You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
4501 lines
193 KiB
4501 lines
193 KiB
/*
|
|
* Copyright (C) 2011 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "heap.h"
|
|
|
|
#include <limits>
|
|
#include "android-base/thread_annotations.h"
|
|
#if defined(__BIONIC__) || defined(__GLIBC__)
|
|
#include <malloc.h> // For mallinfo()
|
|
#endif
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
#include "android-base/stringprintf.h"
|
|
|
|
#include "allocation_listener.h"
|
|
#include "art_field-inl.h"
|
|
#include "backtrace_helper.h"
|
|
#include "base/allocator.h"
|
|
#include "base/arena_allocator.h"
|
|
#include "base/dumpable.h"
|
|
#include "base/file_utils.h"
|
|
#include "base/histogram-inl.h"
|
|
#include "base/logging.h" // For VLOG.
|
|
#include "base/memory_tool.h"
|
|
#include "base/mutex.h"
|
|
#include "base/os.h"
|
|
#include "base/stl_util.h"
|
|
#include "base/systrace.h"
|
|
#include "base/time_utils.h"
|
|
#include "base/utils.h"
|
|
#include "class_root-inl.h"
|
|
#include "common_throws.h"
|
|
#include "debugger.h"
|
|
#include "dex/dex_file-inl.h"
|
|
#include "entrypoints/quick/quick_alloc_entrypoints.h"
|
|
#include "gc/accounting/card_table-inl.h"
|
|
#include "gc/accounting/heap_bitmap-inl.h"
|
|
#include "gc/accounting/mod_union_table-inl.h"
|
|
#include "gc/accounting/read_barrier_table.h"
|
|
#include "gc/accounting/remembered_set.h"
|
|
#include "gc/accounting/space_bitmap-inl.h"
|
|
#include "gc/collector/concurrent_copying.h"
|
|
#include "gc/collector/mark_sweep.h"
|
|
#include "gc/collector/partial_mark_sweep.h"
|
|
#include "gc/collector/semi_space.h"
|
|
#include "gc/collector/sticky_mark_sweep.h"
|
|
#include "gc/racing_check.h"
|
|
#include "gc/reference_processor.h"
|
|
#include "gc/scoped_gc_critical_section.h"
|
|
#include "gc/space/bump_pointer_space.h"
|
|
#include "gc/space/dlmalloc_space-inl.h"
|
|
#include "gc/space/image_space.h"
|
|
#include "gc/space/large_object_space.h"
|
|
#include "gc/space/region_space.h"
|
|
#include "gc/space/rosalloc_space-inl.h"
|
|
#include "gc/space/space-inl.h"
|
|
#include "gc/space/zygote_space.h"
|
|
#include "gc/task_processor.h"
|
|
#include "gc/verification.h"
|
|
#include "gc_pause_listener.h"
|
|
#include "gc_root.h"
|
|
#include "handle_scope-inl.h"
|
|
#include "heap-inl.h"
|
|
#include "heap-visit-objects-inl.h"
|
|
#include "image.h"
|
|
#include "intern_table.h"
|
|
#include "jit/jit.h"
|
|
#include "jit/jit_code_cache.h"
|
|
#include "jni/java_vm_ext.h"
|
|
#include "mirror/class-inl.h"
|
|
#include "mirror/executable-inl.h"
|
|
#include "mirror/field.h"
|
|
#include "mirror/method_handle_impl.h"
|
|
#include "mirror/object-inl.h"
|
|
#include "mirror/object-refvisitor-inl.h"
|
|
#include "mirror/object_array-inl.h"
|
|
#include "mirror/reference-inl.h"
|
|
#include "mirror/var_handle.h"
|
|
#include "nativehelper/scoped_local_ref.h"
|
|
#include "obj_ptr-inl.h"
|
|
#ifdef ART_TARGET_ANDROID
|
|
#include "perfetto/heap_profile.h"
|
|
#endif
|
|
#include "reflection.h"
|
|
#include "runtime.h"
|
|
#include "javaheapprof/javaheapsampler.h"
|
|
#include "scoped_thread_state_change-inl.h"
|
|
#include "thread_list.h"
|
|
#include "verify_object-inl.h"
|
|
#include "well_known_classes.h"
|
|
|
|
namespace art {
|
|
|
|
#ifdef ART_TARGET_ANDROID
|
|
namespace {
|
|
|
|
// Enable the heap sampler Callback function used by Perfetto.
|
|
void EnableHeapSamplerCallback(void* enable_ptr,
|
|
const AHeapProfileEnableCallbackInfo* enable_info_ptr) {
|
|
HeapSampler* sampler_self = reinterpret_cast<HeapSampler*>(enable_ptr);
|
|
// Set the ART profiler sampling interval to the value from Perfetto.
|
|
uint64_t interval = AHeapProfileEnableCallbackInfo_getSamplingInterval(enable_info_ptr);
|
|
if (interval > 0) {
|
|
sampler_self->SetSamplingInterval(interval);
|
|
}
|
|
// Else default is 4K sampling interval. However, default case shouldn't happen for Perfetto API.
|
|
// AHeapProfileEnableCallbackInfo_getSamplingInterval should always give the requested
|
|
// (non-negative) sampling interval. It is a uint64_t and gets checked for != 0
|
|
// Do not call heap as a temp here, it will build but test run will silently fail.
|
|
// Heap is not fully constructed yet in some cases.
|
|
sampler_self->EnableHeapSampler();
|
|
}
|
|
|
|
// Disable the heap sampler Callback function used by Perfetto.
|
|
void DisableHeapSamplerCallback(void* disable_ptr,
|
|
const AHeapProfileDisableCallbackInfo* info_ptr ATTRIBUTE_UNUSED) {
|
|
HeapSampler* sampler_self = reinterpret_cast<HeapSampler*>(disable_ptr);
|
|
sampler_self->DisableHeapSampler();
|
|
}
|
|
|
|
} // namespace
|
|
#endif
|
|
|
|
namespace gc {
|
|
|
|
DEFINE_RUNTIME_DEBUG_FLAG(Heap, kStressCollectorTransition);
|
|
|
|
// Minimum amount of remaining bytes before a concurrent GC is triggered.
|
|
static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
|
|
static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
|
|
// Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
|
|
// relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
|
|
// threads (lower pauses, use less memory bandwidth).
|
|
static double GetStickyGcThroughputAdjustment(bool use_generational_cc) {
|
|
return use_generational_cc ? 0.5 : 1.0;
|
|
}
|
|
// Whether or not we compact the zygote in PreZygoteFork.
|
|
static constexpr bool kCompactZygote = kMovingCollector;
|
|
// How many reserve entries are at the end of the allocation stack, these are only needed if the
|
|
// allocation stack overflows.
|
|
static constexpr size_t kAllocationStackReserveSize = 1024;
|
|
// Default mark stack size in bytes.
|
|
static const size_t kDefaultMarkStackSize = 64 * KB;
|
|
// Define space name.
|
|
static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
|
|
static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
|
|
static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
|
|
static const char* kNonMovingSpaceName = "non moving space";
|
|
static const char* kZygoteSpaceName = "zygote space";
|
|
static constexpr bool kGCALotMode = false;
|
|
// GC alot mode uses a small allocation stack to stress test a lot of GC.
|
|
static constexpr size_t kGcAlotAllocationStackSize = 4 * KB /
|
|
sizeof(mirror::HeapReference<mirror::Object>);
|
|
// Verify objet has a small allocation stack size since searching the allocation stack is slow.
|
|
static constexpr size_t kVerifyObjectAllocationStackSize = 16 * KB /
|
|
sizeof(mirror::HeapReference<mirror::Object>);
|
|
static constexpr size_t kDefaultAllocationStackSize = 8 * MB /
|
|
sizeof(mirror::HeapReference<mirror::Object>);
|
|
|
|
// After a GC (due to allocation failure) we should retrieve at least this
|
|
// fraction of the current max heap size. Otherwise throw OOME.
|
|
static constexpr double kMinFreeHeapAfterGcForAlloc = 0.01;
|
|
|
|
// For deterministic compilation, we need the heap to be at a well-known address.
|
|
static constexpr uint32_t kAllocSpaceBeginForDeterministicAoT = 0x40000000;
|
|
// Dump the rosalloc stats on SIGQUIT.
|
|
static constexpr bool kDumpRosAllocStatsOnSigQuit = false;
|
|
|
|
static const char* kRegionSpaceName = "main space (region space)";
|
|
|
|
// If true, we log all GCs in the both the foreground and background. Used for debugging.
|
|
static constexpr bool kLogAllGCs = false;
|
|
|
|
// Use Max heap for 2 seconds, this is smaller than the usual 5s window since we don't want to leave
|
|
// allocate with relaxed ergonomics for that long.
|
|
static constexpr size_t kPostForkMaxHeapDurationMS = 2000;
|
|
|
|
#if defined(__LP64__) || !defined(ADDRESS_SANITIZER)
|
|
// 300 MB (0x12c00000) - (default non-moving space capacity).
|
|
uint8_t* const Heap::kPreferredAllocSpaceBegin =
|
|
reinterpret_cast<uint8_t*>(300 * MB - kDefaultNonMovingSpaceCapacity);
|
|
#else
|
|
#ifdef __ANDROID__
|
|
// For 32-bit Android, use 0x20000000 because asan reserves 0x04000000 - 0x20000000.
|
|
uint8_t* const Heap::kPreferredAllocSpaceBegin = reinterpret_cast<uint8_t*>(0x20000000);
|
|
#else
|
|
// For 32-bit host, use 0x40000000 because asan uses most of the space below this.
|
|
uint8_t* const Heap::kPreferredAllocSpaceBegin = reinterpret_cast<uint8_t*>(0x40000000);
|
|
#endif
|
|
#endif
|
|
|
|
static inline bool CareAboutPauseTimes() {
|
|
return Runtime::Current()->InJankPerceptibleProcessState();
|
|
}
|
|
|
|
static void VerifyBootImagesContiguity(const std::vector<gc::space::ImageSpace*>& image_spaces) {
|
|
uint32_t boot_image_size = 0u;
|
|
for (size_t i = 0u, num_spaces = image_spaces.size(); i != num_spaces; ) {
|
|
const ImageHeader& image_header = image_spaces[i]->GetImageHeader();
|
|
uint32_t reservation_size = image_header.GetImageReservationSize();
|
|
uint32_t image_count = image_header.GetImageSpaceCount();
|
|
|
|
CHECK_NE(image_count, 0u);
|
|
CHECK_LE(image_count, num_spaces - i);
|
|
CHECK_NE(reservation_size, 0u);
|
|
for (size_t j = 1u; j != image_count; ++j) {
|
|
CHECK_EQ(image_spaces[i + j]->GetImageHeader().GetComponentCount(), 0u);
|
|
CHECK_EQ(image_spaces[i + j]->GetImageHeader().GetImageReservationSize(), 0u);
|
|
}
|
|
|
|
// Check the start of the heap.
|
|
CHECK_EQ(image_spaces[0]->Begin() + boot_image_size, image_spaces[i]->Begin());
|
|
// Check contiguous layout of images and oat files.
|
|
const uint8_t* current_heap = image_spaces[i]->Begin();
|
|
const uint8_t* current_oat = image_spaces[i]->GetImageHeader().GetOatFileBegin();
|
|
for (size_t j = 0u; j != image_count; ++j) {
|
|
const ImageHeader& current_header = image_spaces[i + j]->GetImageHeader();
|
|
CHECK_EQ(current_heap, image_spaces[i + j]->Begin());
|
|
CHECK_EQ(current_oat, current_header.GetOatFileBegin());
|
|
current_heap += RoundUp(current_header.GetImageSize(), kPageSize);
|
|
CHECK_GT(current_header.GetOatFileEnd(), current_header.GetOatFileBegin());
|
|
current_oat = current_header.GetOatFileEnd();
|
|
}
|
|
// Check that oat files start at the end of images.
|
|
CHECK_EQ(current_heap, image_spaces[i]->GetImageHeader().GetOatFileBegin());
|
|
// Check that the reservation size equals the size of images and oat files.
|
|
CHECK_EQ(reservation_size, static_cast<size_t>(current_oat - image_spaces[i]->Begin()));
|
|
|
|
boot_image_size += reservation_size;
|
|
i += image_count;
|
|
}
|
|
}
|
|
|
|
Heap::Heap(size_t initial_size,
|
|
size_t growth_limit,
|
|
size_t min_free,
|
|
size_t max_free,
|
|
double target_utilization,
|
|
double foreground_heap_growth_multiplier,
|
|
size_t stop_for_native_allocs,
|
|
size_t capacity,
|
|
size_t non_moving_space_capacity,
|
|
const std::vector<std::string>& boot_class_path,
|
|
const std::vector<std::string>& boot_class_path_locations,
|
|
const std::string& image_file_name,
|
|
const InstructionSet image_instruction_set,
|
|
CollectorType foreground_collector_type,
|
|
CollectorType background_collector_type,
|
|
space::LargeObjectSpaceType large_object_space_type,
|
|
size_t large_object_threshold,
|
|
size_t parallel_gc_threads,
|
|
size_t conc_gc_threads,
|
|
bool low_memory_mode,
|
|
size_t long_pause_log_threshold,
|
|
size_t long_gc_log_threshold,
|
|
bool ignore_target_footprint,
|
|
bool always_log_explicit_gcs,
|
|
bool use_tlab,
|
|
bool verify_pre_gc_heap,
|
|
bool verify_pre_sweeping_heap,
|
|
bool verify_post_gc_heap,
|
|
bool verify_pre_gc_rosalloc,
|
|
bool verify_pre_sweeping_rosalloc,
|
|
bool verify_post_gc_rosalloc,
|
|
bool gc_stress_mode,
|
|
bool measure_gc_performance,
|
|
bool use_homogeneous_space_compaction_for_oom,
|
|
bool use_generational_cc,
|
|
uint64_t min_interval_homogeneous_space_compaction_by_oom,
|
|
bool dump_region_info_before_gc,
|
|
bool dump_region_info_after_gc)
|
|
: non_moving_space_(nullptr),
|
|
rosalloc_space_(nullptr),
|
|
dlmalloc_space_(nullptr),
|
|
main_space_(nullptr),
|
|
collector_type_(kCollectorTypeNone),
|
|
foreground_collector_type_(foreground_collector_type),
|
|
background_collector_type_(background_collector_type),
|
|
desired_collector_type_(foreground_collector_type_),
|
|
pending_task_lock_(nullptr),
|
|
parallel_gc_threads_(parallel_gc_threads),
|
|
conc_gc_threads_(conc_gc_threads),
|
|
low_memory_mode_(low_memory_mode),
|
|
long_pause_log_threshold_(long_pause_log_threshold),
|
|
long_gc_log_threshold_(long_gc_log_threshold),
|
|
process_cpu_start_time_ns_(ProcessCpuNanoTime()),
|
|
pre_gc_last_process_cpu_time_ns_(process_cpu_start_time_ns_),
|
|
post_gc_last_process_cpu_time_ns_(process_cpu_start_time_ns_),
|
|
pre_gc_weighted_allocated_bytes_(0.0),
|
|
post_gc_weighted_allocated_bytes_(0.0),
|
|
ignore_target_footprint_(ignore_target_footprint),
|
|
always_log_explicit_gcs_(always_log_explicit_gcs),
|
|
zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
|
|
zygote_space_(nullptr),
|
|
large_object_threshold_(large_object_threshold),
|
|
disable_thread_flip_count_(0),
|
|
thread_flip_running_(false),
|
|
collector_type_running_(kCollectorTypeNone),
|
|
last_gc_cause_(kGcCauseNone),
|
|
thread_running_gc_(nullptr),
|
|
last_gc_type_(collector::kGcTypeNone),
|
|
next_gc_type_(collector::kGcTypePartial),
|
|
capacity_(capacity),
|
|
growth_limit_(growth_limit),
|
|
target_footprint_(initial_size),
|
|
// Using kPostMonitorLock as a lock at kDefaultMutexLevel is acquired after
|
|
// this one.
|
|
process_state_update_lock_("process state update lock", kPostMonitorLock),
|
|
min_foreground_target_footprint_(0),
|
|
concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
|
|
total_bytes_freed_ever_(0),
|
|
total_objects_freed_ever_(0),
|
|
num_bytes_allocated_(0),
|
|
native_bytes_registered_(0),
|
|
old_native_bytes_allocated_(0),
|
|
native_objects_notified_(0),
|
|
num_bytes_freed_revoke_(0),
|
|
verify_missing_card_marks_(false),
|
|
verify_system_weaks_(false),
|
|
verify_pre_gc_heap_(verify_pre_gc_heap),
|
|
verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
|
|
verify_post_gc_heap_(verify_post_gc_heap),
|
|
verify_mod_union_table_(false),
|
|
verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
|
|
verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
|
|
verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
|
|
gc_stress_mode_(gc_stress_mode),
|
|
/* For GC a lot mode, we limit the allocation stacks to be kGcAlotInterval allocations. This
|
|
* causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
|
|
* verification is enabled, we limit the size of allocation stacks to speed up their
|
|
* searching.
|
|
*/
|
|
max_allocation_stack_size_(kGCALotMode ? kGcAlotAllocationStackSize
|
|
: (kVerifyObjectSupport > kVerifyObjectModeFast) ? kVerifyObjectAllocationStackSize :
|
|
kDefaultAllocationStackSize),
|
|
current_allocator_(kAllocatorTypeDlMalloc),
|
|
current_non_moving_allocator_(kAllocatorTypeNonMoving),
|
|
bump_pointer_space_(nullptr),
|
|
temp_space_(nullptr),
|
|
region_space_(nullptr),
|
|
min_free_(min_free),
|
|
max_free_(max_free),
|
|
target_utilization_(target_utilization),
|
|
foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
|
|
stop_for_native_allocs_(stop_for_native_allocs),
|
|
total_wait_time_(0),
|
|
verify_object_mode_(kVerifyObjectModeDisabled),
|
|
disable_moving_gc_count_(0),
|
|
semi_space_collector_(nullptr),
|
|
active_concurrent_copying_collector_(nullptr),
|
|
young_concurrent_copying_collector_(nullptr),
|
|
concurrent_copying_collector_(nullptr),
|
|
is_running_on_memory_tool_(Runtime::Current()->IsRunningOnMemoryTool()),
|
|
use_tlab_(use_tlab),
|
|
main_space_backup_(nullptr),
|
|
min_interval_homogeneous_space_compaction_by_oom_(
|
|
min_interval_homogeneous_space_compaction_by_oom),
|
|
last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
|
|
gcs_completed_(0u),
|
|
max_gc_requested_(0u),
|
|
pending_collector_transition_(nullptr),
|
|
pending_heap_trim_(nullptr),
|
|
use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom),
|
|
use_generational_cc_(use_generational_cc),
|
|
running_collection_is_blocking_(false),
|
|
blocking_gc_count_(0U),
|
|
blocking_gc_time_(0U),
|
|
last_update_time_gc_count_rate_histograms_( // Round down by the window duration.
|
|
(NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration),
|
|
gc_count_last_window_(0U),
|
|
blocking_gc_count_last_window_(0U),
|
|
gc_count_rate_histogram_("gc count rate histogram", 1U, kGcCountRateMaxBucketCount),
|
|
blocking_gc_count_rate_histogram_("blocking gc count rate histogram", 1U,
|
|
kGcCountRateMaxBucketCount),
|
|
alloc_tracking_enabled_(false),
|
|
alloc_record_depth_(AllocRecordObjectMap::kDefaultAllocStackDepth),
|
|
backtrace_lock_(nullptr),
|
|
seen_backtrace_count_(0u),
|
|
unique_backtrace_count_(0u),
|
|
gc_disabled_for_shutdown_(false),
|
|
dump_region_info_before_gc_(dump_region_info_before_gc),
|
|
dump_region_info_after_gc_(dump_region_info_after_gc),
|
|
boot_image_spaces_(),
|
|
boot_images_start_address_(0u),
|
|
boot_images_size_(0u) {
|
|
if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
|
|
LOG(INFO) << "Heap() entering";
|
|
}
|
|
if (kUseReadBarrier) {
|
|
CHECK_EQ(foreground_collector_type_, kCollectorTypeCC);
|
|
CHECK_EQ(background_collector_type_, kCollectorTypeCCBackground);
|
|
} else if (background_collector_type_ != gc::kCollectorTypeHomogeneousSpaceCompact) {
|
|
CHECK_EQ(IsMovingGc(foreground_collector_type_), IsMovingGc(background_collector_type_))
|
|
<< "Changing from " << foreground_collector_type_ << " to "
|
|
<< background_collector_type_ << " (or visa versa) is not supported.";
|
|
}
|
|
verification_.reset(new Verification(this));
|
|
CHECK_GE(large_object_threshold, kMinLargeObjectThreshold);
|
|
ScopedTrace trace(__FUNCTION__);
|
|
Runtime* const runtime = Runtime::Current();
|
|
// If we aren't the zygote, switch to the default non zygote allocator. This may update the
|
|
// entrypoints.
|
|
const bool is_zygote = runtime->IsZygote();
|
|
if (!is_zygote) {
|
|
// Background compaction is currently not supported for command line runs.
|
|
if (background_collector_type_ != foreground_collector_type_) {
|
|
VLOG(heap) << "Disabling background compaction for non zygote";
|
|
background_collector_type_ = foreground_collector_type_;
|
|
}
|
|
}
|
|
ChangeCollector(desired_collector_type_);
|
|
live_bitmap_.reset(new accounting::HeapBitmap(this));
|
|
mark_bitmap_.reset(new accounting::HeapBitmap(this));
|
|
|
|
// We don't have hspace compaction enabled with CC.
|
|
if (foreground_collector_type_ == kCollectorTypeCC) {
|
|
use_homogeneous_space_compaction_for_oom_ = false;
|
|
}
|
|
bool support_homogeneous_space_compaction =
|
|
background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact ||
|
|
use_homogeneous_space_compaction_for_oom_;
|
|
// We may use the same space the main space for the non moving space if we don't need to compact
|
|
// from the main space.
|
|
// This is not the case if we support homogeneous compaction or have a moving background
|
|
// collector type.
|
|
bool separate_non_moving_space = is_zygote ||
|
|
support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
|
|
IsMovingGc(background_collector_type_);
|
|
|
|
// Requested begin for the alloc space, to follow the mapped image and oat files
|
|
uint8_t* request_begin = nullptr;
|
|
// Calculate the extra space required after the boot image, see allocations below.
|
|
size_t heap_reservation_size = 0u;
|
|
if (separate_non_moving_space) {
|
|
heap_reservation_size = non_moving_space_capacity;
|
|
} else if (foreground_collector_type_ != kCollectorTypeCC && is_zygote) {
|
|
heap_reservation_size = capacity_;
|
|
}
|
|
heap_reservation_size = RoundUp(heap_reservation_size, kPageSize);
|
|
// Load image space(s).
|
|
std::vector<std::unique_ptr<space::ImageSpace>> boot_image_spaces;
|
|
MemMap heap_reservation;
|
|
if (space::ImageSpace::LoadBootImage(boot_class_path,
|
|
boot_class_path_locations,
|
|
image_file_name,
|
|
image_instruction_set,
|
|
runtime->ShouldRelocate(),
|
|
/*executable=*/ !runtime->IsAotCompiler(),
|
|
heap_reservation_size,
|
|
&boot_image_spaces,
|
|
&heap_reservation)) {
|
|
DCHECK_EQ(heap_reservation_size, heap_reservation.IsValid() ? heap_reservation.Size() : 0u);
|
|
DCHECK(!boot_image_spaces.empty());
|
|
request_begin = boot_image_spaces.back()->GetImageHeader().GetOatFileEnd();
|
|
DCHECK(!heap_reservation.IsValid() || request_begin == heap_reservation.Begin())
|
|
<< "request_begin=" << static_cast<const void*>(request_begin)
|
|
<< " heap_reservation.Begin()=" << static_cast<const void*>(heap_reservation.Begin());
|
|
for (std::unique_ptr<space::ImageSpace>& space : boot_image_spaces) {
|
|
boot_image_spaces_.push_back(space.get());
|
|
AddSpace(space.release());
|
|
}
|
|
boot_images_start_address_ = PointerToLowMemUInt32(boot_image_spaces_.front()->Begin());
|
|
uint32_t boot_images_end =
|
|
PointerToLowMemUInt32(boot_image_spaces_.back()->GetImageHeader().GetOatFileEnd());
|
|
boot_images_size_ = boot_images_end - boot_images_start_address_;
|
|
if (kIsDebugBuild) {
|
|
VerifyBootImagesContiguity(boot_image_spaces_);
|
|
}
|
|
} else {
|
|
if (foreground_collector_type_ == kCollectorTypeCC) {
|
|
// Need to use a low address so that we can allocate a contiguous 2 * Xmx space
|
|
// when there's no image (dex2oat for target).
|
|
request_begin = kPreferredAllocSpaceBegin;
|
|
}
|
|
// Gross hack to make dex2oat deterministic.
|
|
if (foreground_collector_type_ == kCollectorTypeMS && Runtime::Current()->IsAotCompiler()) {
|
|
// Currently only enabled for MS collector since that is what the deterministic dex2oat uses.
|
|
// b/26849108
|
|
request_begin = reinterpret_cast<uint8_t*>(kAllocSpaceBeginForDeterministicAoT);
|
|
}
|
|
}
|
|
|
|
/*
|
|
requested_alloc_space_begin -> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|
|
+- nonmoving space (non_moving_space_capacity)+-
|
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|
|
+-????????????????????????????????????????????+-
|
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|
|
+-main alloc space / bump space 1 (capacity_) +-
|
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|
|
+-????????????????????????????????????????????+-
|
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|
|
+-main alloc space2 / bump space 2 (capacity_)+-
|
|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|
|
*/
|
|
|
|
MemMap main_mem_map_1;
|
|
MemMap main_mem_map_2;
|
|
|
|
std::string error_str;
|
|
MemMap non_moving_space_mem_map;
|
|
if (separate_non_moving_space) {
|
|
ScopedTrace trace2("Create separate non moving space");
|
|
// If we are the zygote, the non moving space becomes the zygote space when we run
|
|
// PreZygoteFork the first time. In this case, call the map "zygote space" since we can't
|
|
// rename the mem map later.
|
|
const char* space_name = is_zygote ? kZygoteSpaceName : kNonMovingSpaceName;
|
|
// Reserve the non moving mem map before the other two since it needs to be at a specific
|
|
// address.
|
|
DCHECK_EQ(heap_reservation.IsValid(), !boot_image_spaces_.empty());
|
|
if (heap_reservation.IsValid()) {
|
|
non_moving_space_mem_map = heap_reservation.RemapAtEnd(
|
|
heap_reservation.Begin(), space_name, PROT_READ | PROT_WRITE, &error_str);
|
|
} else {
|
|
non_moving_space_mem_map = MapAnonymousPreferredAddress(
|
|
space_name, request_begin, non_moving_space_capacity, &error_str);
|
|
}
|
|
CHECK(non_moving_space_mem_map.IsValid()) << error_str;
|
|
DCHECK(!heap_reservation.IsValid());
|
|
// Try to reserve virtual memory at a lower address if we have a separate non moving space.
|
|
request_begin = kPreferredAllocSpaceBegin + non_moving_space_capacity;
|
|
}
|
|
// Attempt to create 2 mem maps at or after the requested begin.
|
|
if (foreground_collector_type_ != kCollectorTypeCC) {
|
|
ScopedTrace trace2("Create main mem map");
|
|
if (separate_non_moving_space || !is_zygote) {
|
|
main_mem_map_1 = MapAnonymousPreferredAddress(
|
|
kMemMapSpaceName[0], request_begin, capacity_, &error_str);
|
|
} else {
|
|
// If no separate non-moving space and we are the zygote, the main space must come right after
|
|
// the image space to avoid a gap. This is required since we want the zygote space to be
|
|
// adjacent to the image space.
|
|
DCHECK_EQ(heap_reservation.IsValid(), !boot_image_spaces_.empty());
|
|
main_mem_map_1 = MemMap::MapAnonymous(
|
|
kMemMapSpaceName[0],
|
|
request_begin,
|
|
capacity_,
|
|
PROT_READ | PROT_WRITE,
|
|
/* low_4gb= */ true,
|
|
/* reuse= */ false,
|
|
heap_reservation.IsValid() ? &heap_reservation : nullptr,
|
|
&error_str);
|
|
}
|
|
CHECK(main_mem_map_1.IsValid()) << error_str;
|
|
DCHECK(!heap_reservation.IsValid());
|
|
}
|
|
if (support_homogeneous_space_compaction ||
|
|
background_collector_type_ == kCollectorTypeSS ||
|
|
foreground_collector_type_ == kCollectorTypeSS) {
|
|
ScopedTrace trace2("Create main mem map 2");
|
|
main_mem_map_2 = MapAnonymousPreferredAddress(
|
|
kMemMapSpaceName[1], main_mem_map_1.End(), capacity_, &error_str);
|
|
CHECK(main_mem_map_2.IsValid()) << error_str;
|
|
}
|
|
|
|
// Create the non moving space first so that bitmaps don't take up the address range.
|
|
if (separate_non_moving_space) {
|
|
ScopedTrace trace2("Add non moving space");
|
|
// Non moving space is always dlmalloc since we currently don't have support for multiple
|
|
// active rosalloc spaces.
|
|
const size_t size = non_moving_space_mem_map.Size();
|
|
const void* non_moving_space_mem_map_begin = non_moving_space_mem_map.Begin();
|
|
non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(std::move(non_moving_space_mem_map),
|
|
"zygote / non moving space",
|
|
kDefaultStartingSize,
|
|
initial_size,
|
|
size,
|
|
size,
|
|
/* can_move_objects= */ false);
|
|
CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
|
|
<< non_moving_space_mem_map_begin;
|
|
non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
|
|
AddSpace(non_moving_space_);
|
|
}
|
|
// Create other spaces based on whether or not we have a moving GC.
|
|
if (foreground_collector_type_ == kCollectorTypeCC) {
|
|
CHECK(separate_non_moving_space);
|
|
// Reserve twice the capacity, to allow evacuating every region for explicit GCs.
|
|
MemMap region_space_mem_map =
|
|
space::RegionSpace::CreateMemMap(kRegionSpaceName, capacity_ * 2, request_begin);
|
|
CHECK(region_space_mem_map.IsValid()) << "No region space mem map";
|
|
region_space_ = space::RegionSpace::Create(
|
|
kRegionSpaceName, std::move(region_space_mem_map), use_generational_cc_);
|
|
AddSpace(region_space_);
|
|
} else if (IsMovingGc(foreground_collector_type_)) {
|
|
// Create bump pointer spaces.
|
|
// We only to create the bump pointer if the foreground collector is a compacting GC.
|
|
// TODO: Place bump-pointer spaces somewhere to minimize size of card table.
|
|
bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
|
|
std::move(main_mem_map_1));
|
|
CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
|
|
AddSpace(bump_pointer_space_);
|
|
temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
|
|
std::move(main_mem_map_2));
|
|
CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
|
|
AddSpace(temp_space_);
|
|
CHECK(separate_non_moving_space);
|
|
} else {
|
|
CreateMainMallocSpace(std::move(main_mem_map_1), initial_size, growth_limit_, capacity_);
|
|
CHECK(main_space_ != nullptr);
|
|
AddSpace(main_space_);
|
|
if (!separate_non_moving_space) {
|
|
non_moving_space_ = main_space_;
|
|
CHECK(!non_moving_space_->CanMoveObjects());
|
|
}
|
|
if (main_mem_map_2.IsValid()) {
|
|
const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
|
|
main_space_backup_.reset(CreateMallocSpaceFromMemMap(std::move(main_mem_map_2),
|
|
initial_size,
|
|
growth_limit_,
|
|
capacity_,
|
|
name,
|
|
/* can_move_objects= */ true));
|
|
CHECK(main_space_backup_.get() != nullptr);
|
|
// Add the space so its accounted for in the heap_begin and heap_end.
|
|
AddSpace(main_space_backup_.get());
|
|
}
|
|
}
|
|
CHECK(non_moving_space_ != nullptr);
|
|
CHECK(!non_moving_space_->CanMoveObjects());
|
|
// Allocate the large object space.
|
|
if (large_object_space_type == space::LargeObjectSpaceType::kFreeList) {
|
|
large_object_space_ = space::FreeListSpace::Create("free list large object space", capacity_);
|
|
CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
|
|
} else if (large_object_space_type == space::LargeObjectSpaceType::kMap) {
|
|
large_object_space_ = space::LargeObjectMapSpace::Create("mem map large object space");
|
|
CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
|
|
} else {
|
|
// Disable the large object space by making the cutoff excessively large.
|
|
large_object_threshold_ = std::numeric_limits<size_t>::max();
|
|
large_object_space_ = nullptr;
|
|
}
|
|
if (large_object_space_ != nullptr) {
|
|
AddSpace(large_object_space_);
|
|
}
|
|
// Compute heap capacity. Continuous spaces are sorted in order of Begin().
|
|
CHECK(!continuous_spaces_.empty());
|
|
// Relies on the spaces being sorted.
|
|
uint8_t* heap_begin = continuous_spaces_.front()->Begin();
|
|
uint8_t* heap_end = continuous_spaces_.back()->Limit();
|
|
size_t heap_capacity = heap_end - heap_begin;
|
|
// Remove the main backup space since it slows down the GC to have unused extra spaces.
|
|
// TODO: Avoid needing to do this.
|
|
if (main_space_backup_.get() != nullptr) {
|
|
RemoveSpace(main_space_backup_.get());
|
|
}
|
|
// Allocate the card table.
|
|
// We currently don't support dynamically resizing the card table.
|
|
// Since we don't know where in the low_4gb the app image will be located, make the card table
|
|
// cover the whole low_4gb. TODO: Extend the card table in AddSpace.
|
|
UNUSED(heap_capacity);
|
|
// Start at 4 KB, we can be sure there are no spaces mapped this low since the address range is
|
|
// reserved by the kernel.
|
|
static constexpr size_t kMinHeapAddress = 4 * KB;
|
|
card_table_.reset(accounting::CardTable::Create(reinterpret_cast<uint8_t*>(kMinHeapAddress),
|
|
4 * GB - kMinHeapAddress));
|
|
CHECK(card_table_.get() != nullptr) << "Failed to create card table";
|
|
if (foreground_collector_type_ == kCollectorTypeCC && kUseTableLookupReadBarrier) {
|
|
rb_table_.reset(new accounting::ReadBarrierTable());
|
|
DCHECK(rb_table_->IsAllCleared());
|
|
}
|
|
if (HasBootImageSpace()) {
|
|
// Don't add the image mod union table if we are running without an image, this can crash if
|
|
// we use the CardCache implementation.
|
|
for (space::ImageSpace* image_space : GetBootImageSpaces()) {
|
|
accounting::ModUnionTable* mod_union_table = new accounting::ModUnionTableToZygoteAllocspace(
|
|
"Image mod-union table", this, image_space);
|
|
CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
|
|
AddModUnionTable(mod_union_table);
|
|
}
|
|
}
|
|
if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
|
|
accounting::RememberedSet* non_moving_space_rem_set =
|
|
new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
|
|
CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
|
|
AddRememberedSet(non_moving_space_rem_set);
|
|
}
|
|
// TODO: Count objects in the image space here?
|
|
num_bytes_allocated_.store(0, std::memory_order_relaxed);
|
|
mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
|
|
kDefaultMarkStackSize));
|
|
const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
|
|
allocation_stack_.reset(accounting::ObjectStack::Create(
|
|
"allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
|
|
live_stack_.reset(accounting::ObjectStack::Create(
|
|
"live stack", max_allocation_stack_size_, alloc_stack_capacity));
|
|
// It's still too early to take a lock because there are no threads yet, but we can create locks
|
|
// now. We don't create it earlier to make it clear that you can't use locks during heap
|
|
// initialization.
|
|
gc_complete_lock_ = new Mutex("GC complete lock");
|
|
gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
|
|
*gc_complete_lock_));
|
|
|
|
thread_flip_lock_ = new Mutex("GC thread flip lock");
|
|
thread_flip_cond_.reset(new ConditionVariable("GC thread flip condition variable",
|
|
*thread_flip_lock_));
|
|
task_processor_.reset(new TaskProcessor());
|
|
reference_processor_.reset(new ReferenceProcessor());
|
|
pending_task_lock_ = new Mutex("Pending task lock");
|
|
if (ignore_target_footprint_) {
|
|
SetIdealFootprint(std::numeric_limits<size_t>::max());
|
|
concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
|
|
}
|
|
CHECK_NE(target_footprint_.load(std::memory_order_relaxed), 0U);
|
|
// Create our garbage collectors.
|
|
for (size_t i = 0; i < 2; ++i) {
|
|
const bool concurrent = i != 0;
|
|
if ((MayUseCollector(kCollectorTypeCMS) && concurrent) ||
|
|
(MayUseCollector(kCollectorTypeMS) && !concurrent)) {
|
|
garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
|
|
garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
|
|
garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
|
|
}
|
|
}
|
|
if (kMovingCollector) {
|
|
if (MayUseCollector(kCollectorTypeSS) ||
|
|
MayUseCollector(kCollectorTypeHomogeneousSpaceCompact) ||
|
|
use_homogeneous_space_compaction_for_oom_) {
|
|
semi_space_collector_ = new collector::SemiSpace(this);
|
|
garbage_collectors_.push_back(semi_space_collector_);
|
|
}
|
|
if (MayUseCollector(kCollectorTypeCC)) {
|
|
concurrent_copying_collector_ = new collector::ConcurrentCopying(this,
|
|
/*young_gen=*/false,
|
|
use_generational_cc_,
|
|
"",
|
|
measure_gc_performance);
|
|
if (use_generational_cc_) {
|
|
young_concurrent_copying_collector_ = new collector::ConcurrentCopying(
|
|
this,
|
|
/*young_gen=*/true,
|
|
use_generational_cc_,
|
|
"young",
|
|
measure_gc_performance);
|
|
}
|
|
active_concurrent_copying_collector_.store(concurrent_copying_collector_,
|
|
std::memory_order_relaxed);
|
|
DCHECK(region_space_ != nullptr);
|
|
concurrent_copying_collector_->SetRegionSpace(region_space_);
|
|
if (use_generational_cc_) {
|
|
young_concurrent_copying_collector_->SetRegionSpace(region_space_);
|
|
// At this point, non-moving space should be created.
|
|
DCHECK(non_moving_space_ != nullptr);
|
|
concurrent_copying_collector_->CreateInterRegionRefBitmaps();
|
|
}
|
|
garbage_collectors_.push_back(concurrent_copying_collector_);
|
|
if (use_generational_cc_) {
|
|
garbage_collectors_.push_back(young_concurrent_copying_collector_);
|
|
}
|
|
}
|
|
}
|
|
if (!GetBootImageSpaces().empty() && non_moving_space_ != nullptr &&
|
|
(is_zygote || separate_non_moving_space)) {
|
|
// Check that there's no gap between the image space and the non moving space so that the
|
|
// immune region won't break (eg. due to a large object allocated in the gap). This is only
|
|
// required when we're the zygote.
|
|
// Space with smallest Begin().
|
|
space::ImageSpace* first_space = nullptr;
|
|
for (space::ImageSpace* space : boot_image_spaces_) {
|
|
if (first_space == nullptr || space->Begin() < first_space->Begin()) {
|
|
first_space = space;
|
|
}
|
|
}
|
|
bool no_gap = MemMap::CheckNoGaps(*first_space->GetMemMap(), *non_moving_space_->GetMemMap());
|
|
if (!no_gap) {
|
|
PrintFileToLog("/proc/self/maps", LogSeverity::ERROR);
|
|
MemMap::DumpMaps(LOG_STREAM(ERROR), /* terse= */ true);
|
|
LOG(FATAL) << "There's a gap between the image space and the non-moving space";
|
|
}
|
|
}
|
|
// Perfetto Java Heap Profiler Support.
|
|
if (runtime->IsPerfettoJavaHeapStackProfEnabled()) {
|
|
// Perfetto Plugin is loaded and enabled, initialize the Java Heap Profiler.
|
|
InitPerfettoJavaHeapProf();
|
|
} else {
|
|
// Disable the Java Heap Profiler.
|
|
GetHeapSampler().DisableHeapSampler();
|
|
}
|
|
|
|
instrumentation::Instrumentation* const instrumentation = runtime->GetInstrumentation();
|
|
if (gc_stress_mode_) {
|
|
backtrace_lock_ = new Mutex("GC complete lock");
|
|
}
|
|
if (is_running_on_memory_tool_ || gc_stress_mode_) {
|
|
instrumentation->InstrumentQuickAllocEntryPoints();
|
|
}
|
|
if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
|
|
LOG(INFO) << "Heap() exiting";
|
|
}
|
|
}
|
|
|
|
MemMap Heap::MapAnonymousPreferredAddress(const char* name,
|
|
uint8_t* request_begin,
|
|
size_t capacity,
|
|
std::string* out_error_str) {
|
|
while (true) {
|
|
MemMap map = MemMap::MapAnonymous(name,
|
|
request_begin,
|
|
capacity,
|
|
PROT_READ | PROT_WRITE,
|
|
/*low_4gb=*/ true,
|
|
/*reuse=*/ false,
|
|
/*reservation=*/ nullptr,
|
|
out_error_str);
|
|
if (map.IsValid() || request_begin == nullptr) {
|
|
return map;
|
|
}
|
|
// Retry a second time with no specified request begin.
|
|
request_begin = nullptr;
|
|
}
|
|
}
|
|
|
|
bool Heap::MayUseCollector(CollectorType type) const {
|
|
return foreground_collector_type_ == type || background_collector_type_ == type;
|
|
}
|
|
|
|
space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap&& mem_map,
|
|
size_t initial_size,
|
|
size_t growth_limit,
|
|
size_t capacity,
|
|
const char* name,
|
|
bool can_move_objects) {
|
|
space::MallocSpace* malloc_space = nullptr;
|
|
if (kUseRosAlloc) {
|
|
// Create rosalloc space.
|
|
malloc_space = space::RosAllocSpace::CreateFromMemMap(std::move(mem_map),
|
|
name,
|
|
kDefaultStartingSize,
|
|
initial_size,
|
|
growth_limit,
|
|
capacity,
|
|
low_memory_mode_,
|
|
can_move_objects);
|
|
} else {
|
|
malloc_space = space::DlMallocSpace::CreateFromMemMap(std::move(mem_map),
|
|
name,
|
|
kDefaultStartingSize,
|
|
initial_size,
|
|
growth_limit,
|
|
capacity,
|
|
can_move_objects);
|
|
}
|
|
if (collector::SemiSpace::kUseRememberedSet) {
|
|
accounting::RememberedSet* rem_set =
|
|
new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
|
|
CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
|
|
AddRememberedSet(rem_set);
|
|
}
|
|
CHECK(malloc_space != nullptr) << "Failed to create " << name;
|
|
malloc_space->SetFootprintLimit(malloc_space->Capacity());
|
|
return malloc_space;
|
|
}
|
|
|
|
void Heap::CreateMainMallocSpace(MemMap&& mem_map,
|
|
size_t initial_size,
|
|
size_t growth_limit,
|
|
size_t capacity) {
|
|
// Is background compaction is enabled?
|
|
bool can_move_objects = IsMovingGc(background_collector_type_) !=
|
|
IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
|
|
// If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
|
|
// happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
|
|
// from the main space to the zygote space. If background compaction is enabled, always pass in
|
|
// that we can move objets.
|
|
if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
|
|
// After the zygote we want this to be false if we don't have background compaction enabled so
|
|
// that getting primitive array elements is faster.
|
|
can_move_objects = !HasZygoteSpace();
|
|
}
|
|
if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
|
|
RemoveRememberedSet(main_space_);
|
|
}
|
|
const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
|
|
main_space_ = CreateMallocSpaceFromMemMap(std::move(mem_map),
|
|
initial_size,
|
|
growth_limit,
|
|
capacity, name,
|
|
can_move_objects);
|
|
SetSpaceAsDefault(main_space_);
|
|
VLOG(heap) << "Created main space " << main_space_;
|
|
}
|
|
|
|
void Heap::ChangeAllocator(AllocatorType allocator) {
|
|
if (current_allocator_ != allocator) {
|
|
// These two allocators are only used internally and don't have any entrypoints.
|
|
CHECK_NE(allocator, kAllocatorTypeLOS);
|
|
CHECK_NE(allocator, kAllocatorTypeNonMoving);
|
|
current_allocator_ = allocator;
|
|
MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
|
|
SetQuickAllocEntryPointsAllocator(current_allocator_);
|
|
Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
|
|
}
|
|
}
|
|
|
|
bool Heap::IsCompilingBoot() const {
|
|
if (!Runtime::Current()->IsAotCompiler()) {
|
|
return false;
|
|
}
|
|
ScopedObjectAccess soa(Thread::Current());
|
|
for (const auto& space : continuous_spaces_) {
|
|
if (space->IsImageSpace() || space->IsZygoteSpace()) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void Heap::IncrementDisableMovingGC(Thread* self) {
|
|
// Need to do this holding the lock to prevent races where the GC is about to run / running when
|
|
// we attempt to disable it.
|
|
ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
|
|
MutexLock mu(self, *gc_complete_lock_);
|
|
++disable_moving_gc_count_;
|
|
if (IsMovingGc(collector_type_running_)) {
|
|
WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
|
|
}
|
|
}
|
|
|
|
void Heap::DecrementDisableMovingGC(Thread* self) {
|
|
MutexLock mu(self, *gc_complete_lock_);
|
|
CHECK_GT(disable_moving_gc_count_, 0U);
|
|
--disable_moving_gc_count_;
|
|
}
|
|
|
|
void Heap::IncrementDisableThreadFlip(Thread* self) {
|
|
// Supposed to be called by mutators. If thread_flip_running_ is true, block. Otherwise, go ahead.
|
|
CHECK(kUseReadBarrier);
|
|
bool is_nested = self->GetDisableThreadFlipCount() > 0;
|
|
self->IncrementDisableThreadFlipCount();
|
|
if (is_nested) {
|
|
// If this is a nested JNI critical section enter, we don't need to wait or increment the global
|
|
// counter. The global counter is incremented only once for a thread for the outermost enter.
|
|
return;
|
|
}
|
|
ScopedThreadStateChange tsc(self, kWaitingForGcThreadFlip);
|
|
MutexLock mu(self, *thread_flip_lock_);
|
|
thread_flip_cond_->CheckSafeToWait(self);
|
|
bool has_waited = false;
|
|
uint64_t wait_start = 0;
|
|
if (thread_flip_running_) {
|
|
wait_start = NanoTime();
|
|
ScopedTrace trace("IncrementDisableThreadFlip");
|
|
while (thread_flip_running_) {
|
|
has_waited = true;
|
|
thread_flip_cond_->Wait(self);
|
|
}
|
|
}
|
|
++disable_thread_flip_count_;
|
|
if (has_waited) {
|
|
uint64_t wait_time = NanoTime() - wait_start;
|
|
total_wait_time_ += wait_time;
|
|
if (wait_time > long_pause_log_threshold_) {
|
|
LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Heap::DecrementDisableThreadFlip(Thread* self) {
|
|
// Supposed to be called by mutators. Decrement disable_thread_flip_count_ and potentially wake up
|
|
// the GC waiting before doing a thread flip.
|
|
CHECK(kUseReadBarrier);
|
|
self->DecrementDisableThreadFlipCount();
|
|
bool is_outermost = self->GetDisableThreadFlipCount() == 0;
|
|
if (!is_outermost) {
|
|
// If this is not an outermost JNI critical exit, we don't need to decrement the global counter.
|
|
// The global counter is decremented only once for a thread for the outermost exit.
|
|
return;
|
|
}
|
|
MutexLock mu(self, *thread_flip_lock_);
|
|
CHECK_GT(disable_thread_flip_count_, 0U);
|
|
--disable_thread_flip_count_;
|
|
if (disable_thread_flip_count_ == 0) {
|
|
// Potentially notify the GC thread blocking to begin a thread flip.
|
|
thread_flip_cond_->Broadcast(self);
|
|
}
|
|
}
|
|
|
|
void Heap::ThreadFlipBegin(Thread* self) {
|
|
// Supposed to be called by GC. Set thread_flip_running_ to be true. If disable_thread_flip_count_
|
|
// > 0, block. Otherwise, go ahead.
|
|
CHECK(kUseReadBarrier);
|
|
ScopedThreadStateChange tsc(self, kWaitingForGcThreadFlip);
|
|
MutexLock mu(self, *thread_flip_lock_);
|
|
thread_flip_cond_->CheckSafeToWait(self);
|
|
bool has_waited = false;
|
|
uint64_t wait_start = NanoTime();
|
|
CHECK(!thread_flip_running_);
|
|
// Set this to true before waiting so that frequent JNI critical enter/exits won't starve
|
|
// GC. This like a writer preference of a reader-writer lock.
|
|
thread_flip_running_ = true;
|
|
while (disable_thread_flip_count_ > 0) {
|
|
has_waited = true;
|
|
thread_flip_cond_->Wait(self);
|
|
}
|
|
if (has_waited) {
|
|
uint64_t wait_time = NanoTime() - wait_start;
|
|
total_wait_time_ += wait_time;
|
|
if (wait_time > long_pause_log_threshold_) {
|
|
LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Heap::ThreadFlipEnd(Thread* self) {
|
|
// Supposed to be called by GC. Set thread_flip_running_ to false and potentially wake up mutators
|
|
// waiting before doing a JNI critical.
|
|
CHECK(kUseReadBarrier);
|
|
MutexLock mu(self, *thread_flip_lock_);
|
|
CHECK(thread_flip_running_);
|
|
thread_flip_running_ = false;
|
|
// Potentially notify mutator threads blocking to enter a JNI critical section.
|
|
thread_flip_cond_->Broadcast(self);
|
|
}
|
|
|
|
void Heap::GrowHeapOnJankPerceptibleSwitch() {
|
|
MutexLock mu(Thread::Current(), process_state_update_lock_);
|
|
size_t orig_target_footprint = target_footprint_.load(std::memory_order_relaxed);
|
|
if (orig_target_footprint < min_foreground_target_footprint_) {
|
|
target_footprint_.compare_exchange_strong(orig_target_footprint,
|
|
min_foreground_target_footprint_,
|
|
std::memory_order_relaxed);
|
|
}
|
|
min_foreground_target_footprint_ = 0;
|
|
}
|
|
|
|
void Heap::UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state) {
|
|
if (old_process_state != new_process_state) {
|
|
const bool jank_perceptible = new_process_state == kProcessStateJankPerceptible;
|
|
if (jank_perceptible) {
|
|
// Transition back to foreground right away to prevent jank.
|
|
RequestCollectorTransition(foreground_collector_type_, 0);
|
|
GrowHeapOnJankPerceptibleSwitch();
|
|
} else {
|
|
// Don't delay for debug builds since we may want to stress test the GC.
|
|
// If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
|
|
// special handling which does a homogenous space compaction once but then doesn't transition
|
|
// the collector. Similarly, we invoke a full compaction for kCollectorTypeCC but don't
|
|
// transition the collector.
|
|
RequestCollectorTransition(background_collector_type_,
|
|
kStressCollectorTransition
|
|
? 0
|
|
: kCollectorTransitionWait);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Heap::CreateThreadPool() {
|
|
const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
|
|
if (num_threads != 0) {
|
|
thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
|
|
}
|
|
}
|
|
|
|
void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
|
|
space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_;
|
|
space::ContinuousSpace* space2 = non_moving_space_;
|
|
// TODO: Generalize this to n bitmaps?
|
|
CHECK(space1 != nullptr);
|
|
CHECK(space2 != nullptr);
|
|
MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
|
|
(large_object_space_ != nullptr ? large_object_space_->GetLiveBitmap() : nullptr),
|
|
stack);
|
|
}
|
|
|
|
void Heap::DeleteThreadPool() {
|
|
thread_pool_.reset(nullptr);
|
|
}
|
|
|
|
void Heap::AddSpace(space::Space* space) {
|
|
CHECK(space != nullptr);
|
|
WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
|
|
if (space->IsContinuousSpace()) {
|
|
DCHECK(!space->IsDiscontinuousSpace());
|
|
space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
|
|
// Continuous spaces don't necessarily have bitmaps.
|
|
accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
|
|
accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
|
|
// The region space bitmap is not added since VisitObjects visits the region space objects with
|
|
// special handling.
|
|
if (live_bitmap != nullptr && !space->IsRegionSpace()) {
|
|
CHECK(mark_bitmap != nullptr);
|
|
live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
|
|
mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
|
|
}
|
|
continuous_spaces_.push_back(continuous_space);
|
|
// Ensure that spaces remain sorted in increasing order of start address.
|
|
std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
|
|
[](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
|
|
return a->Begin() < b->Begin();
|
|
});
|
|
} else {
|
|
CHECK(space->IsDiscontinuousSpace());
|
|
space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
|
|
live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
|
|
mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
|
|
discontinuous_spaces_.push_back(discontinuous_space);
|
|
}
|
|
if (space->IsAllocSpace()) {
|
|
alloc_spaces_.push_back(space->AsAllocSpace());
|
|
}
|
|
}
|
|
|
|
void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
|
|
WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
|
|
if (continuous_space->IsDlMallocSpace()) {
|
|
dlmalloc_space_ = continuous_space->AsDlMallocSpace();
|
|
} else if (continuous_space->IsRosAllocSpace()) {
|
|
rosalloc_space_ = continuous_space->AsRosAllocSpace();
|
|
}
|
|
}
|
|
|
|
void Heap::RemoveSpace(space::Space* space) {
|
|
DCHECK(space != nullptr);
|
|
WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
|
|
if (space->IsContinuousSpace()) {
|
|
DCHECK(!space->IsDiscontinuousSpace());
|
|
space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
|
|
// Continuous spaces don't necessarily have bitmaps.
|
|
accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
|
|
accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
|
|
if (live_bitmap != nullptr && !space->IsRegionSpace()) {
|
|
DCHECK(mark_bitmap != nullptr);
|
|
live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
|
|
mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
|
|
}
|
|
auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
|
|
DCHECK(it != continuous_spaces_.end());
|
|
continuous_spaces_.erase(it);
|
|
} else {
|
|
DCHECK(space->IsDiscontinuousSpace());
|
|
space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
|
|
live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
|
|
mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
|
|
auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
|
|
discontinuous_space);
|
|
DCHECK(it != discontinuous_spaces_.end());
|
|
discontinuous_spaces_.erase(it);
|
|
}
|
|
if (space->IsAllocSpace()) {
|
|
auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
|
|
DCHECK(it != alloc_spaces_.end());
|
|
alloc_spaces_.erase(it);
|
|
}
|
|
}
|
|
|
|
double Heap::CalculateGcWeightedAllocatedBytes(uint64_t gc_last_process_cpu_time_ns,
|
|
uint64_t current_process_cpu_time) const {
|
|
uint64_t bytes_allocated = GetBytesAllocated();
|
|
double weight = current_process_cpu_time - gc_last_process_cpu_time_ns;
|
|
return weight * bytes_allocated;
|
|
}
|
|
|
|
void Heap::CalculatePreGcWeightedAllocatedBytes() {
|
|
uint64_t current_process_cpu_time = ProcessCpuNanoTime();
|
|
pre_gc_weighted_allocated_bytes_ +=
|
|
CalculateGcWeightedAllocatedBytes(pre_gc_last_process_cpu_time_ns_, current_process_cpu_time);
|
|
pre_gc_last_process_cpu_time_ns_ = current_process_cpu_time;
|
|
}
|
|
|
|
void Heap::CalculatePostGcWeightedAllocatedBytes() {
|
|
uint64_t current_process_cpu_time = ProcessCpuNanoTime();
|
|
post_gc_weighted_allocated_bytes_ +=
|
|
CalculateGcWeightedAllocatedBytes(post_gc_last_process_cpu_time_ns_, current_process_cpu_time);
|
|
post_gc_last_process_cpu_time_ns_ = current_process_cpu_time;
|
|
}
|
|
|
|
uint64_t Heap::GetTotalGcCpuTime() {
|
|
uint64_t sum = 0;
|
|
for (auto* collector : garbage_collectors_) {
|
|
sum += collector->GetTotalCpuTime();
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
void Heap::DumpGcPerformanceInfo(std::ostream& os) {
|
|
// Dump cumulative timings.
|
|
os << "Dumping cumulative Gc timings\n";
|
|
uint64_t total_duration = 0;
|
|
// Dump cumulative loggers for each GC type.
|
|
uint64_t total_paused_time = 0;
|
|
for (auto* collector : garbage_collectors_) {
|
|
total_duration += collector->GetCumulativeTimings().GetTotalNs();
|
|
total_paused_time += collector->GetTotalPausedTimeNs();
|
|
collector->DumpPerformanceInfo(os);
|
|
}
|
|
if (total_duration != 0) {
|
|
const double total_seconds = total_duration / 1.0e9;
|
|
const double total_cpu_seconds = GetTotalGcCpuTime() / 1.0e9;
|
|
os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
|
|
os << "Mean GC size throughput: "
|
|
<< PrettySize(GetBytesFreedEver() / total_seconds) << "/s"
|
|
<< " per cpu-time: "
|
|
<< PrettySize(GetBytesFreedEver() / total_cpu_seconds) << "/s\n";
|
|
os << "Mean GC object throughput: "
|
|
<< (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
|
|
}
|
|
uint64_t total_objects_allocated = GetObjectsAllocatedEver();
|
|
os << "Total number of allocations " << total_objects_allocated << "\n";
|
|
os << "Total bytes allocated " << PrettySize(GetBytesAllocatedEver()) << "\n";
|
|
os << "Total bytes freed " << PrettySize(GetBytesFreedEver()) << "\n";
|
|
os << "Free memory " << PrettySize(GetFreeMemory()) << "\n";
|
|
os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n";
|
|
os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n";
|
|
os << "Total memory " << PrettySize(GetTotalMemory()) << "\n";
|
|
os << "Max memory " << PrettySize(GetMaxMemory()) << "\n";
|
|
if (HasZygoteSpace()) {
|
|
os << "Zygote space size " << PrettySize(zygote_space_->Size()) << "\n";
|
|
}
|
|
os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
|
|
os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
|
|
os << "Total GC count: " << GetGcCount() << "\n";
|
|
os << "Total GC time: " << PrettyDuration(GetGcTime()) << "\n";
|
|
os << "Total blocking GC count: " << GetBlockingGcCount() << "\n";
|
|
os << "Total blocking GC time: " << PrettyDuration(GetBlockingGcTime()) << "\n";
|
|
|
|
{
|
|
MutexLock mu(Thread::Current(), *gc_complete_lock_);
|
|
if (gc_count_rate_histogram_.SampleSize() > 0U) {
|
|
os << "Histogram of GC count per " << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
|
|
gc_count_rate_histogram_.DumpBins(os);
|
|
os << "\n";
|
|
}
|
|
if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
|
|
os << "Histogram of blocking GC count per "
|
|
<< NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
|
|
blocking_gc_count_rate_histogram_.DumpBins(os);
|
|
os << "\n";
|
|
}
|
|
}
|
|
|
|
if (kDumpRosAllocStatsOnSigQuit && rosalloc_space_ != nullptr) {
|
|
rosalloc_space_->DumpStats(os);
|
|
}
|
|
|
|
os << "Native bytes total: " << GetNativeBytes()
|
|
<< " registered: " << native_bytes_registered_.load(std::memory_order_relaxed) << "\n";
|
|
|
|
os << "Total native bytes at last GC: "
|
|
<< old_native_bytes_allocated_.load(std::memory_order_relaxed) << "\n";
|
|
|
|
BaseMutex::DumpAll(os);
|
|
}
|
|
|
|
void Heap::ResetGcPerformanceInfo() {
|
|
for (auto* collector : garbage_collectors_) {
|
|
collector->ResetMeasurements();
|
|
}
|
|
|
|
process_cpu_start_time_ns_ = ProcessCpuNanoTime();
|
|
|
|
pre_gc_last_process_cpu_time_ns_ = process_cpu_start_time_ns_;
|
|
pre_gc_weighted_allocated_bytes_ = 0u;
|
|
|
|
post_gc_last_process_cpu_time_ns_ = process_cpu_start_time_ns_;
|
|
post_gc_weighted_allocated_bytes_ = 0u;
|
|
|
|
total_bytes_freed_ever_.store(0);
|
|
total_objects_freed_ever_.store(0);
|
|
total_wait_time_ = 0;
|
|
blocking_gc_count_ = 0;
|
|
blocking_gc_time_ = 0;
|
|
gc_count_last_window_ = 0;
|
|
blocking_gc_count_last_window_ = 0;
|
|
last_update_time_gc_count_rate_histograms_ = // Round down by the window duration.
|
|
(NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
|
|
{
|
|
MutexLock mu(Thread::Current(), *gc_complete_lock_);
|
|
gc_count_rate_histogram_.Reset();
|
|
blocking_gc_count_rate_histogram_.Reset();
|
|
}
|
|
}
|
|
|
|
uint64_t Heap::GetGcCount() const {
|
|
uint64_t gc_count = 0U;
|
|
for (auto* collector : garbage_collectors_) {
|
|
gc_count += collector->GetCumulativeTimings().GetIterations();
|
|
}
|
|
return gc_count;
|
|
}
|
|
|
|
uint64_t Heap::GetGcTime() const {
|
|
uint64_t gc_time = 0U;
|
|
for (auto* collector : garbage_collectors_) {
|
|
gc_time += collector->GetCumulativeTimings().GetTotalNs();
|
|
}
|
|
return gc_time;
|
|
}
|
|
|
|
uint64_t Heap::GetBlockingGcCount() const {
|
|
return blocking_gc_count_;
|
|
}
|
|
|
|
uint64_t Heap::GetBlockingGcTime() const {
|
|
return blocking_gc_time_;
|
|
}
|
|
|
|
void Heap::DumpGcCountRateHistogram(std::ostream& os) const {
|
|
MutexLock mu(Thread::Current(), *gc_complete_lock_);
|
|
if (gc_count_rate_histogram_.SampleSize() > 0U) {
|
|
gc_count_rate_histogram_.DumpBins(os);
|
|
}
|
|
}
|
|
|
|
void Heap::DumpBlockingGcCountRateHistogram(std::ostream& os) const {
|
|
MutexLock mu(Thread::Current(), *gc_complete_lock_);
|
|
if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
|
|
blocking_gc_count_rate_histogram_.DumpBins(os);
|
|
}
|
|
}
|
|
|
|
ALWAYS_INLINE
|
|
static inline AllocationListener* GetAndOverwriteAllocationListener(
|
|
Atomic<AllocationListener*>* storage, AllocationListener* new_value) {
|
|
return storage->exchange(new_value);
|
|
}
|
|
|
|
Heap::~Heap() {
|
|
VLOG(heap) << "Starting ~Heap()";
|
|
STLDeleteElements(&garbage_collectors_);
|
|
// If we don't reset then the mark stack complains in its destructor.
|
|
allocation_stack_->Reset();
|
|
allocation_records_.reset();
|
|
live_stack_->Reset();
|
|
STLDeleteValues(&mod_union_tables_);
|
|
STLDeleteValues(&remembered_sets_);
|
|
STLDeleteElements(&continuous_spaces_);
|
|
STLDeleteElements(&discontinuous_spaces_);
|
|
delete gc_complete_lock_;
|
|
delete thread_flip_lock_;
|
|
delete pending_task_lock_;
|
|
delete backtrace_lock_;
|
|
uint64_t unique_count = unique_backtrace_count_.load();
|
|
uint64_t seen_count = seen_backtrace_count_.load();
|
|
if (unique_count != 0 || seen_count != 0) {
|
|
LOG(INFO) << "gc stress unique=" << unique_count << " total=" << (unique_count + seen_count);
|
|
}
|
|
VLOG(heap) << "Finished ~Heap()";
|
|
}
|
|
|
|
|
|
space::ContinuousSpace* Heap::FindContinuousSpaceFromAddress(const mirror::Object* addr) const {
|
|
for (const auto& space : continuous_spaces_) {
|
|
if (space->Contains(addr)) {
|
|
return space;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(ObjPtr<mirror::Object> obj,
|
|
bool fail_ok) const {
|
|
space::ContinuousSpace* space = FindContinuousSpaceFromAddress(obj.Ptr());
|
|
if (space != nullptr) {
|
|
return space;
|
|
}
|
|
if (!fail_ok) {
|
|
LOG(FATAL) << "object " << obj << " not inside any spaces!";
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object> obj,
|
|
bool fail_ok) const {
|
|
for (const auto& space : discontinuous_spaces_) {
|
|
if (space->Contains(obj.Ptr())) {
|
|
return space;
|
|
}
|
|
}
|
|
if (!fail_ok) {
|
|
LOG(FATAL) << "object " << obj << " not inside any spaces!";
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
space::Space* Heap::FindSpaceFromObject(ObjPtr<mirror::Object> obj, bool fail_ok) const {
|
|
space::Space* result = FindContinuousSpaceFromObject(obj, true);
|
|
if (result != nullptr) {
|
|
return result;
|
|
}
|
|
return FindDiscontinuousSpaceFromObject(obj, fail_ok);
|
|
}
|
|
|
|
space::Space* Heap::FindSpaceFromAddress(const void* addr) const {
|
|
for (const auto& space : continuous_spaces_) {
|
|
if (space->Contains(reinterpret_cast<const mirror::Object*>(addr))) {
|
|
return space;
|
|
}
|
|
}
|
|
for (const auto& space : discontinuous_spaces_) {
|
|
if (space->Contains(reinterpret_cast<const mirror::Object*>(addr))) {
|
|
return space;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
std::string Heap::DumpSpaceNameFromAddress(const void* addr) const {
|
|
space::Space* space = FindSpaceFromAddress(addr);
|
|
return (space != nullptr) ? space->GetName() : "no space";
|
|
}
|
|
|
|
void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
|
|
// If we're in a stack overflow, do not create a new exception. It would require running the
|
|
// constructor, which will of course still be in a stack overflow.
|
|
if (self->IsHandlingStackOverflow()) {
|
|
self->SetException(
|
|
Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow());
|
|
return;
|
|
}
|
|
|
|
std::ostringstream oss;
|
|
size_t total_bytes_free = GetFreeMemory();
|
|
oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
|
|
<< " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM,"
|
|
<< " target footprint " << target_footprint_.load(std::memory_order_relaxed)
|
|
<< ", growth limit "
|
|
<< growth_limit_;
|
|
// If the allocation failed due to fragmentation, print out the largest continuous allocation.
|
|
if (total_bytes_free >= byte_count) {
|
|
space::AllocSpace* space = nullptr;
|
|
if (allocator_type == kAllocatorTypeNonMoving) {
|
|
space = non_moving_space_;
|
|
} else if (allocator_type == kAllocatorTypeRosAlloc ||
|
|
allocator_type == kAllocatorTypeDlMalloc) {
|
|
space = main_space_;
|
|
} else if (allocator_type == kAllocatorTypeBumpPointer ||
|
|
allocator_type == kAllocatorTypeTLAB) {
|
|
space = bump_pointer_space_;
|
|
} else if (allocator_type == kAllocatorTypeRegion ||
|
|
allocator_type == kAllocatorTypeRegionTLAB) {
|
|
space = region_space_;
|
|
}
|
|
|
|
// There is no fragmentation info to log for large-object space.
|
|
if (allocator_type != kAllocatorTypeLOS) {
|
|
CHECK(space != nullptr) << "allocator_type:" << allocator_type
|
|
<< " byte_count:" << byte_count
|
|
<< " total_bytes_free:" << total_bytes_free;
|
|
// LogFragmentationAllocFailure returns true if byte_count is greater than
|
|
// the largest free contiguous chunk in the space. Return value false
|
|
// means that we are throwing OOME because the amount of free heap after
|
|
// GC is less than kMinFreeHeapAfterGcForAlloc in proportion of the heap-size.
|
|
// Log an appropriate message in that case.
|
|
if (!space->LogFragmentationAllocFailure(oss, byte_count)) {
|
|
oss << "; giving up on allocation because <"
|
|
<< kMinFreeHeapAfterGcForAlloc * 100
|
|
<< "% of heap free after GC.";
|
|
}
|
|
}
|
|
}
|
|
self->ThrowOutOfMemoryError(oss.str().c_str());
|
|
}
|
|
|
|
void Heap::DoPendingCollectorTransition() {
|
|
CollectorType desired_collector_type = desired_collector_type_;
|
|
// Launch homogeneous space compaction if it is desired.
|
|
if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
|
|
if (!CareAboutPauseTimes()) {
|
|
PerformHomogeneousSpaceCompact();
|
|
} else {
|
|
VLOG(gc) << "Homogeneous compaction ignored due to jank perceptible process state";
|
|
}
|
|
} else if (desired_collector_type == kCollectorTypeCCBackground) {
|
|
DCHECK(kUseReadBarrier);
|
|
if (!CareAboutPauseTimes()) {
|
|
// Invoke CC full compaction.
|
|
CollectGarbageInternal(collector::kGcTypeFull,
|
|
kGcCauseCollectorTransition,
|
|
/*clear_soft_references=*/false, GC_NUM_ANY);
|
|
} else {
|
|
VLOG(gc) << "CC background compaction ignored due to jank perceptible process state";
|
|
}
|
|
} else {
|
|
CHECK_EQ(desired_collector_type, collector_type_) << "Unsupported collector transition";
|
|
}
|
|
}
|
|
|
|
void Heap::Trim(Thread* self) {
|
|
Runtime* const runtime = Runtime::Current();
|
|
if (!CareAboutPauseTimes()) {
|
|
// Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
|
|
// about pauses.
|
|
ScopedTrace trace("Deflating monitors");
|
|
// Avoid race conditions on the lock word for CC.
|
|
ScopedGCCriticalSection gcs(self, kGcCauseTrim, kCollectorTypeHeapTrim);
|
|
ScopedSuspendAll ssa(__FUNCTION__);
|
|
uint64_t start_time = NanoTime();
|
|
size_t count = runtime->GetMonitorList()->DeflateMonitors();
|
|
VLOG(heap) << "Deflating " << count << " monitors took "
|
|
<< PrettyDuration(NanoTime() - start_time);
|
|
}
|
|
TrimIndirectReferenceTables(self);
|
|
TrimSpaces(self);
|
|
// Trim arenas that may have been used by JIT or verifier.
|
|
runtime->GetArenaPool()->TrimMaps();
|
|
}
|
|
|
|
class TrimIndirectReferenceTableClosure : public Closure {
|
|
public:
|
|
explicit TrimIndirectReferenceTableClosure(Barrier* barrier) : barrier_(barrier) {
|
|
}
|
|
void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
|
|
thread->GetJniEnv()->TrimLocals();
|
|
// If thread is a running mutator, then act on behalf of the trim thread.
|
|
// See the code in ThreadList::RunCheckpoint.
|
|
barrier_->Pass(Thread::Current());
|
|
}
|
|
|
|
private:
|
|
Barrier* const barrier_;
|
|
};
|
|
|
|
void Heap::TrimIndirectReferenceTables(Thread* self) {
|
|
ScopedObjectAccess soa(self);
|
|
ScopedTrace trace(__PRETTY_FUNCTION__);
|
|
JavaVMExt* vm = soa.Vm();
|
|
// Trim globals indirect reference table.
|
|
vm->TrimGlobals();
|
|
// Trim locals indirect reference tables.
|
|
Barrier barrier(0);
|
|
TrimIndirectReferenceTableClosure closure(&barrier);
|
|
ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
|
|
size_t barrier_count = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
|
|
if (barrier_count != 0) {
|
|
barrier.Increment(self, barrier_count);
|
|
}
|
|
}
|
|
|
|
void Heap::StartGC(Thread* self, GcCause cause, CollectorType collector_type) {
|
|
// Need to do this before acquiring the locks since we don't want to get suspended while
|
|
// holding any locks.
|
|
ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
|
|
MutexLock mu(self, *gc_complete_lock_);
|
|
// Ensure there is only one GC at a time.
|
|
WaitForGcToCompleteLocked(cause, self);
|
|
collector_type_running_ = collector_type;
|
|
last_gc_cause_ = cause;
|
|
thread_running_gc_ = self;
|
|
}
|
|
|
|
void Heap::TrimSpaces(Thread* self) {
|
|
// Pretend we are doing a GC to prevent background compaction from deleting the space we are
|
|
// trimming.
|
|
StartGC(self, kGcCauseTrim, kCollectorTypeHeapTrim);
|
|
ScopedTrace trace(__PRETTY_FUNCTION__);
|
|
const uint64_t start_ns = NanoTime();
|
|
// Trim the managed spaces.
|
|
uint64_t total_alloc_space_allocated = 0;
|
|
uint64_t total_alloc_space_size = 0;
|
|
uint64_t managed_reclaimed = 0;
|
|
{
|
|
ScopedObjectAccess soa(self);
|
|
for (const auto& space : continuous_spaces_) {
|
|
if (space->IsMallocSpace()) {
|
|
gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
|
|
if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
|
|
// Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
|
|
// for a long period of time.
|
|
managed_reclaimed += malloc_space->Trim();
|
|
}
|
|
total_alloc_space_size += malloc_space->Size();
|
|
}
|
|
}
|
|
}
|
|
total_alloc_space_allocated = GetBytesAllocated();
|
|
if (large_object_space_ != nullptr) {
|
|
total_alloc_space_allocated -= large_object_space_->GetBytesAllocated();
|
|
}
|
|
if (bump_pointer_space_ != nullptr) {
|
|
total_alloc_space_allocated -= bump_pointer_space_->Size();
|
|
}
|
|
if (region_space_ != nullptr) {
|
|
total_alloc_space_allocated -= region_space_->GetBytesAllocated();
|
|
}
|
|
const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
|
|
static_cast<float>(total_alloc_space_size);
|
|
uint64_t gc_heap_end_ns = NanoTime();
|
|
// We never move things in the native heap, so we can finish the GC at this point.
|
|
FinishGC(self, collector::kGcTypeNone);
|
|
|
|
VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
|
|
<< ", advised=" << PrettySize(managed_reclaimed) << ") heap. Managed heap utilization of "
|
|
<< static_cast<int>(100 * managed_utilization) << "%.";
|
|
}
|
|
|
|
bool Heap::IsValidObjectAddress(const void* addr) const {
|
|
if (addr == nullptr) {
|
|
return true;
|
|
}
|
|
return IsAligned<kObjectAlignment>(addr) && FindSpaceFromAddress(addr) != nullptr;
|
|
}
|
|
|
|
bool Heap::IsNonDiscontinuousSpaceHeapAddress(const void* addr) const {
|
|
return FindContinuousSpaceFromAddress(reinterpret_cast<const mirror::Object*>(addr)) != nullptr;
|
|
}
|
|
|
|
bool Heap::IsLiveObjectLocked(ObjPtr<mirror::Object> obj,
|
|
bool search_allocation_stack,
|
|
bool search_live_stack,
|
|
bool sorted) {
|
|
if (UNLIKELY(!IsAligned<kObjectAlignment>(obj.Ptr()))) {
|
|
return false;
|
|
}
|
|
if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj.Ptr())) {
|
|
mirror::Class* klass = obj->GetClass<kVerifyNone>();
|
|
if (obj == klass) {
|
|
// This case happens for java.lang.Class.
|
|
return true;
|
|
}
|
|
return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
|
|
} else if (temp_space_ != nullptr && temp_space_->HasAddress(obj.Ptr())) {
|
|
// If we are in the allocated region of the temp space, then we are probably live (e.g. during
|
|
// a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
|
|
return temp_space_->Contains(obj.Ptr());
|
|
}
|
|
if (region_space_ != nullptr && region_space_->HasAddress(obj.Ptr())) {
|
|
return true;
|
|
}
|
|
space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
|
|
space::DiscontinuousSpace* d_space = nullptr;
|
|
if (c_space != nullptr) {
|
|
if (c_space->GetLiveBitmap()->Test(obj.Ptr())) {
|
|
return true;
|
|
}
|
|
} else {
|
|
d_space = FindDiscontinuousSpaceFromObject(obj, true);
|
|
if (d_space != nullptr) {
|
|
if (d_space->GetLiveBitmap()->Test(obj.Ptr())) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
// This is covering the allocation/live stack swapping that is done without mutators suspended.
|
|
for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
|
|
if (i > 0) {
|
|
NanoSleep(MsToNs(10));
|
|
}
|
|
if (search_allocation_stack) {
|
|
if (sorted) {
|
|
if (allocation_stack_->ContainsSorted(obj.Ptr())) {
|
|
return true;
|
|
}
|
|
} else if (allocation_stack_->Contains(obj.Ptr())) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (search_live_stack) {
|
|
if (sorted) {
|
|
if (live_stack_->ContainsSorted(obj.Ptr())) {
|
|
return true;
|
|
}
|
|
} else if (live_stack_->Contains(obj.Ptr())) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
// We need to check the bitmaps again since there is a race where we mark something as live and
|
|
// then clear the stack containing it.
|
|
if (c_space != nullptr) {
|
|
if (c_space->GetLiveBitmap()->Test(obj.Ptr())) {
|
|
return true;
|
|
}
|
|
} else {
|
|
d_space = FindDiscontinuousSpaceFromObject(obj, true);
|
|
if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj.Ptr())) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
std::string Heap::DumpSpaces() const {
|
|
std::ostringstream oss;
|
|
DumpSpaces(oss);
|
|
return oss.str();
|
|
}
|
|
|
|
void Heap::DumpSpaces(std::ostream& stream) const {
|
|
for (const auto& space : continuous_spaces_) {
|
|
accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
|
|
accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
|
|
stream << space << " " << *space << "\n";
|
|
if (live_bitmap != nullptr) {
|
|
stream << live_bitmap << " " << *live_bitmap << "\n";
|
|
}
|
|
if (mark_bitmap != nullptr) {
|
|
stream << mark_bitmap << " " << *mark_bitmap << "\n";
|
|
}
|
|
}
|
|
for (const auto& space : discontinuous_spaces_) {
|
|
stream << space << " " << *space << "\n";
|
|
}
|
|
}
|
|
|
|
void Heap::VerifyObjectBody(ObjPtr<mirror::Object> obj) {
|
|
if (verify_object_mode_ == kVerifyObjectModeDisabled) {
|
|
return;
|
|
}
|
|
|
|
// Ignore early dawn of the universe verifications.
|
|
if (UNLIKELY(num_bytes_allocated_.load(std::memory_order_relaxed) < 10 * KB)) {
|
|
return;
|
|
}
|
|
CHECK_ALIGNED(obj.Ptr(), kObjectAlignment) << "Object isn't aligned";
|
|
mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
|
|
CHECK(c != nullptr) << "Null class in object " << obj;
|
|
CHECK_ALIGNED(c, kObjectAlignment) << "Class " << c << " not aligned in object " << obj;
|
|
CHECK(VerifyClassClass(c));
|
|
|
|
if (verify_object_mode_ > kVerifyObjectModeFast) {
|
|
// Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
|
|
CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
|
|
}
|
|
}
|
|
|
|
void Heap::VerifyHeap() {
|
|
ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
|
|
auto visitor = [&](mirror::Object* obj) {
|
|
VerifyObjectBody(obj);
|
|
};
|
|
// Technically we need the mutator lock here to call Visit. However, VerifyObjectBody is already
|
|
// NO_THREAD_SAFETY_ANALYSIS.
|
|
auto no_thread_safety_analysis = [&]() NO_THREAD_SAFETY_ANALYSIS {
|
|
GetLiveBitmap()->Visit(visitor);
|
|
};
|
|
no_thread_safety_analysis();
|
|
}
|
|
|
|
void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
|
|
// Use signed comparison since freed bytes can be negative when background compaction foreground
|
|
// transitions occurs. This is typically due to objects moving from a bump pointer space to a
|
|
// free list backed space, which may increase memory footprint due to padding and binning.
|
|
RACING_DCHECK_LE(freed_bytes,
|
|
static_cast<int64_t>(num_bytes_allocated_.load(std::memory_order_relaxed)));
|
|
// Note: This relies on 2s complement for handling negative freed_bytes.
|
|
num_bytes_allocated_.fetch_sub(static_cast<ssize_t>(freed_bytes), std::memory_order_relaxed);
|
|
if (Runtime::Current()->HasStatsEnabled()) {
|
|
RuntimeStats* thread_stats = Thread::Current()->GetStats();
|
|
thread_stats->freed_objects += freed_objects;
|
|
thread_stats->freed_bytes += freed_bytes;
|
|
// TODO: Do this concurrently.
|
|
RuntimeStats* global_stats = Runtime::Current()->GetStats();
|
|
global_stats->freed_objects += freed_objects;
|
|
global_stats->freed_bytes += freed_bytes;
|
|
}
|
|
}
|
|
|
|
void Heap::RecordFreeRevoke() {
|
|
// Subtract num_bytes_freed_revoke_ from num_bytes_allocated_ to cancel out the
|
|
// ahead-of-time, bulk counting of bytes allocated in rosalloc thread-local buffers.
|
|
// If there's a concurrent revoke, ok to not necessarily reset num_bytes_freed_revoke_
|
|
// all the way to zero exactly as the remainder will be subtracted at the next GC.
|
|
size_t bytes_freed = num_bytes_freed_revoke_.load(std::memory_order_relaxed);
|
|
CHECK_GE(num_bytes_freed_revoke_.fetch_sub(bytes_freed, std::memory_order_relaxed),
|
|
bytes_freed) << "num_bytes_freed_revoke_ underflow";
|
|
CHECK_GE(num_bytes_allocated_.fetch_sub(bytes_freed, std::memory_order_relaxed),
|
|
bytes_freed) << "num_bytes_allocated_ underflow";
|
|
GetCurrentGcIteration()->SetFreedRevoke(bytes_freed);
|
|
}
|
|
|
|
space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
|
|
if (rosalloc_space_ != nullptr && rosalloc_space_->GetRosAlloc() == rosalloc) {
|
|
return rosalloc_space_;
|
|
}
|
|
for (const auto& space : continuous_spaces_) {
|
|
if (space->AsContinuousSpace()->IsRosAllocSpace()) {
|
|
if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
|
|
return space->AsContinuousSpace()->AsRosAllocSpace();
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static inline bool EntrypointsInstrumented() REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
instrumentation::Instrumentation* const instrumentation =
|
|
Runtime::Current()->GetInstrumentation();
|
|
return instrumentation != nullptr && instrumentation->AllocEntrypointsInstrumented();
|
|
}
|
|
|
|
mirror::Object* Heap::AllocateInternalWithGc(Thread* self,
|
|
AllocatorType allocator,
|
|
bool instrumented,
|
|
size_t alloc_size,
|
|
size_t* bytes_allocated,
|
|
size_t* usable_size,
|
|
size_t* bytes_tl_bulk_allocated,
|
|
ObjPtr<mirror::Class>* klass) {
|
|
bool was_default_allocator = allocator == GetCurrentAllocator();
|
|
// Make sure there is no pending exception since we may need to throw an OOME.
|
|
self->AssertNoPendingException();
|
|
DCHECK(klass != nullptr);
|
|
|
|
StackHandleScope<1> hs(self);
|
|
HandleWrapperObjPtr<mirror::Class> h_klass(hs.NewHandleWrapper(klass));
|
|
|
|
auto send_object_pre_alloc =
|
|
[&]() REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_) {
|
|
if (UNLIKELY(instrumented)) {
|
|
AllocationListener* l = alloc_listener_.load(std::memory_order_seq_cst);
|
|
if (UNLIKELY(l != nullptr) && UNLIKELY(l->HasPreAlloc())) {
|
|
l->PreObjectAllocated(self, h_klass, &alloc_size);
|
|
}
|
|
}
|
|
};
|
|
#define PERFORM_SUSPENDING_OPERATION(op) \
|
|
[&]() REQUIRES(Roles::uninterruptible_) REQUIRES_SHARED(Locks::mutator_lock_) { \
|
|
ScopedAllowThreadSuspension ats; \
|
|
auto res = (op); \
|
|
send_object_pre_alloc(); \
|
|
return res; \
|
|
}()
|
|
|
|
// The allocation failed. If the GC is running, block until it completes, and then retry the
|
|
// allocation.
|
|
collector::GcType last_gc =
|
|
PERFORM_SUSPENDING_OPERATION(WaitForGcToComplete(kGcCauseForAlloc, self));
|
|
// If we were the default allocator but the allocator changed while we were suspended,
|
|
// abort the allocation.
|
|
if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
|
|
(!instrumented && EntrypointsInstrumented())) {
|
|
return nullptr;
|
|
}
|
|
uint32_t starting_gc_num = GetCurrentGcNum();
|
|
if (last_gc != collector::kGcTypeNone) {
|
|
// A GC was in progress and we blocked, retry allocation now that memory has been freed.
|
|
mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
|
|
usable_size, bytes_tl_bulk_allocated);
|
|
if (ptr != nullptr) {
|
|
return ptr;
|
|
}
|
|
}
|
|
|
|
auto have_reclaimed_enough = [&]() {
|
|
size_t curr_bytes_allocated = GetBytesAllocated();
|
|
double curr_free_heap =
|
|
static_cast<double>(growth_limit_ - curr_bytes_allocated) / growth_limit_;
|
|
return curr_free_heap >= kMinFreeHeapAfterGcForAlloc;
|
|
};
|
|
// We perform one GC as per the next_gc_type_ (chosen in GrowForUtilization),
|
|
// if it's not already tried. If that doesn't succeed then go for the most
|
|
// exhaustive option. Perform a full-heap collection including clearing
|
|
// SoftReferences. In case of ConcurrentCopying, it will also ensure that
|
|
// all regions are evacuated. If allocation doesn't succeed even after that
|
|
// then there is no hope, so we throw OOME.
|
|
collector::GcType tried_type = next_gc_type_;
|
|
if (last_gc < tried_type) {
|
|
const bool gc_ran = PERFORM_SUSPENDING_OPERATION(
|
|
CollectGarbageInternal(tried_type, kGcCauseForAlloc, false, starting_gc_num + 1)
|
|
!= collector::kGcTypeNone);
|
|
|
|
if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
|
|
(!instrumented && EntrypointsInstrumented())) {
|
|
return nullptr;
|
|
}
|
|
if (gc_ran && have_reclaimed_enough()) {
|
|
mirror::Object* ptr = TryToAllocate<true, false>(self, allocator,
|
|
alloc_size, bytes_allocated,
|
|
usable_size, bytes_tl_bulk_allocated);
|
|
if (ptr != nullptr) {
|
|
return ptr;
|
|
}
|
|
}
|
|
}
|
|
// Most allocations should have succeeded by now, so the heap is really full, really fragmented,
|
|
// or the requested size is really big. Do another GC, collecting SoftReferences this time. The
|
|
// VM spec requires that all SoftReferences have been collected and cleared before throwing
|
|
// OOME.
|
|
VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
|
|
<< " allocation";
|
|
// TODO: Run finalization, but this may cause more allocations to occur.
|
|
// We don't need a WaitForGcToComplete here either.
|
|
// TODO: Should check whether another thread already just ran a GC with soft
|
|
// references.
|
|
DCHECK(!gc_plan_.empty());
|
|
PERFORM_SUSPENDING_OPERATION(
|
|
CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true, GC_NUM_ANY));
|
|
if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
|
|
(!instrumented && EntrypointsInstrumented())) {
|
|
return nullptr;
|
|
}
|
|
mirror::Object* ptr = nullptr;
|
|
if (have_reclaimed_enough()) {
|
|
ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
|
|
usable_size, bytes_tl_bulk_allocated);
|
|
}
|
|
|
|
if (ptr == nullptr) {
|
|
const uint64_t current_time = NanoTime();
|
|
switch (allocator) {
|
|
case kAllocatorTypeRosAlloc:
|
|
// Fall-through.
|
|
case kAllocatorTypeDlMalloc: {
|
|
if (use_homogeneous_space_compaction_for_oom_ &&
|
|
current_time - last_time_homogeneous_space_compaction_by_oom_ >
|
|
min_interval_homogeneous_space_compaction_by_oom_) {
|
|
last_time_homogeneous_space_compaction_by_oom_ = current_time;
|
|
HomogeneousSpaceCompactResult result =
|
|
PERFORM_SUSPENDING_OPERATION(PerformHomogeneousSpaceCompact());
|
|
// Thread suspension could have occurred.
|
|
if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
|
|
(!instrumented && EntrypointsInstrumented())) {
|
|
return nullptr;
|
|
}
|
|
switch (result) {
|
|
case HomogeneousSpaceCompactResult::kSuccess:
|
|
// If the allocation succeeded, we delayed an oom.
|
|
ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
|
|
usable_size, bytes_tl_bulk_allocated);
|
|
if (ptr != nullptr) {
|
|
count_delayed_oom_++;
|
|
}
|
|
break;
|
|
case HomogeneousSpaceCompactResult::kErrorReject:
|
|
// Reject due to disabled moving GC.
|
|
break;
|
|
case HomogeneousSpaceCompactResult::kErrorVMShuttingDown:
|
|
// Throw OOM by default.
|
|
break;
|
|
default: {
|
|
UNIMPLEMENTED(FATAL) << "homogeneous space compaction result: "
|
|
<< static_cast<size_t>(result);
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
// Always print that we ran homogeneous space compation since this can cause jank.
|
|
VLOG(heap) << "Ran heap homogeneous space compaction, "
|
|
<< " requested defragmentation "
|
|
<< count_requested_homogeneous_space_compaction_.load()
|
|
<< " performed defragmentation "
|
|
<< count_performed_homogeneous_space_compaction_.load()
|
|
<< " ignored homogeneous space compaction "
|
|
<< count_ignored_homogeneous_space_compaction_.load()
|
|
<< " delayed count = "
|
|
<< count_delayed_oom_.load();
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
// Do nothing for others allocators.
|
|
}
|
|
}
|
|
}
|
|
#undef PERFORM_SUSPENDING_OPERATION
|
|
// If the allocation hasn't succeeded by this point, throw an OOM error.
|
|
if (ptr == nullptr) {
|
|
ScopedAllowThreadSuspension ats;
|
|
ThrowOutOfMemoryError(self, alloc_size, allocator);
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
void Heap::SetTargetHeapUtilization(float target) {
|
|
DCHECK_GT(target, 0.1f); // asserted in Java code
|
|
DCHECK_LT(target, 1.0f);
|
|
target_utilization_ = target;
|
|
}
|
|
|
|
size_t Heap::GetObjectsAllocated() const {
|
|
Thread* const self = Thread::Current();
|
|
ScopedThreadStateChange tsc(self, kWaitingForGetObjectsAllocated);
|
|
// Prevent GC running during GetObjectsAllocated since we may get a checkpoint request that tells
|
|
// us to suspend while we are doing SuspendAll. b/35232978
|
|
gc::ScopedGCCriticalSection gcs(Thread::Current(),
|
|
gc::kGcCauseGetObjectsAllocated,
|
|
gc::kCollectorTypeGetObjectsAllocated);
|
|
// Need SuspendAll here to prevent lock violation if RosAlloc does it during InspectAll.
|
|
ScopedSuspendAll ssa(__FUNCTION__);
|
|
ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
|
|
size_t total = 0;
|
|
for (space::AllocSpace* space : alloc_spaces_) {
|
|
total += space->GetObjectsAllocated();
|
|
}
|
|
return total;
|
|
}
|
|
|
|
uint64_t Heap::GetObjectsAllocatedEver() const {
|
|
uint64_t total = GetObjectsFreedEver();
|
|
// If we are detached, we can't use GetObjectsAllocated since we can't change thread states.
|
|
if (Thread::Current() != nullptr) {
|
|
total += GetObjectsAllocated();
|
|
}
|
|
return total;
|
|
}
|
|
|
|
uint64_t Heap::GetBytesAllocatedEver() const {
|
|
// Force the returned value to be monotonically increasing, in the sense that if this is called
|
|
// at A and B, such that A happens-before B, then the call at B returns a value no smaller than
|
|
// that at A. This is not otherwise guaranteed, since num_bytes_allocated_ is decremented first,
|
|
// and total_bytes_freed_ever_ is incremented later.
|
|
static std::atomic<uint64_t> max_bytes_so_far(0);
|
|
uint64_t so_far = max_bytes_so_far.load(std::memory_order_relaxed);
|
|
uint64_t current_bytes = GetBytesFreedEver(std::memory_order_acquire);
|
|
current_bytes += GetBytesAllocated();
|
|
do {
|
|
if (current_bytes <= so_far) {
|
|
return so_far;
|
|
}
|
|
} while (!max_bytes_so_far.compare_exchange_weak(so_far /* updated */,
|
|
current_bytes, std::memory_order_relaxed));
|
|
return current_bytes;
|
|
}
|
|
|
|
// Check whether the given object is an instance of the given class.
|
|
static bool MatchesClass(mirror::Object* obj,
|
|
Handle<mirror::Class> h_class,
|
|
bool use_is_assignable_from) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
mirror::Class* instance_class = obj->GetClass();
|
|
CHECK(instance_class != nullptr);
|
|
ObjPtr<mirror::Class> klass = h_class.Get();
|
|
if (use_is_assignable_from) {
|
|
return klass != nullptr && klass->IsAssignableFrom(instance_class);
|
|
}
|
|
return instance_class == klass;
|
|
}
|
|
|
|
void Heap::CountInstances(const std::vector<Handle<mirror::Class>>& classes,
|
|
bool use_is_assignable_from,
|
|
uint64_t* counts) {
|
|
auto instance_counter = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
for (size_t i = 0; i < classes.size(); ++i) {
|
|
if (MatchesClass(obj, classes[i], use_is_assignable_from)) {
|
|
++counts[i];
|
|
}
|
|
}
|
|
};
|
|
VisitObjects(instance_counter);
|
|
}
|
|
|
|
void Heap::CollectGarbage(bool clear_soft_references, GcCause cause) {
|
|
// Even if we waited for a GC we still need to do another GC since weaks allocated during the
|
|
// last GC will not have necessarily been cleared.
|
|
CollectGarbageInternal(gc_plan_.back(), cause, clear_soft_references, GC_NUM_ANY);
|
|
}
|
|
|
|
bool Heap::SupportHomogeneousSpaceCompactAndCollectorTransitions() const {
|
|
return main_space_backup_.get() != nullptr && main_space_ != nullptr &&
|
|
foreground_collector_type_ == kCollectorTypeCMS;
|
|
}
|
|
|
|
HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
|
|
Thread* self = Thread::Current();
|
|
// Inc requested homogeneous space compaction.
|
|
count_requested_homogeneous_space_compaction_++;
|
|
// Store performed homogeneous space compaction at a new request arrival.
|
|
ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
|
|
Locks::mutator_lock_->AssertNotHeld(self);
|
|
{
|
|
ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
|
|
MutexLock mu(self, *gc_complete_lock_);
|
|
// Ensure there is only one GC at a time.
|
|
WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
|
|
// Homogeneous space compaction is a copying transition, can't run it if the moving GC disable
|
|
// count is non zero.
|
|
// If the collector type changed to something which doesn't benefit from homogeneous space
|
|
// compaction, exit.
|
|
if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_) ||
|
|
!main_space_->CanMoveObjects()) {
|
|
return kErrorReject;
|
|
}
|
|
if (!SupportHomogeneousSpaceCompactAndCollectorTransitions()) {
|
|
return kErrorUnsupported;
|
|
}
|
|
collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
|
|
}
|
|
if (Runtime::Current()->IsShuttingDown(self)) {
|
|
// Don't allow heap transitions to happen if the runtime is shutting down since these can
|
|
// cause objects to get finalized.
|
|
FinishGC(self, collector::kGcTypeNone);
|
|
return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
|
|
}
|
|
collector::GarbageCollector* collector;
|
|
{
|
|
ScopedSuspendAll ssa(__FUNCTION__);
|
|
uint64_t start_time = NanoTime();
|
|
// Launch compaction.
|
|
space::MallocSpace* to_space = main_space_backup_.release();
|
|
space::MallocSpace* from_space = main_space_;
|
|
to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
|
|
const uint64_t space_size_before_compaction = from_space->Size();
|
|
AddSpace(to_space);
|
|
// Make sure that we will have enough room to copy.
|
|
CHECK_GE(to_space->GetFootprintLimit(), from_space->GetFootprintLimit());
|
|
collector = Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact);
|
|
const uint64_t space_size_after_compaction = to_space->Size();
|
|
main_space_ = to_space;
|
|
main_space_backup_.reset(from_space);
|
|
RemoveSpace(from_space);
|
|
SetSpaceAsDefault(main_space_); // Set as default to reset the proper dlmalloc space.
|
|
// Update performed homogeneous space compaction count.
|
|
count_performed_homogeneous_space_compaction_++;
|
|
// Print statics log and resume all threads.
|
|
uint64_t duration = NanoTime() - start_time;
|
|
VLOG(heap) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
|
|
<< PrettySize(space_size_before_compaction) << " -> "
|
|
<< PrettySize(space_size_after_compaction) << " compact-ratio: "
|
|
<< std::fixed << static_cast<double>(space_size_after_compaction) /
|
|
static_cast<double>(space_size_before_compaction);
|
|
}
|
|
// Finish GC.
|
|
// Get the references we need to enqueue.
|
|
SelfDeletingTask* clear = reference_processor_->CollectClearedReferences(self);
|
|
GrowForUtilization(semi_space_collector_);
|
|
LogGC(kGcCauseHomogeneousSpaceCompact, collector);
|
|
FinishGC(self, collector::kGcTypeFull);
|
|
// Enqueue any references after losing the GC locks.
|
|
clear->Run(self);
|
|
clear->Finalize();
|
|
{
|
|
ScopedObjectAccess soa(self);
|
|
soa.Vm()->UnloadNativeLibraries();
|
|
}
|
|
return HomogeneousSpaceCompactResult::kSuccess;
|
|
}
|
|
|
|
void Heap::ChangeCollector(CollectorType collector_type) {
|
|
// TODO: Only do this with all mutators suspended to avoid races.
|
|
if (collector_type != collector_type_) {
|
|
collector_type_ = collector_type;
|
|
gc_plan_.clear();
|
|
switch (collector_type_) {
|
|
case kCollectorTypeCC: {
|
|
if (use_generational_cc_) {
|
|
gc_plan_.push_back(collector::kGcTypeSticky);
|
|
}
|
|
gc_plan_.push_back(collector::kGcTypeFull);
|
|
if (use_tlab_) {
|
|
ChangeAllocator(kAllocatorTypeRegionTLAB);
|
|
} else {
|
|
ChangeAllocator(kAllocatorTypeRegion);
|
|
}
|
|
break;
|
|
}
|
|
case kCollectorTypeSS: {
|
|
gc_plan_.push_back(collector::kGcTypeFull);
|
|
if (use_tlab_) {
|
|
ChangeAllocator(kAllocatorTypeTLAB);
|
|
} else {
|
|
ChangeAllocator(kAllocatorTypeBumpPointer);
|
|
}
|
|
break;
|
|
}
|
|
case kCollectorTypeMS: {
|
|
gc_plan_.push_back(collector::kGcTypeSticky);
|
|
gc_plan_.push_back(collector::kGcTypePartial);
|
|
gc_plan_.push_back(collector::kGcTypeFull);
|
|
ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
|
|
break;
|
|
}
|
|
case kCollectorTypeCMS: {
|
|
gc_plan_.push_back(collector::kGcTypeSticky);
|
|
gc_plan_.push_back(collector::kGcTypePartial);
|
|
gc_plan_.push_back(collector::kGcTypeFull);
|
|
ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
|
|
break;
|
|
}
|
|
default: {
|
|
UNIMPLEMENTED(FATAL);
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
if (IsGcConcurrent()) {
|
|
concurrent_start_bytes_ =
|
|
UnsignedDifference(target_footprint_.load(std::memory_order_relaxed),
|
|
kMinConcurrentRemainingBytes);
|
|
} else {
|
|
concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
|
|
class ZygoteCompactingCollector final : public collector::SemiSpace {
|
|
public:
|
|
ZygoteCompactingCollector(gc::Heap* heap, bool is_running_on_memory_tool)
|
|
: SemiSpace(heap, "zygote collector"),
|
|
bin_live_bitmap_(nullptr),
|
|
bin_mark_bitmap_(nullptr),
|
|
is_running_on_memory_tool_(is_running_on_memory_tool) {}
|
|
|
|
void BuildBins(space::ContinuousSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
bin_live_bitmap_ = space->GetLiveBitmap();
|
|
bin_mark_bitmap_ = space->GetMarkBitmap();
|
|
uintptr_t prev = reinterpret_cast<uintptr_t>(space->Begin());
|
|
WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
|
|
// Note: This requires traversing the space in increasing order of object addresses.
|
|
auto visitor = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
|
|
size_t bin_size = object_addr - prev;
|
|
// Add the bin consisting of the end of the previous object to the start of the current object.
|
|
AddBin(bin_size, prev);
|
|
prev = object_addr + RoundUp(obj->SizeOf<kDefaultVerifyFlags>(), kObjectAlignment);
|
|
};
|
|
bin_live_bitmap_->Walk(visitor);
|
|
// Add the last bin which spans after the last object to the end of the space.
|
|
AddBin(reinterpret_cast<uintptr_t>(space->End()) - prev, prev);
|
|
}
|
|
|
|
private:
|
|
// Maps from bin sizes to locations.
|
|
std::multimap<size_t, uintptr_t> bins_;
|
|
// Live bitmap of the space which contains the bins.
|
|
accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
|
|
// Mark bitmap of the space which contains the bins.
|
|
accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
|
|
const bool is_running_on_memory_tool_;
|
|
|
|
void AddBin(size_t size, uintptr_t position) {
|
|
if (is_running_on_memory_tool_) {
|
|
MEMORY_TOOL_MAKE_DEFINED(reinterpret_cast<void*>(position), size);
|
|
}
|
|
if (size != 0) {
|
|
bins_.insert(std::make_pair(size, position));
|
|
}
|
|
}
|
|
|
|
bool ShouldSweepSpace(space::ContinuousSpace* space ATTRIBUTE_UNUSED) const override {
|
|
// Don't sweep any spaces since we probably blasted the internal accounting of the free list
|
|
// allocator.
|
|
return false;
|
|
}
|
|
|
|
mirror::Object* MarkNonForwardedObject(mirror::Object* obj) override
|
|
REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
|
|
size_t obj_size = obj->SizeOf<kDefaultVerifyFlags>();
|
|
size_t alloc_size = RoundUp(obj_size, kObjectAlignment);
|
|
mirror::Object* forward_address;
|
|
// Find the smallest bin which we can move obj in.
|
|
auto it = bins_.lower_bound(alloc_size);
|
|
if (it == bins_.end()) {
|
|
// No available space in the bins, place it in the target space instead (grows the zygote
|
|
// space).
|
|
size_t bytes_allocated, unused_bytes_tl_bulk_allocated;
|
|
forward_address = to_space_->Alloc(
|
|
self_, alloc_size, &bytes_allocated, nullptr, &unused_bytes_tl_bulk_allocated);
|
|
if (to_space_live_bitmap_ != nullptr) {
|
|
to_space_live_bitmap_->Set(forward_address);
|
|
} else {
|
|
GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
|
|
GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
|
|
}
|
|
} else {
|
|
size_t size = it->first;
|
|
uintptr_t pos = it->second;
|
|
bins_.erase(it); // Erase the old bin which we replace with the new smaller bin.
|
|
forward_address = reinterpret_cast<mirror::Object*>(pos);
|
|
// Set the live and mark bits so that sweeping system weaks works properly.
|
|
bin_live_bitmap_->Set(forward_address);
|
|
bin_mark_bitmap_->Set(forward_address);
|
|
DCHECK_GE(size, alloc_size);
|
|
// Add a new bin with the remaining space.
|
|
AddBin(size - alloc_size, pos + alloc_size);
|
|
}
|
|
// Copy the object over to its new location.
|
|
// Historical note: We did not use `alloc_size` to avoid a Valgrind error.
|
|
memcpy(reinterpret_cast<void*>(forward_address), obj, obj_size);
|
|
if (kUseBakerReadBarrier) {
|
|
obj->AssertReadBarrierState();
|
|
forward_address->AssertReadBarrierState();
|
|
}
|
|
return forward_address;
|
|
}
|
|
};
|
|
|
|
void Heap::UnBindBitmaps() {
|
|
TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
|
|
for (const auto& space : GetContinuousSpaces()) {
|
|
if (space->IsContinuousMemMapAllocSpace()) {
|
|
space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
|
|
if (alloc_space->GetLiveBitmap() != nullptr && alloc_space->HasBoundBitmaps()) {
|
|
alloc_space->UnBindBitmaps();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void Heap::IncrementFreedEver() {
|
|
// Counters are updated only by us, but may be read concurrently.
|
|
// The updates should become visible after the corresponding live object info.
|
|
total_objects_freed_ever_.store(total_objects_freed_ever_.load(std::memory_order_relaxed)
|
|
+ GetCurrentGcIteration()->GetFreedObjects()
|
|
+ GetCurrentGcIteration()->GetFreedLargeObjects(),
|
|
std::memory_order_release);
|
|
total_bytes_freed_ever_.store(total_bytes_freed_ever_.load(std::memory_order_relaxed)
|
|
+ GetCurrentGcIteration()->GetFreedBytes()
|
|
+ GetCurrentGcIteration()->GetFreedLargeObjectBytes(),
|
|
std::memory_order_release);
|
|
}
|
|
|
|
#pragma clang diagnostic push
|
|
#if !ART_USE_FUTEXES
|
|
// Frame gets too large, perhaps due to Bionic pthread_mutex_lock size. We don't care.
|
|
# pragma clang diagnostic ignored "-Wframe-larger-than="
|
|
#endif
|
|
// This has a large frame, but shouldn't be run anywhere near the stack limit.
|
|
void Heap::PreZygoteFork() {
|
|
if (!HasZygoteSpace()) {
|
|
// We still want to GC in case there is some unreachable non moving objects that could cause a
|
|
// suboptimal bin packing when we compact the zygote space.
|
|
CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false, GC_NUM_ANY);
|
|
// Trim the pages at the end of the non moving space. Trim while not holding zygote lock since
|
|
// the trim process may require locking the mutator lock.
|
|
non_moving_space_->Trim();
|
|
}
|
|
Thread* self = Thread::Current();
|
|
MutexLock mu(self, zygote_creation_lock_);
|
|
// Try to see if we have any Zygote spaces.
|
|
if (HasZygoteSpace()) {
|
|
return;
|
|
}
|
|
Runtime::Current()->GetInternTable()->AddNewTable();
|
|
Runtime::Current()->GetClassLinker()->MoveClassTableToPreZygote();
|
|
VLOG(heap) << "Starting PreZygoteFork";
|
|
// The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
|
|
// there.
|
|
non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
|
|
const bool same_space = non_moving_space_ == main_space_;
|
|
if (kCompactZygote) {
|
|
// Temporarily disable rosalloc verification because the zygote
|
|
// compaction will mess up the rosalloc internal metadata.
|
|
ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
|
|
ZygoteCompactingCollector zygote_collector(this, is_running_on_memory_tool_);
|
|
zygote_collector.BuildBins(non_moving_space_);
|
|
// Create a new bump pointer space which we will compact into.
|
|
space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
|
|
non_moving_space_->Limit());
|
|
// Compact the bump pointer space to a new zygote bump pointer space.
|
|
bool reset_main_space = false;
|
|
if (IsMovingGc(collector_type_)) {
|
|
if (collector_type_ == kCollectorTypeCC) {
|
|
zygote_collector.SetFromSpace(region_space_);
|
|
} else {
|
|
zygote_collector.SetFromSpace(bump_pointer_space_);
|
|
}
|
|
} else {
|
|
CHECK(main_space_ != nullptr);
|
|
CHECK_NE(main_space_, non_moving_space_)
|
|
<< "Does not make sense to compact within the same space";
|
|
// Copy from the main space.
|
|
zygote_collector.SetFromSpace(main_space_);
|
|
reset_main_space = true;
|
|
}
|
|
zygote_collector.SetToSpace(&target_space);
|
|
zygote_collector.SetSwapSemiSpaces(false);
|
|
zygote_collector.Run(kGcCauseCollectorTransition, false);
|
|
if (reset_main_space) {
|
|
main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
|
|
madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
|
|
MemMap mem_map = main_space_->ReleaseMemMap();
|
|
RemoveSpace(main_space_);
|
|
space::Space* old_main_space = main_space_;
|
|
CreateMainMallocSpace(std::move(mem_map),
|
|
kDefaultInitialSize,
|
|
std::min(mem_map.Size(), growth_limit_),
|
|
mem_map.Size());
|
|
delete old_main_space;
|
|
AddSpace(main_space_);
|
|
} else {
|
|
if (collector_type_ == kCollectorTypeCC) {
|
|
region_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
|
|
// Evacuated everything out of the region space, clear the mark bitmap.
|
|
region_space_->GetMarkBitmap()->Clear();
|
|
} else {
|
|
bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
|
|
}
|
|
}
|
|
if (temp_space_ != nullptr) {
|
|
CHECK(temp_space_->IsEmpty());
|
|
}
|
|
IncrementFreedEver();
|
|
// Update the end and write out image.
|
|
non_moving_space_->SetEnd(target_space.End());
|
|
non_moving_space_->SetLimit(target_space.Limit());
|
|
VLOG(heap) << "Create zygote space with size=" << non_moving_space_->Size() << " bytes";
|
|
}
|
|
// Change the collector to the post zygote one.
|
|
ChangeCollector(foreground_collector_type_);
|
|
// Save the old space so that we can remove it after we complete creating the zygote space.
|
|
space::MallocSpace* old_alloc_space = non_moving_space_;
|
|
// Turn the current alloc space into a zygote space and obtain the new alloc space composed of
|
|
// the remaining available space.
|
|
// Remove the old space before creating the zygote space since creating the zygote space sets
|
|
// the old alloc space's bitmaps to null.
|
|
RemoveSpace(old_alloc_space);
|
|
if (collector::SemiSpace::kUseRememberedSet) {
|
|
// Consistency bound check.
|
|
FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
|
|
// Remove the remembered set for the now zygote space (the old
|
|
// non-moving space). Note now that we have compacted objects into
|
|
// the zygote space, the data in the remembered set is no longer
|
|
// needed. The zygote space will instead have a mod-union table
|
|
// from this point on.
|
|
RemoveRememberedSet(old_alloc_space);
|
|
}
|
|
// Remaining space becomes the new non moving space.
|
|
zygote_space_ = old_alloc_space->CreateZygoteSpace(kNonMovingSpaceName, low_memory_mode_,
|
|
&non_moving_space_);
|
|
CHECK(!non_moving_space_->CanMoveObjects());
|
|
if (same_space) {
|
|
main_space_ = non_moving_space_;
|
|
SetSpaceAsDefault(main_space_);
|
|
}
|
|
delete old_alloc_space;
|
|
CHECK(HasZygoteSpace()) << "Failed creating zygote space";
|
|
AddSpace(zygote_space_);
|
|
non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
|
|
AddSpace(non_moving_space_);
|
|
constexpr bool set_mark_bit = kUseBakerReadBarrier
|
|
&& gc::collector::ConcurrentCopying::kGrayDirtyImmuneObjects;
|
|
if (set_mark_bit) {
|
|
// Treat all of the objects in the zygote as marked to avoid unnecessary dirty pages. This is
|
|
// safe since we mark all of the objects that may reference non immune objects as gray.
|
|
zygote_space_->SetMarkBitInLiveObjects();
|
|
}
|
|
|
|
// Create the zygote space mod union table.
|
|
accounting::ModUnionTable* mod_union_table =
|
|
new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space_);
|
|
CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
|
|
|
|
if (collector_type_ != kCollectorTypeCC) {
|
|
// Set all the cards in the mod-union table since we don't know which objects contain references
|
|
// to large objects.
|
|
mod_union_table->SetCards();
|
|
} else {
|
|
// Make sure to clear the zygote space cards so that we don't dirty pages in the next GC. There
|
|
// may be dirty cards from the zygote compaction or reference processing. These cards are not
|
|
// necessary to have marked since the zygote space may not refer to any objects not in the
|
|
// zygote or image spaces at this point.
|
|
mod_union_table->ProcessCards();
|
|
mod_union_table->ClearTable();
|
|
|
|
// For CC we never collect zygote large objects. This means we do not need to set the cards for
|
|
// the zygote mod-union table and we can also clear all of the existing image mod-union tables.
|
|
// The existing mod-union tables are only for image spaces and may only reference zygote and
|
|
// image objects.
|
|
for (auto& pair : mod_union_tables_) {
|
|
CHECK(pair.first->IsImageSpace());
|
|
CHECK(!pair.first->AsImageSpace()->GetImageHeader().IsAppImage());
|
|
accounting::ModUnionTable* table = pair.second;
|
|
table->ClearTable();
|
|
}
|
|
}
|
|
AddModUnionTable(mod_union_table);
|
|
large_object_space_->SetAllLargeObjectsAsZygoteObjects(self, set_mark_bit);
|
|
if (collector::SemiSpace::kUseRememberedSet) {
|
|
// Add a new remembered set for the post-zygote non-moving space.
|
|
accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
|
|
new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
|
|
non_moving_space_);
|
|
CHECK(post_zygote_non_moving_space_rem_set != nullptr)
|
|
<< "Failed to create post-zygote non-moving space remembered set";
|
|
AddRememberedSet(post_zygote_non_moving_space_rem_set);
|
|
}
|
|
}
|
|
#pragma clang diagnostic pop
|
|
|
|
void Heap::FlushAllocStack() {
|
|
MarkAllocStackAsLive(allocation_stack_.get());
|
|
allocation_stack_->Reset();
|
|
}
|
|
|
|
void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
|
|
accounting::ContinuousSpaceBitmap* bitmap2,
|
|
accounting::LargeObjectBitmap* large_objects,
|
|
accounting::ObjectStack* stack) {
|
|
DCHECK(bitmap1 != nullptr);
|
|
DCHECK(bitmap2 != nullptr);
|
|
const auto* limit = stack->End();
|
|
for (auto* it = stack->Begin(); it != limit; ++it) {
|
|
const mirror::Object* obj = it->AsMirrorPtr();
|
|
if (!kUseThreadLocalAllocationStack || obj != nullptr) {
|
|
if (bitmap1->HasAddress(obj)) {
|
|
bitmap1->Set(obj);
|
|
} else if (bitmap2->HasAddress(obj)) {
|
|
bitmap2->Set(obj);
|
|
} else {
|
|
DCHECK(large_objects != nullptr);
|
|
large_objects->Set(obj);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void Heap::SwapSemiSpaces() {
|
|
CHECK(bump_pointer_space_ != nullptr);
|
|
CHECK(temp_space_ != nullptr);
|
|
std::swap(bump_pointer_space_, temp_space_);
|
|
}
|
|
|
|
collector::GarbageCollector* Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
|
|
space::ContinuousMemMapAllocSpace* source_space,
|
|
GcCause gc_cause) {
|
|
CHECK(kMovingCollector);
|
|
if (target_space != source_space) {
|
|
// Don't swap spaces since this isn't a typical semi space collection.
|
|
semi_space_collector_->SetSwapSemiSpaces(false);
|
|
semi_space_collector_->SetFromSpace(source_space);
|
|
semi_space_collector_->SetToSpace(target_space);
|
|
semi_space_collector_->Run(gc_cause, false);
|
|
return semi_space_collector_;
|
|
}
|
|
LOG(FATAL) << "Unsupported";
|
|
UNREACHABLE();
|
|
}
|
|
|
|
void Heap::TraceHeapSize(size_t heap_size) {
|
|
ATraceIntegerValue("Heap size (KB)", heap_size / KB);
|
|
}
|
|
|
|
#if defined(__GLIBC__)
|
|
# define IF_GLIBC(x) x
|
|
#else
|
|
# define IF_GLIBC(x)
|
|
#endif
|
|
|
|
size_t Heap::GetNativeBytes() {
|
|
size_t malloc_bytes;
|
|
#if defined(__BIONIC__) || defined(__GLIBC__)
|
|
IF_GLIBC(size_t mmapped_bytes;)
|
|
struct mallinfo mi = mallinfo();
|
|
// In spite of the documentation, the jemalloc version of this call seems to do what we want,
|
|
// and it is thread-safe.
|
|
if (sizeof(size_t) > sizeof(mi.uordblks) && sizeof(size_t) > sizeof(mi.hblkhd)) {
|
|
// Shouldn't happen, but glibc declares uordblks as int.
|
|
// Avoiding sign extension gets us correct behavior for another 2 GB.
|
|
malloc_bytes = (unsigned int)mi.uordblks;
|
|
IF_GLIBC(mmapped_bytes = (unsigned int)mi.hblkhd;)
|
|
} else {
|
|
malloc_bytes = mi.uordblks;
|
|
IF_GLIBC(mmapped_bytes = mi.hblkhd;)
|
|
}
|
|
// From the spec, it appeared mmapped_bytes <= malloc_bytes. Reality was sometimes
|
|
// dramatically different. (b/119580449 was an early bug.) If so, we try to fudge it.
|
|
// However, malloc implementations seem to interpret hblkhd differently, namely as
|
|
// mapped blocks backing the entire heap (e.g. jemalloc) vs. large objects directly
|
|
// allocated via mmap (e.g. glibc). Thus we now only do this for glibc, where it
|
|
// previously helped, and which appears to use a reading of the spec compatible
|
|
// with our adjustment.
|
|
#if defined(__GLIBC__)
|
|
if (mmapped_bytes > malloc_bytes) {
|
|
malloc_bytes = mmapped_bytes;
|
|
}
|
|
#endif // GLIBC
|
|
#else // Neither Bionic nor Glibc
|
|
// We should hit this case only in contexts in which GC triggering is not critical. Effectively
|
|
// disable GC triggering based on malloc().
|
|
malloc_bytes = 1000;
|
|
#endif
|
|
return malloc_bytes + native_bytes_registered_.load(std::memory_order_relaxed);
|
|
// An alternative would be to get RSS from /proc/self/statm. Empirically, that's no
|
|
// more expensive, and it would allow us to count memory allocated by means other than malloc.
|
|
// However it would change as pages are unmapped and remapped due to memory pressure, among
|
|
// other things. It seems risky to trigger GCs as a result of such changes.
|
|
}
|
|
|
|
static inline bool GCNumberLt(uint32_t gc_num1, uint32_t gc_num2) {
|
|
// unsigned comparison, assuming a non-huge difference, but dealing correctly with wrapping.
|
|
uint32_t difference = gc_num2 - gc_num1;
|
|
bool completed_more_than_requested = difference > 0x80000000;
|
|
return difference > 0 && !completed_more_than_requested;
|
|
}
|
|
|
|
|
|
collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type,
|
|
GcCause gc_cause,
|
|
bool clear_soft_references,
|
|
uint32_t requested_gc_num) {
|
|
Thread* self = Thread::Current();
|
|
Runtime* runtime = Runtime::Current();
|
|
// If the heap can't run the GC, silently fail and return that no GC was run.
|
|
switch (gc_type) {
|
|
case collector::kGcTypePartial: {
|
|
if (!HasZygoteSpace()) {
|
|
// Do not increment gcs_completed_ . We should retry with kGcTypeFull.
|
|
return collector::kGcTypeNone;
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
// Other GC types don't have any special cases which makes them not runnable. The main case
|
|
// here is full GC.
|
|
}
|
|
}
|
|
ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
|
|
Locks::mutator_lock_->AssertNotHeld(self);
|
|
if (self->IsHandlingStackOverflow()) {
|
|
// If we are throwing a stack overflow error we probably don't have enough remaining stack
|
|
// space to run the GC.
|
|
// Count this as a GC in case someone is waiting for it to complete.
|
|
gcs_completed_.fetch_add(1, std::memory_order_release);
|
|
return collector::kGcTypeNone;
|
|
}
|
|
bool compacting_gc;
|
|
{
|
|
gc_complete_lock_->AssertNotHeld(self);
|
|
ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
|
|
MutexLock mu(self, *gc_complete_lock_);
|
|
// Ensure there is only one GC at a time.
|
|
WaitForGcToCompleteLocked(gc_cause, self);
|
|
if (requested_gc_num != GC_NUM_ANY && !GCNumberLt(GetCurrentGcNum(), requested_gc_num)) {
|
|
// The appropriate GC was already triggered elsewhere.
|
|
return collector::kGcTypeNone;
|
|
}
|
|
compacting_gc = IsMovingGc(collector_type_);
|
|
// GC can be disabled if someone has a used GetPrimitiveArrayCritical.
|
|
if (compacting_gc && disable_moving_gc_count_ != 0) {
|
|
LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
|
|
// Again count this as a GC.
|
|
gcs_completed_.fetch_add(1, std::memory_order_release);
|
|
return collector::kGcTypeNone;
|
|
}
|
|
if (gc_disabled_for_shutdown_) {
|
|
gcs_completed_.fetch_add(1, std::memory_order_release);
|
|
return collector::kGcTypeNone;
|
|
}
|
|
collector_type_running_ = collector_type_;
|
|
last_gc_cause_ = gc_cause;
|
|
}
|
|
if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
|
|
++runtime->GetStats()->gc_for_alloc_count;
|
|
++self->GetStats()->gc_for_alloc_count;
|
|
}
|
|
const size_t bytes_allocated_before_gc = GetBytesAllocated();
|
|
|
|
DCHECK_LT(gc_type, collector::kGcTypeMax);
|
|
DCHECK_NE(gc_type, collector::kGcTypeNone);
|
|
|
|
collector::GarbageCollector* collector = nullptr;
|
|
// TODO: Clean this up.
|
|
if (compacting_gc) {
|
|
DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
|
|
current_allocator_ == kAllocatorTypeTLAB ||
|
|
current_allocator_ == kAllocatorTypeRegion ||
|
|
current_allocator_ == kAllocatorTypeRegionTLAB);
|
|
switch (collector_type_) {
|
|
case kCollectorTypeSS:
|
|
semi_space_collector_->SetFromSpace(bump_pointer_space_);
|
|
semi_space_collector_->SetToSpace(temp_space_);
|
|
semi_space_collector_->SetSwapSemiSpaces(true);
|
|
collector = semi_space_collector_;
|
|
break;
|
|
case kCollectorTypeCC:
|
|
collector::ConcurrentCopying* active_cc_collector;
|
|
if (use_generational_cc_) {
|
|
// TODO: Other threads must do the flip checkpoint before they start poking at
|
|
// active_concurrent_copying_collector_. So we should not concurrency here.
|
|
active_cc_collector = (gc_type == collector::kGcTypeSticky) ?
|
|
young_concurrent_copying_collector_ : concurrent_copying_collector_;
|
|
active_concurrent_copying_collector_.store(active_cc_collector,
|
|
std::memory_order_relaxed);
|
|
DCHECK(active_cc_collector->RegionSpace() == region_space_);
|
|
collector = active_cc_collector;
|
|
} else {
|
|
collector = active_concurrent_copying_collector_.load(std::memory_order_relaxed);
|
|
}
|
|
break;
|
|
default:
|
|
LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
|
|
}
|
|
if (collector != active_concurrent_copying_collector_.load(std::memory_order_relaxed)) {
|
|
temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
|
|
if (kIsDebugBuild) {
|
|
// Try to read each page of the memory map in case mprotect didn't work properly b/19894268.
|
|
temp_space_->GetMemMap()->TryReadable();
|
|
}
|
|
CHECK(temp_space_->IsEmpty());
|
|
}
|
|
gc_type = collector::kGcTypeFull; // TODO: Not hard code this in.
|
|
} else if (current_allocator_ == kAllocatorTypeRosAlloc ||
|
|
current_allocator_ == kAllocatorTypeDlMalloc) {
|
|
collector = FindCollectorByGcType(gc_type);
|
|
} else {
|
|
LOG(FATAL) << "Invalid current allocator " << current_allocator_;
|
|
}
|
|
|
|
CHECK(collector != nullptr)
|
|
<< "Could not find garbage collector with collector_type="
|
|
<< static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
|
|
collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
|
|
IncrementFreedEver();
|
|
RequestTrim(self);
|
|
// Collect cleared references.
|
|
SelfDeletingTask* clear = reference_processor_->CollectClearedReferences(self);
|
|
// Grow the heap so that we know when to perform the next GC.
|
|
GrowForUtilization(collector, bytes_allocated_before_gc);
|
|
old_native_bytes_allocated_.store(GetNativeBytes());
|
|
LogGC(gc_cause, collector);
|
|
FinishGC(self, gc_type);
|
|
// Actually enqueue all cleared references. Do this after the GC has officially finished since
|
|
// otherwise we can deadlock.
|
|
clear->Run(self);
|
|
clear->Finalize();
|
|
// Inform DDMS that a GC completed.
|
|
Dbg::GcDidFinish();
|
|
|
|
// Unload native libraries for class unloading. We do this after calling FinishGC to prevent
|
|
// deadlocks in case the JNI_OnUnload function does allocations.
|
|
{
|
|
ScopedObjectAccess soa(self);
|
|
soa.Vm()->UnloadNativeLibraries();
|
|
}
|
|
return gc_type;
|
|
}
|
|
|
|
void Heap::LogGC(GcCause gc_cause, collector::GarbageCollector* collector) {
|
|
const size_t duration = GetCurrentGcIteration()->GetDurationNs();
|
|
const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
|
|
// Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
|
|
// (mutator time blocked >= long_pause_log_threshold_).
|
|
bool log_gc = kLogAllGCs || (gc_cause == kGcCauseExplicit && always_log_explicit_gcs_);
|
|
if (!log_gc && CareAboutPauseTimes()) {
|
|
// GC for alloc pauses the allocating thread, so consider it as a pause.
|
|
log_gc = duration > long_gc_log_threshold_ ||
|
|
(gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
|
|
for (uint64_t pause : pause_times) {
|
|
log_gc = log_gc || pause >= long_pause_log_threshold_;
|
|
}
|
|
}
|
|
if (log_gc) {
|
|
const size_t percent_free = GetPercentFree();
|
|
const size_t current_heap_size = GetBytesAllocated();
|
|
const size_t total_memory = GetTotalMemory();
|
|
std::ostringstream pause_string;
|
|
for (size_t i = 0; i < pause_times.size(); ++i) {
|
|
pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
|
|
<< ((i != pause_times.size() - 1) ? "," : "");
|
|
}
|
|
LOG(INFO) << gc_cause << " " << collector->GetName()
|
|
<< " GC freed " << current_gc_iteration_.GetFreedObjects() << "("
|
|
<< PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "
|
|
<< current_gc_iteration_.GetFreedLargeObjects() << "("
|
|
<< PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
|
|
<< percent_free << "% free, " << PrettySize(current_heap_size) << "/"
|
|
<< PrettySize(total_memory) << ", " << "paused " << pause_string.str()
|
|
<< " total " << PrettyDuration((duration / 1000) * 1000);
|
|
VLOG(heap) << Dumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
|
|
}
|
|
}
|
|
|
|
void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
|
|
MutexLock mu(self, *gc_complete_lock_);
|
|
collector_type_running_ = kCollectorTypeNone;
|
|
if (gc_type != collector::kGcTypeNone) {
|
|
last_gc_type_ = gc_type;
|
|
|
|
// Update stats.
|
|
++gc_count_last_window_;
|
|
if (running_collection_is_blocking_) {
|
|
// If the currently running collection was a blocking one,
|
|
// increment the counters and reset the flag.
|
|
++blocking_gc_count_;
|
|
blocking_gc_time_ += GetCurrentGcIteration()->GetDurationNs();
|
|
++blocking_gc_count_last_window_;
|
|
}
|
|
// Update the gc count rate histograms if due.
|
|
UpdateGcCountRateHistograms();
|
|
}
|
|
// Reset.
|
|
running_collection_is_blocking_ = false;
|
|
thread_running_gc_ = nullptr;
|
|
if (gc_type != collector::kGcTypeNone) {
|
|
gcs_completed_.fetch_add(1, std::memory_order_release);
|
|
}
|
|
// Wake anyone who may have been waiting for the GC to complete.
|
|
gc_complete_cond_->Broadcast(self);
|
|
}
|
|
|
|
void Heap::UpdateGcCountRateHistograms() {
|
|
// Invariant: if the time since the last update includes more than
|
|
// one windows, all the GC runs (if > 0) must have happened in first
|
|
// window because otherwise the update must have already taken place
|
|
// at an earlier GC run. So, we report the non-first windows with
|
|
// zero counts to the histograms.
|
|
DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
|
|
uint64_t now = NanoTime();
|
|
DCHECK_GE(now, last_update_time_gc_count_rate_histograms_);
|
|
uint64_t time_since_last_update = now - last_update_time_gc_count_rate_histograms_;
|
|
uint64_t num_of_windows = time_since_last_update / kGcCountRateHistogramWindowDuration;
|
|
|
|
// The computed number of windows can be incoherently high if NanoTime() is not monotonic.
|
|
// Setting a limit on its maximum value reduces the impact on CPU time in such cases.
|
|
if (num_of_windows > kGcCountRateHistogramMaxNumMissedWindows) {
|
|
LOG(WARNING) << "Reducing the number of considered missed Gc histogram windows from "
|
|
<< num_of_windows << " to " << kGcCountRateHistogramMaxNumMissedWindows;
|
|
num_of_windows = kGcCountRateHistogramMaxNumMissedWindows;
|
|
}
|
|
|
|
if (time_since_last_update >= kGcCountRateHistogramWindowDuration) {
|
|
// Record the first window.
|
|
gc_count_rate_histogram_.AddValue(gc_count_last_window_ - 1); // Exclude the current run.
|
|
blocking_gc_count_rate_histogram_.AddValue(running_collection_is_blocking_ ?
|
|
blocking_gc_count_last_window_ - 1 : blocking_gc_count_last_window_);
|
|
// Record the other windows (with zero counts).
|
|
for (uint64_t i = 0; i < num_of_windows - 1; ++i) {
|
|
gc_count_rate_histogram_.AddValue(0);
|
|
blocking_gc_count_rate_histogram_.AddValue(0);
|
|
}
|
|
// Update the last update time and reset the counters.
|
|
last_update_time_gc_count_rate_histograms_ =
|
|
(now / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
|
|
gc_count_last_window_ = 1; // Include the current run.
|
|
blocking_gc_count_last_window_ = running_collection_is_blocking_ ? 1 : 0;
|
|
}
|
|
DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
|
|
}
|
|
|
|
class RootMatchesObjectVisitor : public SingleRootVisitor {
|
|
public:
|
|
explicit RootMatchesObjectVisitor(const mirror::Object* obj) : obj_(obj) { }
|
|
|
|
void VisitRoot(mirror::Object* root, const RootInfo& info)
|
|
override REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
if (root == obj_) {
|
|
LOG(INFO) << "Object " << obj_ << " is a root " << info.ToString();
|
|
}
|
|
}
|
|
|
|
private:
|
|
const mirror::Object* const obj_;
|
|
};
|
|
|
|
|
|
class ScanVisitor {
|
|
public:
|
|
void operator()(const mirror::Object* obj) const {
|
|
LOG(ERROR) << "Would have rescanned object " << obj;
|
|
}
|
|
};
|
|
|
|
// Verify a reference from an object.
|
|
class VerifyReferenceVisitor : public SingleRootVisitor {
|
|
public:
|
|
VerifyReferenceVisitor(Thread* self, Heap* heap, size_t* fail_count, bool verify_referent)
|
|
REQUIRES_SHARED(Locks::mutator_lock_)
|
|
: self_(self), heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {
|
|
CHECK_EQ(self_, Thread::Current());
|
|
}
|
|
|
|
void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED, ObjPtr<mirror::Reference> ref) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
if (verify_referent_) {
|
|
VerifyReference(ref.Ptr(), ref->GetReferent(), mirror::Reference::ReferentOffset());
|
|
}
|
|
}
|
|
|
|
void operator()(ObjPtr<mirror::Object> obj,
|
|
MemberOffset offset,
|
|
bool is_static ATTRIBUTE_UNUSED) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
VerifyReference(obj.Ptr(), obj->GetFieldObject<mirror::Object>(offset), offset);
|
|
}
|
|
|
|
bool IsLive(ObjPtr<mirror::Object> obj) const NO_THREAD_SAFETY_ANALYSIS {
|
|
return heap_->IsLiveObjectLocked(obj, true, false, true);
|
|
}
|
|
|
|
void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
if (!root->IsNull()) {
|
|
VisitRoot(root);
|
|
}
|
|
}
|
|
void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
const_cast<VerifyReferenceVisitor*>(this)->VisitRoot(
|
|
root->AsMirrorPtr(), RootInfo(kRootVMInternal));
|
|
}
|
|
|
|
void VisitRoot(mirror::Object* root, const RootInfo& root_info) override
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
if (root == nullptr) {
|
|
LOG(ERROR) << "Root is null with info " << root_info.GetType();
|
|
} else if (!VerifyReference(nullptr, root, MemberOffset(0))) {
|
|
LOG(ERROR) << "Root " << root << " is dead with type " << mirror::Object::PrettyTypeOf(root)
|
|
<< " thread_id= " << root_info.GetThreadId() << " root_type= " << root_info.GetType();
|
|
}
|
|
}
|
|
|
|
private:
|
|
// TODO: Fix the no thread safety analysis.
|
|
// Returns false on failure.
|
|
bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
|
|
NO_THREAD_SAFETY_ANALYSIS {
|
|
if (ref == nullptr || IsLive(ref)) {
|
|
// Verify that the reference is live.
|
|
return true;
|
|
}
|
|
CHECK_EQ(self_, Thread::Current()); // fail_count_ is private to the calling thread.
|
|
*fail_count_ += 1;
|
|
if (*fail_count_ == 1) {
|
|
// Only print message for the first failure to prevent spam.
|
|
LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
|
|
}
|
|
if (obj != nullptr) {
|
|
// Only do this part for non roots.
|
|
accounting::CardTable* card_table = heap_->GetCardTable();
|
|
accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
|
|
accounting::ObjectStack* live_stack = heap_->live_stack_.get();
|
|
uint8_t* card_addr = card_table->CardFromAddr(obj);
|
|
LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
|
|
<< offset << "\n card value = " << static_cast<int>(*card_addr);
|
|
if (heap_->IsValidObjectAddress(obj->GetClass())) {
|
|
LOG(ERROR) << "Obj type " << obj->PrettyTypeOf();
|
|
} else {
|
|
LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
|
|
}
|
|
|
|
// Attempt to find the class inside of the recently freed objects.
|
|
space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
|
|
if (ref_space != nullptr && ref_space->IsMallocSpace()) {
|
|
space::MallocSpace* space = ref_space->AsMallocSpace();
|
|
mirror::Class* ref_class = space->FindRecentFreedObject(ref);
|
|
if (ref_class != nullptr) {
|
|
LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
|
|
<< ref_class->PrettyClass();
|
|
} else {
|
|
LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
|
|
}
|
|
}
|
|
|
|
if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
|
|
ref->GetClass()->IsClass()) {
|
|
LOG(ERROR) << "Ref type " << ref->PrettyTypeOf();
|
|
} else {
|
|
LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
|
|
<< ") is not a valid heap address";
|
|
}
|
|
|
|
card_table->CheckAddrIsInCardTable(reinterpret_cast<const uint8_t*>(obj));
|
|
void* cover_begin = card_table->AddrFromCard(card_addr);
|
|
void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
|
|
accounting::CardTable::kCardSize);
|
|
LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
|
|
<< "-" << cover_end;
|
|
accounting::ContinuousSpaceBitmap* bitmap =
|
|
heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
|
|
|
|
if (bitmap == nullptr) {
|
|
LOG(ERROR) << "Object " << obj << " has no bitmap";
|
|
if (!VerifyClassClass(obj->GetClass())) {
|
|
LOG(ERROR) << "Object " << obj << " failed class verification!";
|
|
}
|
|
} else {
|
|
// Print out how the object is live.
|
|
if (bitmap->Test(obj)) {
|
|
LOG(ERROR) << "Object " << obj << " found in live bitmap";
|
|
}
|
|
if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
|
|
LOG(ERROR) << "Object " << obj << " found in allocation stack";
|
|
}
|
|
if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
|
|
LOG(ERROR) << "Object " << obj << " found in live stack";
|
|
}
|
|
if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
|
|
LOG(ERROR) << "Ref " << ref << " found in allocation stack";
|
|
}
|
|
if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
|
|
LOG(ERROR) << "Ref " << ref << " found in live stack";
|
|
}
|
|
// Attempt to see if the card table missed the reference.
|
|
ScanVisitor scan_visitor;
|
|
uint8_t* byte_cover_begin = reinterpret_cast<uint8_t*>(card_table->AddrFromCard(card_addr));
|
|
card_table->Scan<false>(bitmap, byte_cover_begin,
|
|
byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
|
|
}
|
|
|
|
// Search to see if any of the roots reference our object.
|
|
RootMatchesObjectVisitor visitor1(obj);
|
|
Runtime::Current()->VisitRoots(&visitor1);
|
|
// Search to see if any of the roots reference our reference.
|
|
RootMatchesObjectVisitor visitor2(ref);
|
|
Runtime::Current()->VisitRoots(&visitor2);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Thread* const self_;
|
|
Heap* const heap_;
|
|
size_t* const fail_count_;
|
|
const bool verify_referent_;
|
|
};
|
|
|
|
// Verify all references within an object, for use with HeapBitmap::Visit.
|
|
class VerifyObjectVisitor {
|
|
public:
|
|
VerifyObjectVisitor(Thread* self, Heap* heap, size_t* fail_count, bool verify_referent)
|
|
: self_(self), heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
|
|
|
|
void operator()(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
// Note: we are verifying the references in obj but not obj itself, this is because obj must
|
|
// be live or else how did we find it in the live bitmap?
|
|
VerifyReferenceVisitor visitor(self_, heap_, fail_count_, verify_referent_);
|
|
// The class doesn't count as a reference but we should verify it anyways.
|
|
obj->VisitReferences(visitor, visitor);
|
|
}
|
|
|
|
void VerifyRoots() REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Locks::heap_bitmap_lock_) {
|
|
ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
|
|
VerifyReferenceVisitor visitor(self_, heap_, fail_count_, verify_referent_);
|
|
Runtime::Current()->VisitRoots(&visitor);
|
|
}
|
|
|
|
uint32_t GetFailureCount() const REQUIRES(Locks::mutator_lock_) {
|
|
CHECK_EQ(self_, Thread::Current());
|
|
return *fail_count_;
|
|
}
|
|
|
|
private:
|
|
Thread* const self_;
|
|
Heap* const heap_;
|
|
size_t* const fail_count_;
|
|
const bool verify_referent_;
|
|
};
|
|
|
|
void Heap::PushOnAllocationStackWithInternalGC(Thread* self, ObjPtr<mirror::Object>* obj) {
|
|
// Slow path, the allocation stack push back must have already failed.
|
|
DCHECK(!allocation_stack_->AtomicPushBack(obj->Ptr()));
|
|
do {
|
|
// TODO: Add handle VerifyObject.
|
|
StackHandleScope<1> hs(self);
|
|
HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
|
|
// Push our object into the reserve region of the allocation stack. This is only required due
|
|
// to heap verification requiring that roots are live (either in the live bitmap or in the
|
|
// allocation stack).
|
|
CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(obj->Ptr()));
|
|
CollectGarbageInternal(collector::kGcTypeSticky,
|
|
kGcCauseForAlloc,
|
|
false,
|
|
GetCurrentGcNum() + 1);
|
|
} while (!allocation_stack_->AtomicPushBack(obj->Ptr()));
|
|
}
|
|
|
|
void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self,
|
|
ObjPtr<mirror::Object>* obj) {
|
|
// Slow path, the allocation stack push back must have already failed.
|
|
DCHECK(!self->PushOnThreadLocalAllocationStack(obj->Ptr()));
|
|
StackReference<mirror::Object>* start_address;
|
|
StackReference<mirror::Object>* end_address;
|
|
while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
|
|
&end_address)) {
|
|
// TODO: Add handle VerifyObject.
|
|
StackHandleScope<1> hs(self);
|
|
HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
|
|
// Push our object into the reserve region of the allocaiton stack. This is only required due
|
|
// to heap verification requiring that roots are live (either in the live bitmap or in the
|
|
// allocation stack).
|
|
CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(obj->Ptr()));
|
|
// Push into the reserve allocation stack.
|
|
CollectGarbageInternal(collector::kGcTypeSticky,
|
|
kGcCauseForAlloc,
|
|
false,
|
|
GetCurrentGcNum() + 1);
|
|
}
|
|
self->SetThreadLocalAllocationStack(start_address, end_address);
|
|
// Retry on the new thread-local allocation stack.
|
|
CHECK(self->PushOnThreadLocalAllocationStack(obj->Ptr())); // Must succeed.
|
|
}
|
|
|
|
// Must do this with mutators suspended since we are directly accessing the allocation stacks.
|
|
size_t Heap::VerifyHeapReferences(bool verify_referents) {
|
|
Thread* self = Thread::Current();
|
|
Locks::mutator_lock_->AssertExclusiveHeld(self);
|
|
// Lets sort our allocation stacks so that we can efficiently binary search them.
|
|
allocation_stack_->Sort();
|
|
live_stack_->Sort();
|
|
// Since we sorted the allocation stack content, need to revoke all
|
|
// thread-local allocation stacks.
|
|
RevokeAllThreadLocalAllocationStacks(self);
|
|
size_t fail_count = 0;
|
|
VerifyObjectVisitor visitor(self, this, &fail_count, verify_referents);
|
|
// Verify objects in the allocation stack since these will be objects which were:
|
|
// 1. Allocated prior to the GC (pre GC verification).
|
|
// 2. Allocated during the GC (pre sweep GC verification).
|
|
// We don't want to verify the objects in the live stack since they themselves may be
|
|
// pointing to dead objects if they are not reachable.
|
|
VisitObjectsPaused(visitor);
|
|
// Verify the roots:
|
|
visitor.VerifyRoots();
|
|
if (visitor.GetFailureCount() > 0) {
|
|
// Dump mod-union tables.
|
|
for (const auto& table_pair : mod_union_tables_) {
|
|
accounting::ModUnionTable* mod_union_table = table_pair.second;
|
|
mod_union_table->Dump(LOG_STREAM(ERROR) << mod_union_table->GetName() << ": ");
|
|
}
|
|
// Dump remembered sets.
|
|
for (const auto& table_pair : remembered_sets_) {
|
|
accounting::RememberedSet* remembered_set = table_pair.second;
|
|
remembered_set->Dump(LOG_STREAM(ERROR) << remembered_set->GetName() << ": ");
|
|
}
|
|
DumpSpaces(LOG_STREAM(ERROR));
|
|
}
|
|
return visitor.GetFailureCount();
|
|
}
|
|
|
|
class VerifyReferenceCardVisitor {
|
|
public:
|
|
VerifyReferenceCardVisitor(Heap* heap, bool* failed)
|
|
REQUIRES_SHARED(Locks::mutator_lock_,
|
|
Locks::heap_bitmap_lock_)
|
|
: heap_(heap), failed_(failed) {
|
|
}
|
|
|
|
// There is no card marks for native roots on a class.
|
|
void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
|
|
const {}
|
|
void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
|
|
|
|
// TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
|
|
// annotalysis on visitors.
|
|
void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
|
|
NO_THREAD_SAFETY_ANALYSIS {
|
|
mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
|
|
// Filter out class references since changing an object's class does not mark the card as dirty.
|
|
// Also handles large objects, since the only reference they hold is a class reference.
|
|
if (ref != nullptr && !ref->IsClass()) {
|
|
accounting::CardTable* card_table = heap_->GetCardTable();
|
|
// If the object is not dirty and it is referencing something in the live stack other than
|
|
// class, then it must be on a dirty card.
|
|
if (!card_table->AddrIsInCardTable(obj)) {
|
|
LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
|
|
*failed_ = true;
|
|
} else if (!card_table->IsDirty(obj)) {
|
|
// TODO: Check mod-union tables.
|
|
// Card should be either kCardDirty if it got re-dirtied after we aged it, or
|
|
// kCardDirty - 1 if it didnt get touched since we aged it.
|
|
accounting::ObjectStack* live_stack = heap_->live_stack_.get();
|
|
if (live_stack->ContainsSorted(ref)) {
|
|
if (live_stack->ContainsSorted(obj)) {
|
|
LOG(ERROR) << "Object " << obj << " found in live stack";
|
|
}
|
|
if (heap_->GetLiveBitmap()->Test(obj)) {
|
|
LOG(ERROR) << "Object " << obj << " found in live bitmap";
|
|
}
|
|
LOG(ERROR) << "Object " << obj << " " << mirror::Object::PrettyTypeOf(obj)
|
|
<< " references " << ref << " " << mirror::Object::PrettyTypeOf(ref)
|
|
<< " in live stack";
|
|
|
|
// Print which field of the object is dead.
|
|
if (!obj->IsObjectArray()) {
|
|
ObjPtr<mirror::Class> klass = is_static ? obj->AsClass() : obj->GetClass();
|
|
CHECK(klass != nullptr);
|
|
for (ArtField& field : (is_static ? klass->GetSFields() : klass->GetIFields())) {
|
|
if (field.GetOffset().Int32Value() == offset.Int32Value()) {
|
|
LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
|
|
<< field.PrettyField();
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
ObjPtr<mirror::ObjectArray<mirror::Object>> object_array =
|
|
obj->AsObjectArray<mirror::Object>();
|
|
for (int32_t i = 0; i < object_array->GetLength(); ++i) {
|
|
if (object_array->Get(i) == ref) {
|
|
LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
|
|
}
|
|
}
|
|
}
|
|
|
|
*failed_ = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
Heap* const heap_;
|
|
bool* const failed_;
|
|
};
|
|
|
|
class VerifyLiveStackReferences {
|
|
public:
|
|
explicit VerifyLiveStackReferences(Heap* heap)
|
|
: heap_(heap),
|
|
failed_(false) {}
|
|
|
|
void operator()(mirror::Object* obj) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
|
|
VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
|
|
obj->VisitReferences(visitor, VoidFunctor());
|
|
}
|
|
|
|
bool Failed() const {
|
|
return failed_;
|
|
}
|
|
|
|
private:
|
|
Heap* const heap_;
|
|
bool failed_;
|
|
};
|
|
|
|
bool Heap::VerifyMissingCardMarks() {
|
|
Thread* self = Thread::Current();
|
|
Locks::mutator_lock_->AssertExclusiveHeld(self);
|
|
// We need to sort the live stack since we binary search it.
|
|
live_stack_->Sort();
|
|
// Since we sorted the allocation stack content, need to revoke all
|
|
// thread-local allocation stacks.
|
|
RevokeAllThreadLocalAllocationStacks(self);
|
|
VerifyLiveStackReferences visitor(this);
|
|
GetLiveBitmap()->Visit(visitor);
|
|
// We can verify objects in the live stack since none of these should reference dead objects.
|
|
for (auto* it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
|
|
if (!kUseThreadLocalAllocationStack || it->AsMirrorPtr() != nullptr) {
|
|
visitor(it->AsMirrorPtr());
|
|
}
|
|
}
|
|
return !visitor.Failed();
|
|
}
|
|
|
|
void Heap::SwapStacks() {
|
|
if (kUseThreadLocalAllocationStack) {
|
|
live_stack_->AssertAllZero();
|
|
}
|
|
allocation_stack_.swap(live_stack_);
|
|
}
|
|
|
|
void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
|
|
// This must be called only during the pause.
|
|
DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
|
|
MutexLock mu(self, *Locks::runtime_shutdown_lock_);
|
|
MutexLock mu2(self, *Locks::thread_list_lock_);
|
|
std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
|
|
for (Thread* t : thread_list) {
|
|
t->RevokeThreadLocalAllocationStack();
|
|
}
|
|
}
|
|
|
|
void Heap::AssertThreadLocalBuffersAreRevoked(Thread* thread) {
|
|
if (kIsDebugBuild) {
|
|
if (rosalloc_space_ != nullptr) {
|
|
rosalloc_space_->AssertThreadLocalBuffersAreRevoked(thread);
|
|
}
|
|
if (bump_pointer_space_ != nullptr) {
|
|
bump_pointer_space_->AssertThreadLocalBuffersAreRevoked(thread);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
|
|
if (kIsDebugBuild) {
|
|
if (bump_pointer_space_ != nullptr) {
|
|
bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
|
|
}
|
|
}
|
|
}
|
|
|
|
accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
|
|
auto it = mod_union_tables_.find(space);
|
|
if (it == mod_union_tables_.end()) {
|
|
return nullptr;
|
|
}
|
|
return it->second;
|
|
}
|
|
|
|
accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
|
|
auto it = remembered_sets_.find(space);
|
|
if (it == remembered_sets_.end()) {
|
|
return nullptr;
|
|
}
|
|
return it->second;
|
|
}
|
|
|
|
void Heap::ProcessCards(TimingLogger* timings,
|
|
bool use_rem_sets,
|
|
bool process_alloc_space_cards,
|
|
bool clear_alloc_space_cards) {
|
|
TimingLogger::ScopedTiming t(__FUNCTION__, timings);
|
|
// Clear cards and keep track of cards cleared in the mod-union table.
|
|
for (const auto& space : continuous_spaces_) {
|
|
accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
|
|
accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
|
|
if (table != nullptr) {
|
|
const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
|
|
"ImageModUnionClearCards";
|
|
TimingLogger::ScopedTiming t2(name, timings);
|
|
table->ProcessCards();
|
|
} else if (use_rem_sets && rem_set != nullptr) {
|
|
DCHECK(collector::SemiSpace::kUseRememberedSet) << static_cast<int>(collector_type_);
|
|
TimingLogger::ScopedTiming t2("AllocSpaceRemSetClearCards", timings);
|
|
rem_set->ClearCards();
|
|
} else if (process_alloc_space_cards) {
|
|
TimingLogger::ScopedTiming t2("AllocSpaceClearCards", timings);
|
|
if (clear_alloc_space_cards) {
|
|
uint8_t* end = space->End();
|
|
if (space->IsImageSpace()) {
|
|
// Image space end is the end of the mirror objects, it is not necessarily page or card
|
|
// aligned. Align up so that the check in ClearCardRange does not fail.
|
|
end = AlignUp(end, accounting::CardTable::kCardSize);
|
|
}
|
|
card_table_->ClearCardRange(space->Begin(), end);
|
|
} else {
|
|
// No mod union table for the AllocSpace. Age the cards so that the GC knows that these
|
|
// cards were dirty before the GC started.
|
|
// TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
|
|
// -> clean(cleaning thread).
|
|
// The races are we either end up with: Aged card, unaged card. Since we have the
|
|
// checkpoint roots and then we scan / update mod union tables after. We will always
|
|
// scan either card. If we end up with the non aged card, we scan it it in the pause.
|
|
card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
|
|
VoidFunctor());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
struct IdentityMarkHeapReferenceVisitor : public MarkObjectVisitor {
|
|
mirror::Object* MarkObject(mirror::Object* obj) override {
|
|
return obj;
|
|
}
|
|
void MarkHeapReference(mirror::HeapReference<mirror::Object>*, bool) override {
|
|
}
|
|
};
|
|
|
|
void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
|
|
Thread* const self = Thread::Current();
|
|
TimingLogger* const timings = current_gc_iteration_.GetTimings();
|
|
TimingLogger::ScopedTiming t(__FUNCTION__, timings);
|
|
if (verify_pre_gc_heap_) {
|
|
TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyHeapReferences", timings);
|
|
size_t failures = VerifyHeapReferences();
|
|
if (failures > 0) {
|
|
LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
|
|
<< " failures";
|
|
}
|
|
}
|
|
// Check that all objects which reference things in the live stack are on dirty cards.
|
|
if (verify_missing_card_marks_) {
|
|
TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyMissingCardMarks", timings);
|
|
ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
|
|
SwapStacks();
|
|
// Sort the live stack so that we can quickly binary search it later.
|
|
CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
|
|
<< " missing card mark verification failed\n" << DumpSpaces();
|
|
SwapStacks();
|
|
}
|
|
if (verify_mod_union_table_) {
|
|
TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyModUnionTables", timings);
|
|
ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
|
|
for (const auto& table_pair : mod_union_tables_) {
|
|
accounting::ModUnionTable* mod_union_table = table_pair.second;
|
|
IdentityMarkHeapReferenceVisitor visitor;
|
|
mod_union_table->UpdateAndMarkReferences(&visitor);
|
|
mod_union_table->Verify();
|
|
}
|
|
}
|
|
}
|
|
|
|
void Heap::PreGcVerification(collector::GarbageCollector* gc) {
|
|
if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
|
|
collector::GarbageCollector::ScopedPause pause(gc, false);
|
|
PreGcVerificationPaused(gc);
|
|
}
|
|
}
|
|
|
|
void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc ATTRIBUTE_UNUSED) {
|
|
// TODO: Add a new runtime option for this?
|
|
if (verify_pre_gc_rosalloc_) {
|
|
RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
|
|
}
|
|
}
|
|
|
|
void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
|
|
Thread* const self = Thread::Current();
|
|
TimingLogger* const timings = current_gc_iteration_.GetTimings();
|
|
TimingLogger::ScopedTiming t(__FUNCTION__, timings);
|
|
// Called before sweeping occurs since we want to make sure we are not going so reclaim any
|
|
// reachable objects.
|
|
if (verify_pre_sweeping_heap_) {
|
|
TimingLogger::ScopedTiming t2("(Paused)PostSweepingVerifyHeapReferences", timings);
|
|
CHECK_NE(self->GetState(), kRunnable);
|
|
{
|
|
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
|
|
// Swapping bound bitmaps does nothing.
|
|
gc->SwapBitmaps();
|
|
}
|
|
// Pass in false since concurrent reference processing can mean that the reference referents
|
|
// may point to dead objects at the point which PreSweepingGcVerification is called.
|
|
size_t failures = VerifyHeapReferences(false);
|
|
if (failures > 0) {
|
|
LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
|
|
<< " failures";
|
|
}
|
|
{
|
|
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
|
|
gc->SwapBitmaps();
|
|
}
|
|
}
|
|
if (verify_pre_sweeping_rosalloc_) {
|
|
RosAllocVerification(timings, "PreSweepingRosAllocVerification");
|
|
}
|
|
}
|
|
|
|
void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
|
|
// Only pause if we have to do some verification.
|
|
Thread* const self = Thread::Current();
|
|
TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
|
|
TimingLogger::ScopedTiming t(__FUNCTION__, timings);
|
|
if (verify_system_weaks_) {
|
|
ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
|
|
collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
|
|
mark_sweep->VerifySystemWeaks();
|
|
}
|
|
if (verify_post_gc_rosalloc_) {
|
|
RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
|
|
}
|
|
if (verify_post_gc_heap_) {
|
|
TimingLogger::ScopedTiming t2("(Paused)PostGcVerifyHeapReferences", timings);
|
|
size_t failures = VerifyHeapReferences();
|
|
if (failures > 0) {
|
|
LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
|
|
<< " failures";
|
|
}
|
|
}
|
|
}
|
|
|
|
void Heap::PostGcVerification(collector::GarbageCollector* gc) {
|
|
if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
|
|
collector::GarbageCollector::ScopedPause pause(gc, false);
|
|
PostGcVerificationPaused(gc);
|
|
}
|
|
}
|
|
|
|
void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
|
|
TimingLogger::ScopedTiming t(name, timings);
|
|
for (const auto& space : continuous_spaces_) {
|
|
if (space->IsRosAllocSpace()) {
|
|
VLOG(heap) << name << " : " << space->GetName();
|
|
space->AsRosAllocSpace()->Verify();
|
|
}
|
|
}
|
|
}
|
|
|
|
collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
|
|
ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
|
|
MutexLock mu(self, *gc_complete_lock_);
|
|
return WaitForGcToCompleteLocked(cause, self);
|
|
}
|
|
|
|
collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
|
|
gc_complete_cond_->CheckSafeToWait(self);
|
|
collector::GcType last_gc_type = collector::kGcTypeNone;
|
|
GcCause last_gc_cause = kGcCauseNone;
|
|
uint64_t wait_start = NanoTime();
|
|
while (collector_type_running_ != kCollectorTypeNone) {
|
|
if (self != task_processor_->GetRunningThread()) {
|
|
// The current thread is about to wait for a currently running
|
|
// collection to finish. If the waiting thread is not the heap
|
|
// task daemon thread, the currently running collection is
|
|
// considered as a blocking GC.
|
|
running_collection_is_blocking_ = true;
|
|
VLOG(gc) << "Waiting for a blocking GC " << cause;
|
|
}
|
|
SCOPED_TRACE << "GC: Wait For Completion " << cause;
|
|
// We must wait, change thread state then sleep on gc_complete_cond_;
|
|
gc_complete_cond_->Wait(self);
|
|
last_gc_type = last_gc_type_;
|
|
last_gc_cause = last_gc_cause_;
|
|
}
|
|
uint64_t wait_time = NanoTime() - wait_start;
|
|
total_wait_time_ += wait_time;
|
|
if (wait_time > long_pause_log_threshold_) {
|
|
LOG(INFO) << "WaitForGcToComplete blocked " << cause << " on " << last_gc_cause << " for "
|
|
<< PrettyDuration(wait_time);
|
|
}
|
|
if (self != task_processor_->GetRunningThread()) {
|
|
// The current thread is about to run a collection. If the thread
|
|
// is not the heap task daemon thread, it's considered as a
|
|
// blocking GC (i.e., blocking itself).
|
|
running_collection_is_blocking_ = true;
|
|
// Don't log fake "GC" types that are only used for debugger or hidden APIs. If we log these,
|
|
// it results in log spam. kGcCauseExplicit is already logged in LogGC, so avoid it here too.
|
|
if (cause == kGcCauseForAlloc ||
|
|
cause == kGcCauseDisableMovingGc) {
|
|
VLOG(gc) << "Starting a blocking GC " << cause;
|
|
}
|
|
}
|
|
return last_gc_type;
|
|
}
|
|
|
|
void Heap::DumpForSigQuit(std::ostream& os) {
|
|
os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
|
|
<< PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
|
|
DumpGcPerformanceInfo(os);
|
|
}
|
|
|
|
size_t Heap::GetPercentFree() {
|
|
return static_cast<size_t>(100.0f * static_cast<float>(
|
|
GetFreeMemory()) / target_footprint_.load(std::memory_order_relaxed));
|
|
}
|
|
|
|
void Heap::SetIdealFootprint(size_t target_footprint) {
|
|
if (target_footprint > GetMaxMemory()) {
|
|
VLOG(gc) << "Clamp target GC heap from " << PrettySize(target_footprint) << " to "
|
|
<< PrettySize(GetMaxMemory());
|
|
target_footprint = GetMaxMemory();
|
|
}
|
|
target_footprint_.store(target_footprint, std::memory_order_relaxed);
|
|
}
|
|
|
|
bool Heap::IsMovableObject(ObjPtr<mirror::Object> obj) const {
|
|
if (kMovingCollector) {
|
|
space::Space* space = FindContinuousSpaceFromObject(obj.Ptr(), true);
|
|
if (space != nullptr) {
|
|
// TODO: Check large object?
|
|
return space->CanMoveObjects();
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
|
|
for (auto* collector : garbage_collectors_) {
|
|
if (collector->GetCollectorType() == collector_type_ &&
|
|
collector->GetGcType() == gc_type) {
|
|
return collector;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
double Heap::HeapGrowthMultiplier() const {
|
|
// If we don't care about pause times we are background, so return 1.0.
|
|
if (!CareAboutPauseTimes()) {
|
|
return 1.0;
|
|
}
|
|
return foreground_heap_growth_multiplier_;
|
|
}
|
|
|
|
void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran,
|
|
size_t bytes_allocated_before_gc) {
|
|
// We know what our utilization is at this moment.
|
|
// This doesn't actually resize any memory. It just lets the heap grow more when necessary.
|
|
const size_t bytes_allocated = GetBytesAllocated();
|
|
// Trace the new heap size after the GC is finished.
|
|
TraceHeapSize(bytes_allocated);
|
|
uint64_t target_size, grow_bytes;
|
|
collector::GcType gc_type = collector_ran->GetGcType();
|
|
MutexLock mu(Thread::Current(), process_state_update_lock_);
|
|
// Use the multiplier to grow more for foreground.
|
|
const double multiplier = HeapGrowthMultiplier();
|
|
if (gc_type != collector::kGcTypeSticky) {
|
|
// Grow the heap for non sticky GC.
|
|
uint64_t delta = bytes_allocated * (1.0 / GetTargetHeapUtilization() - 1.0);
|
|
DCHECK_LE(delta, std::numeric_limits<size_t>::max()) << "bytes_allocated=" << bytes_allocated
|
|
<< " target_utilization_=" << target_utilization_;
|
|
grow_bytes = std::min(delta, static_cast<uint64_t>(max_free_));
|
|
grow_bytes = std::max(grow_bytes, static_cast<uint64_t>(min_free_));
|
|
target_size = bytes_allocated + static_cast<uint64_t>(grow_bytes * multiplier);
|
|
next_gc_type_ = collector::kGcTypeSticky;
|
|
} else {
|
|
collector::GcType non_sticky_gc_type = NonStickyGcType();
|
|
// Find what the next non sticky collector will be.
|
|
collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
|
|
if (use_generational_cc_) {
|
|
if (non_sticky_collector == nullptr) {
|
|
non_sticky_collector = FindCollectorByGcType(collector::kGcTypePartial);
|
|
}
|
|
CHECK(non_sticky_collector != nullptr);
|
|
}
|
|
double sticky_gc_throughput_adjustment = GetStickyGcThroughputAdjustment(use_generational_cc_);
|
|
|
|
// If the throughput of the current sticky GC >= throughput of the non sticky collector, then
|
|
// do another sticky collection next.
|
|
// We also check that the bytes allocated aren't over the target_footprint, or
|
|
// concurrent_start_bytes in case of concurrent GCs, in order to prevent a
|
|
// pathological case where dead objects which aren't reclaimed by sticky could get accumulated
|
|
// if the sticky GC throughput always remained >= the full/partial throughput.
|
|
size_t target_footprint = target_footprint_.load(std::memory_order_relaxed);
|
|
if (current_gc_iteration_.GetEstimatedThroughput() * sticky_gc_throughput_adjustment >=
|
|
non_sticky_collector->GetEstimatedMeanThroughput() &&
|
|
non_sticky_collector->NumberOfIterations() > 0 &&
|
|
bytes_allocated <= (IsGcConcurrent() ? concurrent_start_bytes_ : target_footprint)) {
|
|
next_gc_type_ = collector::kGcTypeSticky;
|
|
} else {
|
|
next_gc_type_ = non_sticky_gc_type;
|
|
}
|
|
// If we have freed enough memory, shrink the heap back down.
|
|
const size_t adjusted_max_free = static_cast<size_t>(max_free_ * multiplier);
|
|
if (bytes_allocated + adjusted_max_free < target_footprint) {
|
|
target_size = bytes_allocated + adjusted_max_free;
|
|
grow_bytes = max_free_;
|
|
} else {
|
|
target_size = std::max(bytes_allocated, target_footprint);
|
|
// The same whether jank perceptible or not; just avoid the adjustment.
|
|
grow_bytes = 0;
|
|
}
|
|
}
|
|
CHECK_LE(target_size, std::numeric_limits<size_t>::max());
|
|
if (!ignore_target_footprint_) {
|
|
SetIdealFootprint(target_size);
|
|
// Store target size (computed with foreground heap growth multiplier) for updating
|
|
// target_footprint_ when process state switches to foreground.
|
|
// target_size = 0 ensures that target_footprint_ is not updated on
|
|
// process-state switch.
|
|
min_foreground_target_footprint_ =
|
|
(multiplier <= 1.0 && grow_bytes > 0)
|
|
? bytes_allocated + static_cast<size_t>(grow_bytes * foreground_heap_growth_multiplier_)
|
|
: 0;
|
|
|
|
if (IsGcConcurrent()) {
|
|
const uint64_t freed_bytes = current_gc_iteration_.GetFreedBytes() +
|
|
current_gc_iteration_.GetFreedLargeObjectBytes() +
|
|
current_gc_iteration_.GetFreedRevokeBytes();
|
|
// Bytes allocated will shrink by freed_bytes after the GC runs, so if we want to figure out
|
|
// how many bytes were allocated during the GC we need to add freed_bytes back on.
|
|
// Almost always bytes_allocated + freed_bytes >= bytes_allocated_before_gc.
|
|
const size_t bytes_allocated_during_gc =
|
|
UnsignedDifference(bytes_allocated + freed_bytes, bytes_allocated_before_gc);
|
|
// Calculate when to perform the next ConcurrentGC.
|
|
// Estimate how many remaining bytes we will have when we need to start the next GC.
|
|
size_t remaining_bytes = bytes_allocated_during_gc;
|
|
remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
|
|
remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
|
|
size_t target_footprint = target_footprint_.load(std::memory_order_relaxed);
|
|
if (UNLIKELY(remaining_bytes > target_footprint)) {
|
|
// A never going to happen situation that from the estimated allocation rate we will exceed
|
|
// the applications entire footprint with the given estimated allocation rate. Schedule
|
|
// another GC nearly straight away.
|
|
remaining_bytes = std::min(kMinConcurrentRemainingBytes, target_footprint);
|
|
}
|
|
DCHECK_LE(target_footprint_.load(std::memory_order_relaxed), GetMaxMemory());
|
|
// Start a concurrent GC when we get close to the estimated remaining bytes. When the
|
|
// allocation rate is very high, remaining_bytes could tell us that we should start a GC
|
|
// right away.
|
|
concurrent_start_bytes_ = std::max(target_footprint - remaining_bytes, bytes_allocated);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Heap::ClampGrowthLimit() {
|
|
// Use heap bitmap lock to guard against races with BindLiveToMarkBitmap.
|
|
ScopedObjectAccess soa(Thread::Current());
|
|
WriterMutexLock mu(soa.Self(), *Locks::heap_bitmap_lock_);
|
|
capacity_ = growth_limit_;
|
|
for (const auto& space : continuous_spaces_) {
|
|
if (space->IsMallocSpace()) {
|
|
gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
|
|
malloc_space->ClampGrowthLimit();
|
|
}
|
|
}
|
|
if (collector_type_ == kCollectorTypeCC) {
|
|
DCHECK(region_space_ != nullptr);
|
|
// Twice the capacity as CC needs extra space for evacuating objects.
|
|
region_space_->ClampGrowthLimit(2 * capacity_);
|
|
}
|
|
// This space isn't added for performance reasons.
|
|
if (main_space_backup_.get() != nullptr) {
|
|
main_space_backup_->ClampGrowthLimit();
|
|
}
|
|
}
|
|
|
|
void Heap::ClearGrowthLimit() {
|
|
if (target_footprint_.load(std::memory_order_relaxed) == growth_limit_
|
|
&& growth_limit_ < capacity_) {
|
|
target_footprint_.store(capacity_, std::memory_order_relaxed);
|
|
concurrent_start_bytes_ =
|
|
UnsignedDifference(capacity_, kMinConcurrentRemainingBytes);
|
|
}
|
|
growth_limit_ = capacity_;
|
|
ScopedObjectAccess soa(Thread::Current());
|
|
for (const auto& space : continuous_spaces_) {
|
|
if (space->IsMallocSpace()) {
|
|
gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
|
|
malloc_space->ClearGrowthLimit();
|
|
malloc_space->SetFootprintLimit(malloc_space->Capacity());
|
|
}
|
|
}
|
|
// This space isn't added for performance reasons.
|
|
if (main_space_backup_.get() != nullptr) {
|
|
main_space_backup_->ClearGrowthLimit();
|
|
main_space_backup_->SetFootprintLimit(main_space_backup_->Capacity());
|
|
}
|
|
}
|
|
|
|
void Heap::AddFinalizerReference(Thread* self, ObjPtr<mirror::Object>* object) {
|
|
ScopedObjectAccess soa(self);
|
|
ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object));
|
|
jvalue args[1];
|
|
args[0].l = arg.get();
|
|
InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
|
|
// Restore object in case it gets moved.
|
|
*object = soa.Decode<mirror::Object>(arg.get());
|
|
}
|
|
|
|
void Heap::RequestConcurrentGCAndSaveObject(Thread* self,
|
|
bool force_full,
|
|
uint32_t observed_gc_num,
|
|
ObjPtr<mirror::Object>* obj) {
|
|
StackHandleScope<1> hs(self);
|
|
HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
|
|
RequestConcurrentGC(self, kGcCauseBackground, force_full, observed_gc_num);
|
|
}
|
|
|
|
class Heap::ConcurrentGCTask : public HeapTask {
|
|
public:
|
|
ConcurrentGCTask(uint64_t target_time, GcCause cause, bool force_full, uint32_t gc_num)
|
|
: HeapTask(target_time), cause_(cause), force_full_(force_full), my_gc_num_(gc_num) {}
|
|
void Run(Thread* self) override {
|
|
Runtime* runtime = Runtime::Current();
|
|
gc::Heap* heap = runtime->GetHeap();
|
|
DCHECK(GCNumberLt(my_gc_num_, heap->GetCurrentGcNum() + 2)); // <= current_gc_num + 1
|
|
heap->ConcurrentGC(self, cause_, force_full_, my_gc_num_);
|
|
CHECK(!GCNumberLt(heap->GetCurrentGcNum(), my_gc_num_) || runtime->IsShuttingDown(self));
|
|
}
|
|
|
|
private:
|
|
const GcCause cause_;
|
|
const bool force_full_; // If true, force full (or partial) collection.
|
|
const uint32_t my_gc_num_; // Sequence number of requested GC.
|
|
};
|
|
|
|
static bool CanAddHeapTask(Thread* self) REQUIRES(!Locks::runtime_shutdown_lock_) {
|
|
Runtime* runtime = Runtime::Current();
|
|
return runtime != nullptr && runtime->IsFinishedStarting() && !runtime->IsShuttingDown(self) &&
|
|
!self->IsHandlingStackOverflow();
|
|
}
|
|
|
|
bool Heap::RequestConcurrentGC(Thread* self,
|
|
GcCause cause,
|
|
bool force_full,
|
|
uint32_t observed_gc_num) {
|
|
uint32_t max_gc_requested = max_gc_requested_.load(std::memory_order_relaxed);
|
|
if (!GCNumberLt(observed_gc_num, max_gc_requested)) {
|
|
// observed_gc_num >= max_gc_requested: Nobody beat us to requesting the next gc.
|
|
if (CanAddHeapTask(self)) {
|
|
// Since observed_gc_num >= max_gc_requested, this increases max_gc_requested_, if successful.
|
|
if (max_gc_requested_.CompareAndSetStrongRelaxed(max_gc_requested, observed_gc_num + 1)) {
|
|
task_processor_->AddTask(self, new ConcurrentGCTask(NanoTime(), // Start straight away.
|
|
cause,
|
|
force_full,
|
|
observed_gc_num + 1));
|
|
}
|
|
DCHECK(GCNumberLt(observed_gc_num, max_gc_requested_.load(std::memory_order_relaxed)));
|
|
// If we increased max_gc_requested_, then we added a task that will eventually cause
|
|
// gcs_completed_ to be incremented (to at least observed_gc_num + 1).
|
|
// If the CAS failed, somebody else did.
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
return true; // Vacuously.
|
|
}
|
|
|
|
void Heap::ConcurrentGC(Thread* self, GcCause cause, bool force_full, uint32_t requested_gc_num) {
|
|
if (!Runtime::Current()->IsShuttingDown(self)) {
|
|
// Wait for any GCs currently running to finish. If this incremented GC number, we're done.
|
|
WaitForGcToComplete(cause, self);
|
|
if (GCNumberLt(GetCurrentGcNum(), requested_gc_num)) {
|
|
collector::GcType next_gc_type = next_gc_type_;
|
|
// If forcing full and next gc type is sticky, override with a non-sticky type.
|
|
if (force_full && next_gc_type == collector::kGcTypeSticky) {
|
|
next_gc_type = NonStickyGcType();
|
|
}
|
|
// If we can't run the GC type we wanted to run, find the next appropriate one and try
|
|
// that instead. E.g. can't do partial, so do full instead.
|
|
// We must ensure that we run something that ends up inrementing gcs_completed_.
|
|
// In the kGcTypePartial case, the initial CollectGarbageInternal call may not have that
|
|
// effect, but the subsequent KGcTypeFull call will.
|
|
if (CollectGarbageInternal(next_gc_type, cause, false, requested_gc_num)
|
|
== collector::kGcTypeNone) {
|
|
for (collector::GcType gc_type : gc_plan_) {
|
|
if (!GCNumberLt(GetCurrentGcNum(), requested_gc_num)) {
|
|
// Somebody did it for us.
|
|
break;
|
|
}
|
|
// Attempt to run the collector, if we succeed, we are done.
|
|
if (gc_type > next_gc_type &&
|
|
CollectGarbageInternal(gc_type, cause, false, requested_gc_num)
|
|
!= collector::kGcTypeNone) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
class Heap::CollectorTransitionTask : public HeapTask {
|
|
public:
|
|
explicit CollectorTransitionTask(uint64_t target_time) : HeapTask(target_time) {}
|
|
|
|
void Run(Thread* self) override {
|
|
gc::Heap* heap = Runtime::Current()->GetHeap();
|
|
heap->DoPendingCollectorTransition();
|
|
heap->ClearPendingCollectorTransition(self);
|
|
}
|
|
};
|
|
|
|
void Heap::ClearPendingCollectorTransition(Thread* self) {
|
|
MutexLock mu(self, *pending_task_lock_);
|
|
pending_collector_transition_ = nullptr;
|
|
}
|
|
|
|
void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
|
|
Thread* self = Thread::Current();
|
|
desired_collector_type_ = desired_collector_type;
|
|
if (desired_collector_type_ == collector_type_ || !CanAddHeapTask(self)) {
|
|
return;
|
|
}
|
|
if (collector_type_ == kCollectorTypeCC) {
|
|
// For CC, we invoke a full compaction when going to the background, but the collector type
|
|
// doesn't change.
|
|
DCHECK_EQ(desired_collector_type_, kCollectorTypeCCBackground);
|
|
}
|
|
DCHECK_NE(collector_type_, kCollectorTypeCCBackground);
|
|
CollectorTransitionTask* added_task = nullptr;
|
|
const uint64_t target_time = NanoTime() + delta_time;
|
|
{
|
|
MutexLock mu(self, *pending_task_lock_);
|
|
// If we have an existing collector transition, update the target time to be the new target.
|
|
if (pending_collector_transition_ != nullptr) {
|
|
task_processor_->UpdateTargetRunTime(self, pending_collector_transition_, target_time);
|
|
return;
|
|
}
|
|
added_task = new CollectorTransitionTask(target_time);
|
|
pending_collector_transition_ = added_task;
|
|
}
|
|
task_processor_->AddTask(self, added_task);
|
|
}
|
|
|
|
class Heap::HeapTrimTask : public HeapTask {
|
|
public:
|
|
explicit HeapTrimTask(uint64_t delta_time) : HeapTask(NanoTime() + delta_time) { }
|
|
void Run(Thread* self) override {
|
|
gc::Heap* heap = Runtime::Current()->GetHeap();
|
|
heap->Trim(self);
|
|
heap->ClearPendingTrim(self);
|
|
}
|
|
};
|
|
|
|
void Heap::ClearPendingTrim(Thread* self) {
|
|
MutexLock mu(self, *pending_task_lock_);
|
|
pending_heap_trim_ = nullptr;
|
|
}
|
|
|
|
void Heap::RequestTrim(Thread* self) {
|
|
if (!CanAddHeapTask(self)) {
|
|
return;
|
|
}
|
|
// GC completed and now we must decide whether to request a heap trim (advising pages back to the
|
|
// kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
|
|
// a space it will hold its lock and can become a cause of jank.
|
|
// Note, the large object space self trims and the Zygote space was trimmed and unchanging since
|
|
// forking.
|
|
|
|
// We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
|
|
// because that only marks object heads, so a large array looks like lots of empty space. We
|
|
// don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
|
|
// to utilization (which is probably inversely proportional to how much benefit we can expect).
|
|
// We could try mincore(2) but that's only a measure of how many pages we haven't given away,
|
|
// not how much use we're making of those pages.
|
|
HeapTrimTask* added_task = nullptr;
|
|
{
|
|
MutexLock mu(self, *pending_task_lock_);
|
|
if (pending_heap_trim_ != nullptr) {
|
|
// Already have a heap trim request in task processor, ignore this request.
|
|
return;
|
|
}
|
|
added_task = new HeapTrimTask(kHeapTrimWait);
|
|
pending_heap_trim_ = added_task;
|
|
}
|
|
task_processor_->AddTask(self, added_task);
|
|
}
|
|
|
|
void Heap::IncrementNumberOfBytesFreedRevoke(size_t freed_bytes_revoke) {
|
|
size_t previous_num_bytes_freed_revoke =
|
|
num_bytes_freed_revoke_.fetch_add(freed_bytes_revoke, std::memory_order_relaxed);
|
|
// Check the updated value is less than the number of bytes allocated. There is a risk of
|
|
// execution being suspended between the increment above and the CHECK below, leading to
|
|
// the use of previous_num_bytes_freed_revoke in the comparison.
|
|
CHECK_GE(num_bytes_allocated_.load(std::memory_order_relaxed),
|
|
previous_num_bytes_freed_revoke + freed_bytes_revoke);
|
|
}
|
|
|
|
void Heap::RevokeThreadLocalBuffers(Thread* thread) {
|
|
if (rosalloc_space_ != nullptr) {
|
|
size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
|
|
if (freed_bytes_revoke > 0U) {
|
|
IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke);
|
|
}
|
|
}
|
|
if (bump_pointer_space_ != nullptr) {
|
|
CHECK_EQ(bump_pointer_space_->RevokeThreadLocalBuffers(thread), 0U);
|
|
}
|
|
if (region_space_ != nullptr) {
|
|
CHECK_EQ(region_space_->RevokeThreadLocalBuffers(thread), 0U);
|
|
}
|
|
}
|
|
|
|
void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
|
|
if (rosalloc_space_ != nullptr) {
|
|
size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
|
|
if (freed_bytes_revoke > 0U) {
|
|
IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Heap::RevokeAllThreadLocalBuffers() {
|
|
if (rosalloc_space_ != nullptr) {
|
|
size_t freed_bytes_revoke = rosalloc_space_->RevokeAllThreadLocalBuffers();
|
|
if (freed_bytes_revoke > 0U) {
|
|
IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke);
|
|
}
|
|
}
|
|
if (bump_pointer_space_ != nullptr) {
|
|
CHECK_EQ(bump_pointer_space_->RevokeAllThreadLocalBuffers(), 0U);
|
|
}
|
|
if (region_space_ != nullptr) {
|
|
CHECK_EQ(region_space_->RevokeAllThreadLocalBuffers(), 0U);
|
|
}
|
|
}
|
|
|
|
void Heap::RunFinalization(JNIEnv* env, uint64_t timeout) {
|
|
env->CallStaticVoidMethod(WellKnownClasses::dalvik_system_VMRuntime,
|
|
WellKnownClasses::dalvik_system_VMRuntime_runFinalization,
|
|
static_cast<jlong>(timeout));
|
|
}
|
|
|
|
// For GC triggering purposes, we count old (pre-last-GC) and new native allocations as
|
|
// different fractions of Java allocations.
|
|
// For now, we essentially do not count old native allocations at all, so that we can preserve the
|
|
// existing behavior of not limiting native heap size. If we seriously considered it, we would
|
|
// have to adjust collection thresholds when we encounter large amounts of old native memory,
|
|
// and handle native out-of-memory situations.
|
|
|
|
static constexpr size_t kOldNativeDiscountFactor = 65536; // Approximately infinite for now.
|
|
static constexpr size_t kNewNativeDiscountFactor = 2;
|
|
|
|
// If weighted java + native memory use exceeds our target by kStopForNativeFactor, and
|
|
// newly allocated memory exceeds stop_for_native_allocs_, we wait for GC to complete to avoid
|
|
// running out of memory.
|
|
static constexpr float kStopForNativeFactor = 4.0;
|
|
|
|
// Return the ratio of the weighted native + java allocated bytes to its target value.
|
|
// A return value > 1.0 means we should collect. Significantly larger values mean we're falling
|
|
// behind.
|
|
inline float Heap::NativeMemoryOverTarget(size_t current_native_bytes, bool is_gc_concurrent) {
|
|
// Collection check for native allocation. Does not enforce Java heap bounds.
|
|
// With adj_start_bytes defined below, effectively checks
|
|
// <java bytes allocd> + c1*<old native allocd> + c2*<new native allocd) >= adj_start_bytes,
|
|
// where c3 > 1, and currently c1 and c2 are 1 divided by the values defined above.
|
|
size_t old_native_bytes = old_native_bytes_allocated_.load(std::memory_order_relaxed);
|
|
if (old_native_bytes > current_native_bytes) {
|
|
// Net decrease; skip the check, but update old value.
|
|
// It's OK to lose an update if two stores race.
|
|
old_native_bytes_allocated_.store(current_native_bytes, std::memory_order_relaxed);
|
|
return 0.0;
|
|
} else {
|
|
size_t new_native_bytes = UnsignedDifference(current_native_bytes, old_native_bytes);
|
|
size_t weighted_native_bytes = new_native_bytes / kNewNativeDiscountFactor
|
|
+ old_native_bytes / kOldNativeDiscountFactor;
|
|
size_t add_bytes_allowed = static_cast<size_t>(
|
|
NativeAllocationGcWatermark() * HeapGrowthMultiplier());
|
|
size_t java_gc_start_bytes = is_gc_concurrent
|
|
? concurrent_start_bytes_
|
|
: target_footprint_.load(std::memory_order_relaxed);
|
|
size_t adj_start_bytes = UnsignedSum(java_gc_start_bytes,
|
|
add_bytes_allowed / kNewNativeDiscountFactor);
|
|
return static_cast<float>(GetBytesAllocated() + weighted_native_bytes)
|
|
/ static_cast<float>(adj_start_bytes);
|
|
}
|
|
}
|
|
|
|
inline void Heap::CheckGCForNative(Thread* self) {
|
|
bool is_gc_concurrent = IsGcConcurrent();
|
|
uint32_t starting_gc_num = GetCurrentGcNum();
|
|
size_t current_native_bytes = GetNativeBytes();
|
|
float gc_urgency = NativeMemoryOverTarget(current_native_bytes, is_gc_concurrent);
|
|
if (UNLIKELY(gc_urgency >= 1.0)) {
|
|
if (is_gc_concurrent) {
|
|
bool requested =
|
|
RequestConcurrentGC(self, kGcCauseForNativeAlloc, /*force_full=*/true, starting_gc_num);
|
|
if (gc_urgency > kStopForNativeFactor
|
|
&& current_native_bytes > stop_for_native_allocs_) {
|
|
// We're in danger of running out of memory due to rampant native allocation.
|
|
if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
|
|
LOG(INFO) << "Stopping for native allocation, urgency: " << gc_urgency;
|
|
}
|
|
if (WaitForGcToComplete(kGcCauseForNativeAlloc, self) == collector::kGcTypeNone) {
|
|
DCHECK(!requested
|
|
|| GCNumberLt(starting_gc_num, max_gc_requested_.load(std::memory_order_relaxed)));
|
|
// TODO: Eventually sleep here again.
|
|
}
|
|
}
|
|
} else {
|
|
CollectGarbageInternal(NonStickyGcType(), kGcCauseForNativeAlloc, false, starting_gc_num + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// About kNotifyNativeInterval allocations have occurred. Check whether we should garbage collect.
|
|
void Heap::NotifyNativeAllocations(JNIEnv* env) {
|
|
native_objects_notified_.fetch_add(kNotifyNativeInterval, std::memory_order_relaxed);
|
|
CheckGCForNative(ThreadForEnv(env));
|
|
}
|
|
|
|
// Register a native allocation with an explicit size.
|
|
// This should only be done for large allocations of non-malloc memory, which we wouldn't
|
|
// otherwise see.
|
|
void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) {
|
|
// Cautiously check for a wrapped negative bytes argument.
|
|
DCHECK(sizeof(size_t) < 8 || bytes < (std::numeric_limits<size_t>::max() / 2));
|
|
native_bytes_registered_.fetch_add(bytes, std::memory_order_relaxed);
|
|
uint32_t objects_notified =
|
|
native_objects_notified_.fetch_add(1, std::memory_order_relaxed);
|
|
if (objects_notified % kNotifyNativeInterval == kNotifyNativeInterval - 1
|
|
|| bytes > kCheckImmediatelyThreshold) {
|
|
CheckGCForNative(ThreadForEnv(env));
|
|
}
|
|
}
|
|
|
|
void Heap::RegisterNativeFree(JNIEnv*, size_t bytes) {
|
|
size_t allocated;
|
|
size_t new_freed_bytes;
|
|
do {
|
|
allocated = native_bytes_registered_.load(std::memory_order_relaxed);
|
|
new_freed_bytes = std::min(allocated, bytes);
|
|
// We should not be registering more free than allocated bytes.
|
|
// But correctly keep going in non-debug builds.
|
|
DCHECK_EQ(new_freed_bytes, bytes);
|
|
} while (!native_bytes_registered_.CompareAndSetWeakRelaxed(allocated,
|
|
allocated - new_freed_bytes));
|
|
}
|
|
|
|
size_t Heap::GetTotalMemory() const {
|
|
return std::max(target_footprint_.load(std::memory_order_relaxed), GetBytesAllocated());
|
|
}
|
|
|
|
void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
|
|
DCHECK(mod_union_table != nullptr);
|
|
mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
|
|
}
|
|
|
|
void Heap::CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c, size_t byte_count) {
|
|
// Compare rounded sizes since the allocation may have been retried after rounding the size.
|
|
// See b/37885600
|
|
CHECK(c == nullptr || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
|
|
(c->IsVariableSize() ||
|
|
RoundUp(c->GetObjectSize(), kObjectAlignment) ==
|
|
RoundUp(byte_count, kObjectAlignment)))
|
|
<< "ClassFlags=" << c->GetClassFlags()
|
|
<< " IsClassClass=" << c->IsClassClass()
|
|
<< " byte_count=" << byte_count
|
|
<< " IsVariableSize=" << c->IsVariableSize()
|
|
<< " ObjectSize=" << c->GetObjectSize()
|
|
<< " sizeof(Class)=" << sizeof(mirror::Class)
|
|
<< " " << verification_->DumpObjectInfo(c.Ptr(), /*tag=*/ "klass");
|
|
CHECK_GE(byte_count, sizeof(mirror::Object));
|
|
}
|
|
|
|
void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
|
|
CHECK(remembered_set != nullptr);
|
|
space::Space* space = remembered_set->GetSpace();
|
|
CHECK(space != nullptr);
|
|
CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
|
|
remembered_sets_.Put(space, remembered_set);
|
|
CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
|
|
}
|
|
|
|
void Heap::RemoveRememberedSet(space::Space* space) {
|
|
CHECK(space != nullptr);
|
|
auto it = remembered_sets_.find(space);
|
|
CHECK(it != remembered_sets_.end());
|
|
delete it->second;
|
|
remembered_sets_.erase(it);
|
|
CHECK(remembered_sets_.find(space) == remembered_sets_.end());
|
|
}
|
|
|
|
void Heap::ClearMarkedObjects() {
|
|
// Clear all of the spaces' mark bitmaps.
|
|
for (const auto& space : GetContinuousSpaces()) {
|
|
if (space->GetLiveBitmap() != nullptr && !space->HasBoundBitmaps()) {
|
|
space->GetMarkBitmap()->Clear();
|
|
}
|
|
}
|
|
// Clear the marked objects in the discontinous space object sets.
|
|
for (const auto& space : GetDiscontinuousSpaces()) {
|
|
space->GetMarkBitmap()->Clear();
|
|
}
|
|
}
|
|
|
|
void Heap::SetAllocationRecords(AllocRecordObjectMap* records) {
|
|
allocation_records_.reset(records);
|
|
}
|
|
|
|
void Heap::VisitAllocationRecords(RootVisitor* visitor) const {
|
|
if (IsAllocTrackingEnabled()) {
|
|
MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
|
|
if (IsAllocTrackingEnabled()) {
|
|
GetAllocationRecords()->VisitRoots(visitor);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Heap::SweepAllocationRecords(IsMarkedVisitor* visitor) const {
|
|
if (IsAllocTrackingEnabled()) {
|
|
MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
|
|
if (IsAllocTrackingEnabled()) {
|
|
GetAllocationRecords()->SweepAllocationRecords(visitor);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Heap::AllowNewAllocationRecords() const {
|
|
CHECK(!kUseReadBarrier);
|
|
MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
|
|
AllocRecordObjectMap* allocation_records = GetAllocationRecords();
|
|
if (allocation_records != nullptr) {
|
|
allocation_records->AllowNewAllocationRecords();
|
|
}
|
|
}
|
|
|
|
void Heap::DisallowNewAllocationRecords() const {
|
|
CHECK(!kUseReadBarrier);
|
|
MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
|
|
AllocRecordObjectMap* allocation_records = GetAllocationRecords();
|
|
if (allocation_records != nullptr) {
|
|
allocation_records->DisallowNewAllocationRecords();
|
|
}
|
|
}
|
|
|
|
void Heap::BroadcastForNewAllocationRecords() const {
|
|
// Always broadcast without checking IsAllocTrackingEnabled() because IsAllocTrackingEnabled() may
|
|
// be set to false while some threads are waiting for system weak access in
|
|
// AllocRecordObjectMap::RecordAllocation() and we may fail to wake them up. b/27467554.
|
|
MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
|
|
AllocRecordObjectMap* allocation_records = GetAllocationRecords();
|
|
if (allocation_records != nullptr) {
|
|
allocation_records->BroadcastForNewAllocationRecords();
|
|
}
|
|
}
|
|
|
|
// Perfetto Java Heap Profiler Support.
|
|
|
|
// Perfetto initialization.
|
|
void Heap::InitPerfettoJavaHeapProf() {
|
|
// Initialize Perfetto Heap info and Heap id.
|
|
uint32_t heap_id = 1; // Initialize to 1, to be overwritten by Perfetto heap id.
|
|
#ifdef ART_TARGET_ANDROID
|
|
// Register the heap and create the heapid.
|
|
// Use a Perfetto heap name = "com.android.art" for the Java Heap Profiler.
|
|
AHeapInfo* info = AHeapInfo_create("com.android.art");
|
|
// Set the Enable Callback, there is no callback data ("nullptr").
|
|
AHeapInfo_setEnabledCallback(info, &EnableHeapSamplerCallback, &heap_sampler_);
|
|
// Set the Disable Callback.
|
|
AHeapInfo_setDisabledCallback(info, &DisableHeapSamplerCallback, &heap_sampler_);
|
|
heap_id = AHeapProfile_registerHeap(info);
|
|
// Do not enable the Java Heap Profiler in this case, wait for Perfetto to enable it through
|
|
// the callback function.
|
|
#else
|
|
// This is the host case, enable the Java Heap Profiler for host testing.
|
|
// Perfetto API is currently not available on host.
|
|
heap_sampler_.EnableHeapSampler();
|
|
#endif
|
|
heap_sampler_.SetHeapID(heap_id);
|
|
VLOG(heap) << "Java Heap Profiler Initialized";
|
|
}
|
|
|
|
// Check if the Java Heap Profiler is enabled and initialized.
|
|
int Heap::CheckPerfettoJHPEnabled() {
|
|
return GetHeapSampler().IsEnabled();
|
|
}
|
|
|
|
void Heap::JHPCheckNonTlabSampleAllocation(Thread* self, mirror::Object* obj, size_t alloc_size) {
|
|
bool take_sample = false;
|
|
size_t bytes_until_sample = 0;
|
|
HeapSampler& prof_heap_sampler = GetHeapSampler();
|
|
if (obj != nullptr && prof_heap_sampler.IsEnabled()) {
|
|
// An allocation occurred, sample it, even if non-Tlab.
|
|
// In case take_sample is already set from the previous GetSampleOffset
|
|
// because we tried the Tlab allocation first, we will not use this value.
|
|
// A new value is generated below. Also bytes_until_sample will be updated.
|
|
// Note that we are not using the return value from the GetSampleOffset in
|
|
// the NonTlab case here.
|
|
prof_heap_sampler.GetSampleOffset(alloc_size,
|
|
self->GetTlabPosOffset(),
|
|
&take_sample,
|
|
&bytes_until_sample);
|
|
prof_heap_sampler.SetBytesUntilSample(bytes_until_sample);
|
|
if (take_sample) {
|
|
prof_heap_sampler.ReportSample(obj, alloc_size);
|
|
}
|
|
VLOG(heap) << "JHP:NonTlab Non-moving or Large Allocation";
|
|
}
|
|
}
|
|
|
|
size_t Heap::JHPCalculateNextTlabSize(Thread* self,
|
|
size_t jhp_def_tlab_size,
|
|
size_t alloc_size,
|
|
bool* take_sample,
|
|
size_t* bytes_until_sample) {
|
|
size_t next_tlab_size = jhp_def_tlab_size;
|
|
if (CheckPerfettoJHPEnabled()) {
|
|
size_t next_sample_point =
|
|
GetHeapSampler().GetSampleOffset(alloc_size,
|
|
self->GetTlabPosOffset(),
|
|
take_sample,
|
|
bytes_until_sample);
|
|
next_tlab_size = std::min(next_sample_point, jhp_def_tlab_size);
|
|
}
|
|
return next_tlab_size;
|
|
}
|
|
|
|
void Heap::AdjustSampleOffset(size_t adjustment) {
|
|
GetHeapSampler().AdjustSampleOffset(adjustment);
|
|
}
|
|
|
|
void Heap::CheckGcStressMode(Thread* self, ObjPtr<mirror::Object>* obj) {
|
|
DCHECK(gc_stress_mode_);
|
|
auto* const runtime = Runtime::Current();
|
|
if (runtime->GetClassLinker()->IsInitialized() && !runtime->IsActiveTransaction()) {
|
|
// Check if we should GC.
|
|
bool new_backtrace = false;
|
|
{
|
|
static constexpr size_t kMaxFrames = 16u;
|
|
MutexLock mu(self, *backtrace_lock_);
|
|
FixedSizeBacktrace<kMaxFrames> backtrace;
|
|
backtrace.Collect(/* skip_count= */ 2);
|
|
uint64_t hash = backtrace.Hash();
|
|
new_backtrace = seen_backtraces_.find(hash) == seen_backtraces_.end();
|
|
if (new_backtrace) {
|
|
seen_backtraces_.insert(hash);
|
|
}
|
|
}
|
|
if (new_backtrace) {
|
|
StackHandleScope<1> hs(self);
|
|
auto h = hs.NewHandleWrapper(obj);
|
|
CollectGarbage(/* clear_soft_references= */ false);
|
|
unique_backtrace_count_.fetch_add(1);
|
|
} else {
|
|
seen_backtrace_count_.fetch_add(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Heap::DisableGCForShutdown() {
|
|
Thread* const self = Thread::Current();
|
|
CHECK(Runtime::Current()->IsShuttingDown(self));
|
|
MutexLock mu(self, *gc_complete_lock_);
|
|
gc_disabled_for_shutdown_ = true;
|
|
}
|
|
|
|
bool Heap::ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const {
|
|
DCHECK_EQ(IsBootImageAddress(obj.Ptr()),
|
|
any_of(boot_image_spaces_.begin(),
|
|
boot_image_spaces_.end(),
|
|
[obj](gc::space::ImageSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
return space->HasAddress(obj.Ptr());
|
|
}));
|
|
return IsBootImageAddress(obj.Ptr());
|
|
}
|
|
|
|
bool Heap::IsInBootImageOatFile(const void* p) const {
|
|
DCHECK_EQ(IsBootImageAddress(p),
|
|
any_of(boot_image_spaces_.begin(),
|
|
boot_image_spaces_.end(),
|
|
[p](gc::space::ImageSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
return space->GetOatFile()->Contains(p);
|
|
}));
|
|
return IsBootImageAddress(p);
|
|
}
|
|
|
|
void Heap::SetAllocationListener(AllocationListener* l) {
|
|
AllocationListener* old = GetAndOverwriteAllocationListener(&alloc_listener_, l);
|
|
|
|
if (old == nullptr) {
|
|
Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
|
|
}
|
|
}
|
|
|
|
void Heap::RemoveAllocationListener() {
|
|
AllocationListener* old = GetAndOverwriteAllocationListener(&alloc_listener_, nullptr);
|
|
|
|
if (old != nullptr) {
|
|
Runtime::Current()->GetInstrumentation()->UninstrumentQuickAllocEntryPoints();
|
|
}
|
|
}
|
|
|
|
void Heap::SetGcPauseListener(GcPauseListener* l) {
|
|
gc_pause_listener_.store(l, std::memory_order_relaxed);
|
|
}
|
|
|
|
void Heap::RemoveGcPauseListener() {
|
|
gc_pause_listener_.store(nullptr, std::memory_order_relaxed);
|
|
}
|
|
|
|
mirror::Object* Heap::AllocWithNewTLAB(Thread* self,
|
|
AllocatorType allocator_type,
|
|
size_t alloc_size,
|
|
bool grow,
|
|
size_t* bytes_allocated,
|
|
size_t* usable_size,
|
|
size_t* bytes_tl_bulk_allocated) {
|
|
mirror::Object* ret = nullptr;
|
|
bool take_sample = false;
|
|
size_t bytes_until_sample = 0;
|
|
|
|
if (kUsePartialTlabs && alloc_size <= self->TlabRemainingCapacity()) {
|
|
DCHECK_GT(alloc_size, self->TlabSize());
|
|
// There is enough space if we grow the TLAB. Lets do that. This increases the
|
|
// TLAB bytes.
|
|
const size_t min_expand_size = alloc_size - self->TlabSize();
|
|
size_t next_tlab_size = JHPCalculateNextTlabSize(self,
|
|
kPartialTlabSize,
|
|
alloc_size,
|
|
&take_sample,
|
|
&bytes_until_sample);
|
|
const size_t expand_bytes = std::max(
|
|
min_expand_size,
|
|
std::min(self->TlabRemainingCapacity() - self->TlabSize(), next_tlab_size));
|
|
if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, expand_bytes, grow))) {
|
|
return nullptr;
|
|
}
|
|
*bytes_tl_bulk_allocated = expand_bytes;
|
|
self->ExpandTlab(expand_bytes);
|
|
DCHECK_LE(alloc_size, self->TlabSize());
|
|
} else if (allocator_type == kAllocatorTypeTLAB) {
|
|
DCHECK(bump_pointer_space_ != nullptr);
|
|
size_t next_tlab_size = JHPCalculateNextTlabSize(self,
|
|
kDefaultTLABSize,
|
|
alloc_size,
|
|
&take_sample,
|
|
&bytes_until_sample);
|
|
const size_t new_tlab_size = alloc_size + next_tlab_size;
|
|
if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, new_tlab_size, grow))) {
|
|
return nullptr;
|
|
}
|
|
// Try allocating a new thread local buffer, if the allocation fails the space must be
|
|
// full so return null.
|
|
if (!bump_pointer_space_->AllocNewTlab(self, new_tlab_size)) {
|
|
return nullptr;
|
|
}
|
|
*bytes_tl_bulk_allocated = new_tlab_size;
|
|
if (CheckPerfettoJHPEnabled()) {
|
|
VLOG(heap) << "JHP:kAllocatorTypeTLAB, New Tlab bytes allocated= " << new_tlab_size;
|
|
}
|
|
} else {
|
|
DCHECK(allocator_type == kAllocatorTypeRegionTLAB);
|
|
DCHECK(region_space_ != nullptr);
|
|
if (space::RegionSpace::kRegionSize >= alloc_size) {
|
|
// Non-large. Check OOME for a tlab.
|
|
if (LIKELY(!IsOutOfMemoryOnAllocation(allocator_type,
|
|
space::RegionSpace::kRegionSize,
|
|
grow))) {
|
|
size_t def_pr_tlab_size = kUsePartialTlabs
|
|
? kPartialTlabSize
|
|
: gc::space::RegionSpace::kRegionSize;
|
|
size_t next_pr_tlab_size = JHPCalculateNextTlabSize(self,
|
|
def_pr_tlab_size,
|
|
alloc_size,
|
|
&take_sample,
|
|
&bytes_until_sample);
|
|
const size_t new_tlab_size = kUsePartialTlabs
|
|
? std::max(alloc_size, next_pr_tlab_size)
|
|
: next_pr_tlab_size;
|
|
// Try to allocate a tlab.
|
|
if (!region_space_->AllocNewTlab(self, new_tlab_size, bytes_tl_bulk_allocated)) {
|
|
// Failed to allocate a tlab. Try non-tlab.
|
|
ret = region_space_->AllocNonvirtual<false>(alloc_size,
|
|
bytes_allocated,
|
|
usable_size,
|
|
bytes_tl_bulk_allocated);
|
|
JHPCheckNonTlabSampleAllocation(self, ret, alloc_size);
|
|
return ret;
|
|
}
|
|
// Fall-through to using the TLAB below.
|
|
} else {
|
|
// Check OOME for a non-tlab allocation.
|
|
if (!IsOutOfMemoryOnAllocation(allocator_type, alloc_size, grow)) {
|
|
ret = region_space_->AllocNonvirtual<false>(alloc_size,
|
|
bytes_allocated,
|
|
usable_size,
|
|
bytes_tl_bulk_allocated);
|
|
JHPCheckNonTlabSampleAllocation(self, ret, alloc_size);
|
|
return ret;
|
|
}
|
|
// Neither tlab or non-tlab works. Give up.
|
|
return nullptr;
|
|
}
|
|
} else {
|
|
// Large. Check OOME.
|
|
if (LIKELY(!IsOutOfMemoryOnAllocation(allocator_type, alloc_size, grow))) {
|
|
ret = region_space_->AllocNonvirtual<false>(alloc_size,
|
|
bytes_allocated,
|
|
usable_size,
|
|
bytes_tl_bulk_allocated);
|
|
JHPCheckNonTlabSampleAllocation(self, ret, alloc_size);
|
|
return ret;
|
|
}
|
|
return nullptr;
|
|
}
|
|
}
|
|
// Refilled TLAB, return.
|
|
ret = self->AllocTlab(alloc_size);
|
|
DCHECK(ret != nullptr);
|
|
*bytes_allocated = alloc_size;
|
|
*usable_size = alloc_size;
|
|
|
|
// JavaHeapProfiler: Send the thread information about this allocation in case a sample is
|
|
// requested.
|
|
// This is the fallthrough from both the if and else if above cases => Cases that use TLAB.
|
|
if (CheckPerfettoJHPEnabled()) {
|
|
if (take_sample) {
|
|
GetHeapSampler().ReportSample(ret, alloc_size);
|
|
// Update the bytes_until_sample now that the allocation is already done.
|
|
GetHeapSampler().SetBytesUntilSample(bytes_until_sample);
|
|
}
|
|
VLOG(heap) << "JHP:Fallthrough Tlab allocation";
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
const Verification* Heap::GetVerification() const {
|
|
return verification_.get();
|
|
}
|
|
|
|
void Heap::VlogHeapGrowth(size_t old_footprint, size_t new_footprint, size_t alloc_size) {
|
|
VLOG(heap) << "Growing heap from " << PrettySize(old_footprint) << " to "
|
|
<< PrettySize(new_footprint) << " for a " << PrettySize(alloc_size) << " allocation";
|
|
}
|
|
|
|
class Heap::TriggerPostForkCCGcTask : public HeapTask {
|
|
public:
|
|
explicit TriggerPostForkCCGcTask(uint64_t target_time) : HeapTask(target_time) {}
|
|
void Run(Thread* self) override {
|
|
gc::Heap* heap = Runtime::Current()->GetHeap();
|
|
// Trigger a GC, if not already done. The first GC after fork, whenever it
|
|
// takes place, will adjust the thresholds to normal levels.
|
|
if (heap->target_footprint_.load(std::memory_order_relaxed) == heap->growth_limit_) {
|
|
heap->RequestConcurrentGC(self, kGcCauseBackground, false, heap->GetCurrentGcNum());
|
|
}
|
|
}
|
|
};
|
|
|
|
void Heap::PostForkChildAction(Thread* self) {
|
|
// Temporarily increase target_footprint_ and concurrent_start_bytes_ to
|
|
// max values to avoid GC during app launch.
|
|
if (collector_type_ == kCollectorTypeCC && !IsLowMemoryMode()) {
|
|
// Set target_footprint_ to the largest allowed value.
|
|
SetIdealFootprint(growth_limit_);
|
|
// Set concurrent_start_bytes_ to half of the heap size.
|
|
size_t target_footprint = target_footprint_.load(std::memory_order_relaxed);
|
|
concurrent_start_bytes_ = std::max(target_footprint / 2, GetBytesAllocated());
|
|
|
|
GetTaskProcessor()->AddTask(
|
|
self, new TriggerPostForkCCGcTask(NanoTime() + MsToNs(kPostForkMaxHeapDurationMS)));
|
|
}
|
|
}
|
|
|
|
void Heap::VisitReflectiveTargets(ReflectiveValueVisitor *visit) {
|
|
VisitObjectsPaused([&visit](mirror::Object* ref) NO_THREAD_SAFETY_ANALYSIS {
|
|
art::ObjPtr<mirror::Class> klass(ref->GetClass());
|
|
// All these classes are in the BootstrapClassLoader.
|
|
if (!klass->IsBootStrapClassLoaded()) {
|
|
return;
|
|
}
|
|
if (GetClassRoot<mirror::Method>()->IsAssignableFrom(klass) ||
|
|
GetClassRoot<mirror::Constructor>()->IsAssignableFrom(klass)) {
|
|
down_cast<mirror::Executable*>(ref)->VisitTarget(visit);
|
|
} else if (art::GetClassRoot<art::mirror::Field>() == klass) {
|
|
down_cast<mirror::Field*>(ref)->VisitTarget(visit);
|
|
} else if (art::GetClassRoot<art::mirror::MethodHandle>()->IsAssignableFrom(klass)) {
|
|
down_cast<mirror::MethodHandle*>(ref)->VisitTarget(visit);
|
|
} else if (art::GetClassRoot<art::mirror::FieldVarHandle>()->IsAssignableFrom(klass)) {
|
|
down_cast<mirror::FieldVarHandle*>(ref)->VisitTarget(visit);
|
|
} else if (art::GetClassRoot<art::mirror::DexCache>()->IsAssignableFrom(klass)) {
|
|
down_cast<mirror::DexCache*>(ref)->VisitReflectiveTargets(visit);
|
|
}
|
|
});
|
|
}
|
|
|
|
bool Heap::AddHeapTask(gc::HeapTask* task) {
|
|
Thread* const self = Thread::Current();
|
|
if (!CanAddHeapTask(self)) {
|
|
return false;
|
|
}
|
|
GetTaskProcessor()->AddTask(self, task);
|
|
return true;
|
|
}
|
|
|
|
} // namespace gc
|
|
} // namespace art
|