You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
575 lines
22 KiB
575 lines
22 KiB
/*
|
|
* Copyright (C) 2016 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef ART_COMPILER_OPTIMIZING_SCHEDULER_H_
|
|
#define ART_COMPILER_OPTIMIZING_SCHEDULER_H_
|
|
|
|
#include <fstream>
|
|
|
|
#include "base/scoped_arena_allocator.h"
|
|
#include "base/scoped_arena_containers.h"
|
|
#include "base/stl_util.h"
|
|
#include "base/time_utils.h"
|
|
#include "code_generator.h"
|
|
#include "load_store_analysis.h"
|
|
#include "nodes.h"
|
|
#include "optimization.h"
|
|
|
|
namespace art {
|
|
|
|
// General description of instruction scheduling.
|
|
//
|
|
// This pass tries to improve the quality of the generated code by reordering
|
|
// instructions in the graph to avoid execution delays caused by execution
|
|
// dependencies.
|
|
// Currently, scheduling is performed at the block level, so no `HInstruction`
|
|
// ever leaves its block in this pass.
|
|
//
|
|
// The scheduling process iterates through blocks in the graph. For blocks that
|
|
// we can and want to schedule:
|
|
// 1) Build a dependency graph for instructions.
|
|
// It includes data dependencies (inputs/uses), but also environment
|
|
// dependencies and side-effect dependencies.
|
|
// 2) Schedule the dependency graph.
|
|
// This is a topological sort of the dependency graph, using heuristics to
|
|
// decide what node to scheduler first when there are multiple candidates.
|
|
//
|
|
// A few factors impacting the quality of the scheduling are:
|
|
// - The heuristics used to decide what node to schedule in the topological sort
|
|
// when there are multiple valid candidates. There is a wide range of
|
|
// complexity possible here, going from a simple model only considering
|
|
// latencies, to a super detailed CPU pipeline model.
|
|
// - Fewer dependencies in the dependency graph give more freedom for the
|
|
// scheduling heuristics. For example de-aliasing can allow possibilities for
|
|
// reordering of memory accesses.
|
|
// - The level of abstraction of the IR. It is easier to evaluate scheduling for
|
|
// IRs that translate to a single assembly instruction than for IRs
|
|
// that generate multiple assembly instructions or generate different code
|
|
// depending on properties of the IR.
|
|
// - Scheduling is performed before register allocation, it is not aware of the
|
|
// impact of moving instructions on register allocation.
|
|
//
|
|
//
|
|
// The scheduling code uses the terms predecessors, successors, and dependencies.
|
|
// This can be confusing at times, so here are clarifications.
|
|
// These terms are used from the point of view of the program dependency graph. So
|
|
// the inputs of an instruction are part of its dependencies, and hence part its
|
|
// predecessors. So the uses of an instruction are (part of) its successors.
|
|
// (Side-effect dependencies can yield predecessors or successors that are not
|
|
// inputs or uses.)
|
|
//
|
|
// Here is a trivial example. For the Java code:
|
|
//
|
|
// int a = 1 + 2;
|
|
//
|
|
// we would have the instructions
|
|
//
|
|
// i1 HIntConstant 1
|
|
// i2 HIntConstant 2
|
|
// i3 HAdd [i1,i2]
|
|
//
|
|
// `i1` and `i2` are predecessors of `i3`.
|
|
// `i3` is a successor of `i1` and a successor of `i2`.
|
|
// In a scheduling graph for this code we would have three nodes `n1`, `n2`,
|
|
// and `n3` (respectively for instructions `i1`, `i1`, and `i3`).
|
|
// Conceptually the program dependency graph for this would contain two edges
|
|
//
|
|
// n1 -> n3
|
|
// n2 -> n3
|
|
//
|
|
// Since we schedule backwards (starting from the last instruction in each basic
|
|
// block), the implementation of nodes keeps a list of pointers their
|
|
// predecessors. So `n3` would keep pointers to its predecessors `n1` and `n2`.
|
|
//
|
|
// Node dependencies are also referred to from the program dependency graph
|
|
// point of view: we say that node `B` immediately depends on `A` if there is an
|
|
// edge from `A` to `B` in the program dependency graph. `A` is a predecessor of
|
|
// `B`, `B` is a successor of `A`. In the example above `n3` depends on `n1` and
|
|
// `n2`.
|
|
// Since nodes in the scheduling graph keep a list of their predecessors, node
|
|
// `B` will have a pointer to its predecessor `A`.
|
|
// As we schedule backwards, `B` will be selected for scheduling before `A` is.
|
|
//
|
|
// So the scheduling for the example above could happen as follow
|
|
//
|
|
// |---------------------------+------------------------|
|
|
// | candidates for scheduling | instructions scheduled |
|
|
// | --------------------------+------------------------|
|
|
//
|
|
// The only node without successors is `n3`, so it is the only initial
|
|
// candidate.
|
|
//
|
|
// | n3 | (none) |
|
|
//
|
|
// We schedule `n3` as the last (and only) instruction. All its predecessors
|
|
// that do not have any unscheduled successors become candidate. That is, `n1`
|
|
// and `n2` become candidates.
|
|
//
|
|
// | n1, n2 | n3 |
|
|
//
|
|
// One of the candidates is selected. In practice this is where scheduling
|
|
// heuristics kick in, to decide which of the candidates should be selected.
|
|
// In this example, let it be `n1`. It is scheduled before previously scheduled
|
|
// nodes (in program order). There are no other nodes to add to the list of
|
|
// candidates.
|
|
//
|
|
// | n2 | n1 |
|
|
// | | n3 |
|
|
//
|
|
// The only candidate available for scheduling is `n2`. Schedule it before
|
|
// (in program order) the previously scheduled nodes.
|
|
//
|
|
// | (none) | n2 |
|
|
// | | n1 |
|
|
// | | n3 |
|
|
// |---------------------------+------------------------|
|
|
//
|
|
// So finally the instructions will be executed in the order `i2`, `i1`, and `i3`.
|
|
// In this trivial example, it does not matter which of `i1` and `i2` is
|
|
// scheduled first since they are constants. However the same process would
|
|
// apply if `i1` and `i2` were actual operations (for example `HMul` and `HDiv`).
|
|
|
|
// Set to true to have instruction scheduling dump scheduling graphs to the file
|
|
// `scheduling_graphs.dot`. See `SchedulingGraph::DumpAsDotGraph()`.
|
|
static constexpr bool kDumpDotSchedulingGraphs = false;
|
|
|
|
// Typically used as a default instruction latency.
|
|
static constexpr uint32_t kGenericInstructionLatency = 1;
|
|
|
|
class HScheduler;
|
|
|
|
/**
|
|
* A node representing an `HInstruction` in the `SchedulingGraph`.
|
|
*/
|
|
class SchedulingNode : public DeletableArenaObject<kArenaAllocScheduler> {
|
|
public:
|
|
SchedulingNode(HInstruction* instr, ScopedArenaAllocator* allocator, bool is_scheduling_barrier)
|
|
: latency_(0),
|
|
internal_latency_(0),
|
|
critical_path_(0),
|
|
instruction_(instr),
|
|
is_scheduling_barrier_(is_scheduling_barrier),
|
|
data_predecessors_(allocator->Adapter(kArenaAllocScheduler)),
|
|
other_predecessors_(allocator->Adapter(kArenaAllocScheduler)),
|
|
num_unscheduled_successors_(0) {
|
|
data_predecessors_.reserve(kPreallocatedPredecessors);
|
|
}
|
|
|
|
void AddDataPredecessor(SchedulingNode* predecessor) {
|
|
// Check whether the predecessor has been added earlier.
|
|
if (HasDataDependency(predecessor)) {
|
|
return;
|
|
}
|
|
data_predecessors_.push_back(predecessor);
|
|
predecessor->num_unscheduled_successors_++;
|
|
}
|
|
|
|
const ScopedArenaVector<SchedulingNode*>& GetDataPredecessors() const {
|
|
return data_predecessors_;
|
|
}
|
|
|
|
void AddOtherPredecessor(SchedulingNode* predecessor) {
|
|
// Check whether the predecessor has been added earlier.
|
|
// As an optimization of the scheduling graph, we don't need to create another dependency if
|
|
// there is a data dependency between scheduling nodes.
|
|
if (HasOtherDependency(predecessor) || HasDataDependency(predecessor)) {
|
|
return;
|
|
}
|
|
other_predecessors_.push_back(predecessor);
|
|
predecessor->num_unscheduled_successors_++;
|
|
}
|
|
|
|
const ScopedArenaVector<SchedulingNode*>& GetOtherPredecessors() const {
|
|
return other_predecessors_;
|
|
}
|
|
|
|
void DecrementNumberOfUnscheduledSuccessors() {
|
|
num_unscheduled_successors_--;
|
|
}
|
|
|
|
void MaybeUpdateCriticalPath(uint32_t other_critical_path) {
|
|
critical_path_ = std::max(critical_path_, other_critical_path);
|
|
}
|
|
|
|
bool HasUnscheduledSuccessors() const {
|
|
return num_unscheduled_successors_ != 0;
|
|
}
|
|
|
|
HInstruction* GetInstruction() const { return instruction_; }
|
|
uint32_t GetLatency() const { return latency_; }
|
|
void SetLatency(uint32_t latency) { latency_ = latency; }
|
|
uint32_t GetInternalLatency() const { return internal_latency_; }
|
|
void SetInternalLatency(uint32_t internal_latency) { internal_latency_ = internal_latency; }
|
|
uint32_t GetCriticalPath() const { return critical_path_; }
|
|
bool IsSchedulingBarrier() const { return is_scheduling_barrier_; }
|
|
|
|
bool HasDataDependency(const SchedulingNode* node) const {
|
|
return ContainsElement(data_predecessors_, node);
|
|
}
|
|
|
|
bool HasOtherDependency(const SchedulingNode* node) const {
|
|
return ContainsElement(other_predecessors_, node);
|
|
}
|
|
|
|
private:
|
|
// The latency of this node. It represents the latency between the moment the
|
|
// last instruction for this node has executed to the moment the result
|
|
// produced by this node is available to users.
|
|
uint32_t latency_;
|
|
// This represents the time spent *within* the generated code for this node.
|
|
// It should be zero for nodes that only generate a single instruction.
|
|
uint32_t internal_latency_;
|
|
|
|
// The critical path from this instruction to the end of scheduling. It is
|
|
// used by the scheduling heuristics to measure the priority of this instruction.
|
|
// It is defined as
|
|
// critical_path_ = latency_ + max((use.internal_latency_ + use.critical_path_) for all uses)
|
|
// (Note that here 'uses' is equivalent to 'data successors'. Also see comments in
|
|
// `HScheduler::Schedule(SchedulingNode* scheduling_node)`).
|
|
uint32_t critical_path_;
|
|
|
|
// The instruction that this node represents.
|
|
HInstruction* const instruction_;
|
|
|
|
// If a node is scheduling barrier, other nodes cannot be scheduled before it.
|
|
const bool is_scheduling_barrier_;
|
|
|
|
// The lists of predecessors. They cannot be scheduled before this node. Once
|
|
// this node is scheduled, we check whether any of its predecessors has become a
|
|
// valid candidate for scheduling.
|
|
// Predecessors in `data_predecessors_` are data dependencies. Those in
|
|
// `other_predecessors_` contain side-effect dependencies, environment
|
|
// dependencies, and scheduling barrier dependencies.
|
|
ScopedArenaVector<SchedulingNode*> data_predecessors_;
|
|
ScopedArenaVector<SchedulingNode*> other_predecessors_;
|
|
|
|
// The number of unscheduled successors for this node. This number is
|
|
// decremented as successors are scheduled. When it reaches zero this node
|
|
// becomes a valid candidate to schedule.
|
|
uint32_t num_unscheduled_successors_;
|
|
|
|
static constexpr size_t kPreallocatedPredecessors = 4;
|
|
};
|
|
|
|
/*
|
|
* Provide analysis of instruction dependencies (side effects) which are not in a form of explicit
|
|
* def-use data dependencies.
|
|
*/
|
|
class SideEffectDependencyAnalysis {
|
|
public:
|
|
explicit SideEffectDependencyAnalysis(const HeapLocationCollector* heap_location_collector)
|
|
: memory_dependency_analysis_(heap_location_collector) {}
|
|
|
|
bool HasSideEffectDependency(HInstruction* instr1, HInstruction* instr2) const {
|
|
if (memory_dependency_analysis_.HasMemoryDependency(instr1, instr2)) {
|
|
return true;
|
|
}
|
|
|
|
// Even if above memory dependency check has passed, it is still necessary to
|
|
// check dependencies between instructions that can throw and instructions
|
|
// that write to memory.
|
|
if (HasExceptionDependency(instr1, instr2)) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
private:
|
|
static bool HasExceptionDependency(const HInstruction* instr1, const HInstruction* instr2);
|
|
static bool HasReorderingDependency(const HInstruction* instr1, const HInstruction* instr2);
|
|
|
|
/*
|
|
* Memory dependency analysis of instructions based on their memory side effects
|
|
* and heap location information from the LCA pass if it is provided.
|
|
*/
|
|
class MemoryDependencyAnalysis {
|
|
public:
|
|
explicit MemoryDependencyAnalysis(const HeapLocationCollector* heap_location_collector)
|
|
: heap_location_collector_(heap_location_collector) {}
|
|
|
|
bool HasMemoryDependency(HInstruction* instr1, HInstruction* instr2) const;
|
|
|
|
private:
|
|
bool ArrayAccessMayAlias(HInstruction* instr1, HInstruction* instr2) const;
|
|
bool FieldAccessMayAlias(const HInstruction* instr1, const HInstruction* instr2) const;
|
|
size_t ArrayAccessHeapLocation(HInstruction* instruction) const;
|
|
size_t FieldAccessHeapLocation(const HInstruction* instruction) const;
|
|
|
|
const HeapLocationCollector* const heap_location_collector_;
|
|
};
|
|
|
|
MemoryDependencyAnalysis memory_dependency_analysis_;
|
|
};
|
|
|
|
/*
|
|
* Directed acyclic graph for scheduling.
|
|
*/
|
|
class SchedulingGraph : public ValueObject {
|
|
public:
|
|
SchedulingGraph(ScopedArenaAllocator* allocator,
|
|
const HeapLocationCollector* heap_location_collector)
|
|
: allocator_(allocator),
|
|
contains_scheduling_barrier_(false),
|
|
nodes_map_(allocator_->Adapter(kArenaAllocScheduler)),
|
|
side_effect_dependency_analysis_(heap_location_collector) {}
|
|
|
|
SchedulingNode* AddNode(HInstruction* instr, bool is_scheduling_barrier = false) {
|
|
std::unique_ptr<SchedulingNode> node(
|
|
new (allocator_) SchedulingNode(instr, allocator_, is_scheduling_barrier));
|
|
SchedulingNode* result = node.get();
|
|
nodes_map_.insert(std::make_pair(instr, std::move(node)));
|
|
contains_scheduling_barrier_ |= is_scheduling_barrier;
|
|
AddDependencies(result, is_scheduling_barrier);
|
|
return result;
|
|
}
|
|
|
|
SchedulingNode* GetNode(const HInstruction* instr) const {
|
|
auto it = nodes_map_.find(instr);
|
|
if (it == nodes_map_.end()) {
|
|
return nullptr;
|
|
} else {
|
|
return it->second.get();
|
|
}
|
|
}
|
|
|
|
size_t Size() const {
|
|
return nodes_map_.size();
|
|
}
|
|
|
|
// Dump the scheduling graph, in dot file format, appending it to the file
|
|
// `scheduling_graphs.dot`.
|
|
void DumpAsDotGraph(const std::string& description,
|
|
const ScopedArenaVector<SchedulingNode*>& initial_candidates);
|
|
|
|
protected:
|
|
void AddDependency(SchedulingNode* node, SchedulingNode* dependency, bool is_data_dependency);
|
|
void AddDataDependency(SchedulingNode* node, SchedulingNode* dependency) {
|
|
AddDependency(node, dependency, /*is_data_dependency*/true);
|
|
}
|
|
void AddOtherDependency(SchedulingNode* node, SchedulingNode* dependency) {
|
|
AddDependency(node, dependency, /*is_data_dependency*/false);
|
|
}
|
|
|
|
// Analyze whether the scheduling node has cross-iteration dependencies which mean it uses
|
|
// values defined on the previous iteration.
|
|
//
|
|
// Supported cases:
|
|
//
|
|
// L:
|
|
// v2 = loop_head_phi(v1)
|
|
// instr1(v2)
|
|
// v1 = instr2
|
|
// goto L
|
|
//
|
|
// In such cases moving instr2 before instr1 creates intersecting live ranges
|
|
// of v1 and v2. As a result a separate register is needed to keep the value
|
|
// defined by instr2 which is only used on the next iteration.
|
|
// If instr2 is not moved, no additional register is needed. The register
|
|
// used by instr1 is reused.
|
|
// To prevent such a situation a "other" dependency between instr1 and instr2 must be set.
|
|
void AddCrossIterationDependencies(SchedulingNode* node);
|
|
|
|
// Add dependencies nodes for the given `SchedulingNode`: inputs, environments, and side-effects.
|
|
void AddDependencies(SchedulingNode* node, bool is_scheduling_barrier = false);
|
|
|
|
ScopedArenaAllocator* const allocator_;
|
|
bool contains_scheduling_barrier_;
|
|
ScopedArenaHashMap<const HInstruction*, std::unique_ptr<SchedulingNode>> nodes_map_;
|
|
SideEffectDependencyAnalysis side_effect_dependency_analysis_;
|
|
};
|
|
|
|
/*
|
|
* The visitors derived from this base class are used by schedulers to evaluate
|
|
* the latencies of `HInstruction`s.
|
|
*/
|
|
class SchedulingLatencyVisitor : public HGraphDelegateVisitor {
|
|
public:
|
|
// This class and its sub-classes will never be used to drive a visit of an
|
|
// `HGraph` but only to visit `HInstructions` one at a time, so we do not need
|
|
// to pass a valid graph to `HGraphDelegateVisitor()`.
|
|
SchedulingLatencyVisitor()
|
|
: HGraphDelegateVisitor(nullptr),
|
|
last_visited_latency_(0),
|
|
last_visited_internal_latency_(0) {}
|
|
|
|
void VisitInstruction(HInstruction* instruction) override {
|
|
LOG(FATAL) << "Error visiting " << instruction->DebugName() << ". "
|
|
"Architecture-specific scheduling latency visitors must handle all instructions"
|
|
" (potentially by overriding the generic `VisitInstruction()`.";
|
|
UNREACHABLE();
|
|
}
|
|
|
|
void Visit(HInstruction* instruction) {
|
|
instruction->Accept(this);
|
|
}
|
|
|
|
void CalculateLatency(SchedulingNode* node) {
|
|
// By default nodes have no internal latency.
|
|
last_visited_internal_latency_ = 0;
|
|
Visit(node->GetInstruction());
|
|
}
|
|
|
|
uint32_t GetLastVisitedLatency() const { return last_visited_latency_; }
|
|
uint32_t GetLastVisitedInternalLatency() const { return last_visited_internal_latency_; }
|
|
|
|
protected:
|
|
// The latency of the most recent visited SchedulingNode.
|
|
// This is for reporting the latency value to the user of this visitor.
|
|
uint32_t last_visited_latency_;
|
|
// This represents the time spent *within* the generated code for the most recent visited
|
|
// SchedulingNode. This is for reporting the internal latency value to the user of this visitor.
|
|
uint32_t last_visited_internal_latency_;
|
|
};
|
|
|
|
class SchedulingNodeSelector : public ArenaObject<kArenaAllocScheduler> {
|
|
public:
|
|
virtual void Reset() {}
|
|
virtual SchedulingNode* PopHighestPriorityNode(ScopedArenaVector<SchedulingNode*>* nodes,
|
|
const SchedulingGraph& graph) = 0;
|
|
virtual ~SchedulingNodeSelector() {}
|
|
protected:
|
|
static void DeleteNodeAtIndex(ScopedArenaVector<SchedulingNode*>* nodes, size_t index) {
|
|
(*nodes)[index] = nodes->back();
|
|
nodes->pop_back();
|
|
}
|
|
};
|
|
|
|
/*
|
|
* Select a `SchedulingNode` at random within the candidates.
|
|
*/
|
|
class RandomSchedulingNodeSelector : public SchedulingNodeSelector {
|
|
public:
|
|
RandomSchedulingNodeSelector() : seed_(0) {
|
|
seed_ = static_cast<uint32_t>(NanoTime());
|
|
srand(seed_);
|
|
}
|
|
|
|
SchedulingNode* PopHighestPriorityNode(ScopedArenaVector<SchedulingNode*>* nodes,
|
|
const SchedulingGraph& graph) override {
|
|
UNUSED(graph);
|
|
DCHECK(!nodes->empty());
|
|
size_t select = rand_r(&seed_) % nodes->size();
|
|
SchedulingNode* select_node = (*nodes)[select];
|
|
DeleteNodeAtIndex(nodes, select);
|
|
return select_node;
|
|
}
|
|
|
|
uint32_t seed_;
|
|
};
|
|
|
|
/*
|
|
* Select a `SchedulingNode` according to critical path information,
|
|
* with heuristics to favor certain instruction patterns like materialized condition.
|
|
*/
|
|
class CriticalPathSchedulingNodeSelector : public SchedulingNodeSelector {
|
|
public:
|
|
CriticalPathSchedulingNodeSelector() : prev_select_(nullptr) {}
|
|
|
|
void Reset() override { prev_select_ = nullptr; }
|
|
SchedulingNode* PopHighestPriorityNode(ScopedArenaVector<SchedulingNode*>* nodes,
|
|
const SchedulingGraph& graph) override;
|
|
|
|
protected:
|
|
SchedulingNode* GetHigherPrioritySchedulingNode(SchedulingNode* candidate,
|
|
SchedulingNode* check) const;
|
|
|
|
SchedulingNode* SelectMaterializedCondition(ScopedArenaVector<SchedulingNode*>* nodes,
|
|
const SchedulingGraph& graph) const;
|
|
|
|
private:
|
|
const SchedulingNode* prev_select_;
|
|
};
|
|
|
|
class HScheduler {
|
|
public:
|
|
HScheduler(SchedulingLatencyVisitor* latency_visitor, SchedulingNodeSelector* selector)
|
|
: latency_visitor_(latency_visitor),
|
|
selector_(selector),
|
|
only_optimize_loop_blocks_(true),
|
|
cursor_(nullptr) {}
|
|
virtual ~HScheduler() {}
|
|
|
|
void Schedule(HGraph* graph);
|
|
|
|
void SetOnlyOptimizeLoopBlocks(bool loop_only) { only_optimize_loop_blocks_ = loop_only; }
|
|
|
|
// Instructions can not be rescheduled across a scheduling barrier.
|
|
virtual bool IsSchedulingBarrier(const HInstruction* instruction) const;
|
|
|
|
protected:
|
|
void Schedule(HBasicBlock* block, const HeapLocationCollector* heap_location_collector);
|
|
void Schedule(SchedulingNode* scheduling_node,
|
|
/*inout*/ ScopedArenaVector<SchedulingNode*>* candidates);
|
|
void Schedule(HInstruction* instruction);
|
|
|
|
// Any instruction returning `false` via this method will prevent its
|
|
// containing basic block from being scheduled.
|
|
// This method is used to restrict scheduling to instructions that we know are
|
|
// safe to handle.
|
|
//
|
|
// For newly introduced instructions by default HScheduler::IsSchedulable returns false.
|
|
// HScheduler${ARCH}::IsSchedulable can be overridden to return true for an instruction (see
|
|
// scheduler_arm64.h for example) if it is safe to schedule it; in this case one *must* also
|
|
// look at/update HScheduler${ARCH}::IsSchedulingBarrier for this instruction.
|
|
virtual bool IsSchedulable(const HInstruction* instruction) const;
|
|
bool IsSchedulable(const HBasicBlock* block) const;
|
|
|
|
void CalculateLatency(SchedulingNode* node) {
|
|
latency_visitor_->CalculateLatency(node);
|
|
node->SetLatency(latency_visitor_->GetLastVisitedLatency());
|
|
node->SetInternalLatency(latency_visitor_->GetLastVisitedInternalLatency());
|
|
}
|
|
|
|
SchedulingLatencyVisitor* const latency_visitor_;
|
|
SchedulingNodeSelector* const selector_;
|
|
bool only_optimize_loop_blocks_;
|
|
|
|
// A pointer indicating where the next instruction to be scheduled will be inserted.
|
|
HInstruction* cursor_;
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HScheduler);
|
|
};
|
|
|
|
class HInstructionScheduling : public HOptimization {
|
|
public:
|
|
HInstructionScheduling(HGraph* graph,
|
|
InstructionSet instruction_set,
|
|
CodeGenerator* cg = nullptr,
|
|
const char* name = kInstructionSchedulingPassName)
|
|
: HOptimization(graph, name),
|
|
codegen_(cg),
|
|
instruction_set_(instruction_set) {}
|
|
|
|
bool Run() override {
|
|
return Run(/*only_optimize_loop_blocks*/ true, /*schedule_randomly*/ false);
|
|
}
|
|
|
|
bool Run(bool only_optimize_loop_blocks, bool schedule_randomly);
|
|
|
|
static constexpr const char* kInstructionSchedulingPassName = "scheduler";
|
|
|
|
private:
|
|
CodeGenerator* const codegen_;
|
|
const InstructionSet instruction_set_;
|
|
DISALLOW_COPY_AND_ASSIGN(HInstructionScheduling);
|
|
};
|
|
|
|
} // namespace art
|
|
|
|
#endif // ART_COMPILER_OPTIMIZING_SCHEDULER_H_
|