obj = phi[new_inst, param]
// escape(obj);
// out = obj;
// } else {
// // RIGHT
// out = obj_param;
// }
// // EXIT
// // Can't do anything with this since we don't have good tracking for the heap-locations
// // out = phi[param, phi[new_inst, param]]
// return out.foo
TEST_F(LoadStoreAnalysisTest, PartialPhiPropagation1) {
CreateGraph();
AdjacencyListGraph blks(SetupFromAdjacencyList("entry",
"exit",
{{"entry", "left"},
{"entry", "right"},
{"left", "left_left"},
{"left", "left_right"},
{"left_left", "left_merge"},
{"left_right", "left_merge"},
{"left_merge", "breturn"},
{"right", "breturn"},
{"breturn", "exit"}}));
#define GET_BLOCK(name) HBasicBlock* name = blks.Get(#name)
GET_BLOCK(entry);
GET_BLOCK(exit);
GET_BLOCK(breturn);
GET_BLOCK(left);
GET_BLOCK(right);
GET_BLOCK(left_left);
GET_BLOCK(left_right);
GET_BLOCK(left_merge);
#undef GET_BLOCK
EnsurePredecessorOrder(breturn, {left_merge, right});
EnsurePredecessorOrder(left_merge, {left_left, left_right});
HInstruction* param1 = new (GetAllocator())
HParameterValue(graph_->GetDexFile(), dex::TypeIndex(1), 1, DataType::Type::kBool);
HInstruction* param2 = new (GetAllocator())
HParameterValue(graph_->GetDexFile(), dex::TypeIndex(1), 2, DataType::Type::kBool);
HInstruction* obj_param = new (GetAllocator())
HParameterValue(graph_->GetDexFile(), dex::TypeIndex(10), 3, DataType::Type::kReference);
HInstruction* c12 = graph_->GetIntConstant(12);
HInstruction* cls = new (GetAllocator()) HLoadClass(graph_->GetCurrentMethod(),
dex::TypeIndex(10),
graph_->GetDexFile(),
ScopedNullHandle<mirror::Class>(),
false,
0,
false);
HInstruction* new_inst =
new (GetAllocator()) HNewInstance(cls,
0,
dex::TypeIndex(10),
graph_->GetDexFile(),
false,
QuickEntrypointEnum::kQuickAllocObjectInitialized);
HInstruction* store = new (GetAllocator()) HInstanceFieldSet(new_inst,
c12,
nullptr,
DataType::Type::kInt32,
MemberOffset(32),
false,
0,
0,
graph_->GetDexFile(),
0);
HInstruction* if_param1 = new (GetAllocator()) HIf(param1);
entry->AddInstruction(param1);
entry->AddInstruction(param2);
entry->AddInstruction(obj_param);
entry->AddInstruction(cls);
entry->AddInstruction(new_inst);
entry->AddInstruction(store);
entry->AddInstruction(if_param1);
ArenaVector<HInstruction*> current_locals({}, GetAllocator()->Adapter(kArenaAllocInstruction));
ManuallyBuildEnvFor(cls, &current_locals);
new_inst->CopyEnvironmentFrom(cls->GetEnvironment());
HInstruction* if_left = new (GetAllocator()) HIf(param2);
left->AddInstruction(if_left);
HInstruction* goto_left_left = new (GetAllocator()) HGoto();
left_left->AddInstruction(goto_left_left);
HInstruction* goto_left_right = new (GetAllocator()) HGoto();
left_right->AddInstruction(goto_left_right);
HPhi* left_phi =
new (GetAllocator()) HPhi(GetAllocator(), kNoRegNumber, 2, DataType::Type::kReference);
HInstruction* call_left = new (GetAllocator())
HInvokeStaticOrDirect(GetAllocator(),
1,
DataType::Type::kVoid,
0,
{nullptr, 0},
nullptr,
{},
InvokeType::kStatic,
{nullptr, 0},
HInvokeStaticOrDirect::ClinitCheckRequirement::kNone);
HInstruction* goto_left_merge = new (GetAllocator()) HGoto();
left_phi->SetRawInputAt(0, obj_param);
left_phi->SetRawInputAt(1, new_inst);
call_left->AsInvoke()->SetRawInputAt(0, left_phi);
left_merge->AddPhi(left_phi);
left_merge->AddInstruction(call_left);
left_merge->AddInstruction(goto_left_merge);
left_phi->SetCanBeNull(true);
call_left->CopyEnvironmentFrom(cls->GetEnvironment());
HInstruction* goto_right = new (GetAllocator()) HGoto();
right->AddInstruction(goto_right);
HPhi* return_phi =
new (GetAllocator()) HPhi(GetAllocator(), kNoRegNumber, 2, DataType::Type::kReference);
HInstruction* read_exit = new (GetAllocator()) HInstanceFieldGet(return_phi,
nullptr,
DataType::Type::kReference,
MemberOffset(32),
false,
0,
0,
graph_->GetDexFile(),
0);
HInstruction* return_exit = new (GetAllocator()) HReturn(read_exit);
return_phi->SetRawInputAt(0, left_phi);
return_phi->SetRawInputAt(1, obj_param);
breturn->AddPhi(return_phi);
breturn->AddInstruction(read_exit);
breturn->AddInstruction(return_exit);
HInstruction* exit_instruction = new (GetAllocator()) HExit();
exit->AddInstruction(exit_instruction);
graph_->ClearDominanceInformation();
graph_->BuildDominatorTree();
ScopedArenaAllocator allocator(graph_->GetArenaStack());
LoadStoreAnalysis lsa(graph_, nullptr, &allocator, LoadStoreAnalysisType::kFull);
lsa.Run();
const HeapLocationCollector& heap_location_collector = lsa.GetHeapLocationCollector();
ReferenceInfo* info = heap_location_collector.FindReferenceInfoOf(new_inst);
ASSERT_FALSE(info->IsPartialSingleton());
}
} // namespace art