You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
394 lines
16 KiB
394 lines
16 KiB
/*
|
|
* Copyright (C) 2011 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
|
|
#define ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
|
|
|
|
#include <stdint.h>
|
|
#include <memory>
|
|
|
|
#include "common_runtime_test.h"
|
|
#include "handle_scope-inl.h"
|
|
#include "mirror/array-inl.h"
|
|
#include "mirror/class-inl.h"
|
|
#include "mirror/class_loader.h"
|
|
#include "mirror/object-inl.h"
|
|
#include "runtime_globals.h"
|
|
#include "scoped_thread_state_change-inl.h"
|
|
#include "thread_list.h"
|
|
#include "zygote_space.h"
|
|
|
|
namespace art {
|
|
namespace gc {
|
|
namespace space {
|
|
|
|
template <class Super>
|
|
class SpaceTest : public Super {
|
|
public:
|
|
jobject byte_array_class_ = nullptr;
|
|
|
|
void AddSpace(ContinuousSpace* space, bool revoke = true) {
|
|
Heap* heap = Runtime::Current()->GetHeap();
|
|
if (revoke) {
|
|
heap->RevokeAllThreadLocalBuffers();
|
|
}
|
|
{
|
|
ScopedThreadStateChange sts(Thread::Current(), kSuspended);
|
|
ScopedSuspendAll ssa("Add image space");
|
|
heap->AddSpace(space);
|
|
}
|
|
heap->SetSpaceAsDefault(space);
|
|
}
|
|
|
|
ObjPtr<mirror::Class> GetByteArrayClass(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
if (byte_array_class_ == nullptr) {
|
|
ObjPtr<mirror::Class> byte_array_class =
|
|
Runtime::Current()->GetClassLinker()->FindSystemClass(self, "[B");
|
|
EXPECT_TRUE(byte_array_class != nullptr);
|
|
byte_array_class_ = self->GetJniEnv()->NewLocalRef(byte_array_class.Ptr());
|
|
EXPECT_TRUE(byte_array_class_ != nullptr);
|
|
}
|
|
return self->DecodeJObject(byte_array_class_)->AsClass();
|
|
}
|
|
|
|
mirror::Object* Alloc(space::MallocSpace* alloc_space,
|
|
Thread* self,
|
|
size_t bytes,
|
|
size_t* bytes_allocated,
|
|
size_t* usable_size,
|
|
size_t* bytes_tl_bulk_allocated)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
StackHandleScope<1> hs(self);
|
|
Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self)));
|
|
mirror::Object* obj = alloc_space->Alloc(self,
|
|
bytes,
|
|
bytes_allocated,
|
|
usable_size,
|
|
bytes_tl_bulk_allocated);
|
|
if (obj != nullptr) {
|
|
InstallClass(obj, byte_array_class.Get(), bytes);
|
|
}
|
|
return obj;
|
|
}
|
|
|
|
mirror::Object* AllocWithGrowth(space::MallocSpace* alloc_space,
|
|
Thread* self,
|
|
size_t bytes,
|
|
size_t* bytes_allocated,
|
|
size_t* usable_size,
|
|
size_t* bytes_tl_bulk_allocated)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
StackHandleScope<1> hs(self);
|
|
Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self)));
|
|
mirror::Object* obj = alloc_space->AllocWithGrowth(self, bytes, bytes_allocated, usable_size,
|
|
bytes_tl_bulk_allocated);
|
|
if (obj != nullptr) {
|
|
InstallClass(obj, byte_array_class.Get(), bytes);
|
|
}
|
|
return obj;
|
|
}
|
|
|
|
void InstallClass(mirror::Object* o, mirror::Class* byte_array_class, size_t size)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
// Note the minimum size, which is the size of a zero-length byte array.
|
|
EXPECT_GE(size, SizeOfZeroLengthByteArray());
|
|
EXPECT_TRUE(byte_array_class != nullptr);
|
|
o->SetClass(byte_array_class);
|
|
if (kUseBakerReadBarrier) {
|
|
// Like the proper heap object allocation, install and verify
|
|
// the correct read barrier state.
|
|
o->AssertReadBarrierState();
|
|
}
|
|
ObjPtr<mirror::Array> arr = o->AsArray<kVerifyNone>();
|
|
size_t header_size = SizeOfZeroLengthByteArray();
|
|
int32_t length = size - header_size;
|
|
arr->SetLength(length);
|
|
EXPECT_EQ(arr->SizeOf<kVerifyNone>(), size);
|
|
}
|
|
|
|
static size_t SizeOfZeroLengthByteArray() {
|
|
return mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimByte)).Uint32Value();
|
|
}
|
|
|
|
typedef MallocSpace* (*CreateSpaceFn)(const std::string& name,
|
|
size_t initial_size,
|
|
size_t growth_limit,
|
|
size_t capacity);
|
|
|
|
void SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size,
|
|
int round, size_t growth_limit);
|
|
void SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space);
|
|
};
|
|
|
|
static inline size_t test_rand(size_t* seed) {
|
|
*seed = *seed * 1103515245 + 12345;
|
|
return *seed;
|
|
}
|
|
|
|
template <class Super>
|
|
void SpaceTest<Super>::SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space,
|
|
intptr_t object_size,
|
|
int round,
|
|
size_t growth_limit) {
|
|
if (((object_size > 0 && object_size >= static_cast<intptr_t>(growth_limit))) ||
|
|
((object_size < 0 && -object_size >= static_cast<intptr_t>(growth_limit)))) {
|
|
// No allocation can succeed
|
|
return;
|
|
}
|
|
|
|
// The space's footprint equals amount of resources requested from system
|
|
size_t footprint = space->GetFootprint();
|
|
|
|
// The space must at least have its book keeping allocated
|
|
EXPECT_GT(footprint, 0u);
|
|
|
|
// But it shouldn't exceed the initial size
|
|
EXPECT_LE(footprint, growth_limit);
|
|
|
|
// space's size shouldn't exceed the initial size
|
|
EXPECT_LE(space->Size(), growth_limit);
|
|
|
|
// this invariant should always hold or else the space has grown to be larger than what the
|
|
// space believes its size is (which will break invariants)
|
|
EXPECT_GE(space->Size(), footprint);
|
|
|
|
// Fill the space with lots of small objects up to the growth limit
|
|
size_t max_objects = (growth_limit / (object_size > 0 ? object_size : 8)) + 1;
|
|
std::unique_ptr<mirror::Object*[]> lots_of_objects(new mirror::Object*[max_objects]);
|
|
size_t last_object = 0; // last object for which allocation succeeded
|
|
size_t amount_allocated = 0; // amount of space allocated
|
|
Thread* self = Thread::Current();
|
|
ScopedObjectAccess soa(self);
|
|
size_t rand_seed = 123456789;
|
|
for (size_t i = 0; i < max_objects; i++) {
|
|
size_t alloc_fails = 0; // number of failed allocations
|
|
size_t max_fails = 30; // number of times we fail allocation before giving up
|
|
for (; alloc_fails < max_fails; alloc_fails++) {
|
|
size_t alloc_size;
|
|
if (object_size > 0) {
|
|
alloc_size = object_size;
|
|
} else {
|
|
alloc_size = test_rand(&rand_seed) % static_cast<size_t>(-object_size);
|
|
// Note the minimum size, which is the size of a zero-length byte array.
|
|
size_t size_of_zero_length_byte_array = SizeOfZeroLengthByteArray();
|
|
if (alloc_size < size_of_zero_length_byte_array) {
|
|
alloc_size = size_of_zero_length_byte_array;
|
|
}
|
|
}
|
|
StackHandleScope<1> hs(soa.Self());
|
|
auto object(hs.NewHandle<mirror::Object>(nullptr));
|
|
size_t bytes_allocated = 0;
|
|
size_t bytes_tl_bulk_allocated;
|
|
if (round <= 1) {
|
|
object.Assign(Alloc(space, self, alloc_size, &bytes_allocated, nullptr,
|
|
&bytes_tl_bulk_allocated));
|
|
} else {
|
|
object.Assign(AllocWithGrowth(space, self, alloc_size, &bytes_allocated, nullptr,
|
|
&bytes_tl_bulk_allocated));
|
|
}
|
|
footprint = space->GetFootprint();
|
|
EXPECT_GE(space->Size(), footprint); // invariant
|
|
if (object != nullptr) { // allocation succeeded
|
|
lots_of_objects[i] = object.Get();
|
|
size_t allocation_size = space->AllocationSize(object.Get(), nullptr);
|
|
EXPECT_EQ(bytes_allocated, allocation_size);
|
|
if (object_size > 0) {
|
|
EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
|
|
} else {
|
|
EXPECT_GE(allocation_size, 8u);
|
|
}
|
|
EXPECT_TRUE(bytes_tl_bulk_allocated == 0 ||
|
|
bytes_tl_bulk_allocated >= allocation_size);
|
|
amount_allocated += allocation_size;
|
|
break;
|
|
}
|
|
}
|
|
if (alloc_fails == max_fails) {
|
|
last_object = i;
|
|
break;
|
|
}
|
|
}
|
|
CHECK_NE(last_object, 0u); // we should have filled the space
|
|
EXPECT_GT(amount_allocated, 0u);
|
|
|
|
// We shouldn't have gone past the growth_limit
|
|
EXPECT_LE(amount_allocated, growth_limit);
|
|
EXPECT_LE(footprint, growth_limit);
|
|
EXPECT_LE(space->Size(), growth_limit);
|
|
|
|
// footprint and size should agree with amount allocated
|
|
EXPECT_GE(footprint, amount_allocated);
|
|
EXPECT_GE(space->Size(), amount_allocated);
|
|
|
|
// Release storage in a semi-adhoc manner
|
|
size_t free_increment = 96;
|
|
while (true) {
|
|
{
|
|
ScopedThreadStateChange tsc(self, kNative);
|
|
// Give the space a haircut.
|
|
space->Trim();
|
|
}
|
|
|
|
// Bounds consistency check.
|
|
footprint = space->GetFootprint();
|
|
EXPECT_LE(amount_allocated, growth_limit);
|
|
EXPECT_GE(footprint, amount_allocated);
|
|
EXPECT_LE(footprint, growth_limit);
|
|
EXPECT_GE(space->Size(), amount_allocated);
|
|
EXPECT_LE(space->Size(), growth_limit);
|
|
|
|
if (free_increment == 0) {
|
|
break;
|
|
}
|
|
|
|
// Free some objects
|
|
for (size_t i = 0; i < last_object; i += free_increment) {
|
|
mirror::Object* object = lots_of_objects.get()[i];
|
|
if (object == nullptr) {
|
|
continue;
|
|
}
|
|
size_t allocation_size = space->AllocationSize(object, nullptr);
|
|
if (object_size > 0) {
|
|
EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
|
|
} else {
|
|
EXPECT_GE(allocation_size, 8u);
|
|
}
|
|
space->Free(self, object);
|
|
lots_of_objects.get()[i] = nullptr;
|
|
amount_allocated -= allocation_size;
|
|
footprint = space->GetFootprint();
|
|
EXPECT_GE(space->Size(), footprint); // invariant
|
|
}
|
|
|
|
free_increment >>= 1;
|
|
}
|
|
|
|
// The space has become empty here before allocating a large object
|
|
// below. For RosAlloc, revoke thread-local runs, which are kept
|
|
// even when empty for a performance reason, so that they won't
|
|
// cause the following large object allocation to fail due to
|
|
// potential fragmentation. Note they are normally revoked at each
|
|
// GC (but no GC here.)
|
|
space->RevokeAllThreadLocalBuffers();
|
|
|
|
// All memory was released, try a large allocation to check freed memory is being coalesced
|
|
StackHandleScope<1> hs(soa.Self());
|
|
auto large_object(hs.NewHandle<mirror::Object>(nullptr));
|
|
size_t three_quarters_space = (growth_limit / 2) + (growth_limit / 4);
|
|
size_t bytes_allocated = 0;
|
|
size_t bytes_tl_bulk_allocated;
|
|
if (round <= 1) {
|
|
large_object.Assign(Alloc(space, self, three_quarters_space, &bytes_allocated, nullptr,
|
|
&bytes_tl_bulk_allocated));
|
|
} else {
|
|
large_object.Assign(AllocWithGrowth(space, self, three_quarters_space, &bytes_allocated,
|
|
nullptr, &bytes_tl_bulk_allocated));
|
|
}
|
|
EXPECT_TRUE(large_object != nullptr);
|
|
|
|
// Consistency check of the footprint.
|
|
footprint = space->GetFootprint();
|
|
EXPECT_LE(footprint, growth_limit);
|
|
EXPECT_GE(space->Size(), footprint);
|
|
EXPECT_LE(space->Size(), growth_limit);
|
|
|
|
// Clean up.
|
|
space->Free(self, large_object.Assign(nullptr));
|
|
|
|
// Consistency check of the footprint.
|
|
footprint = space->GetFootprint();
|
|
EXPECT_LE(footprint, growth_limit);
|
|
EXPECT_GE(space->Size(), footprint);
|
|
EXPECT_LE(space->Size(), growth_limit);
|
|
}
|
|
|
|
template <class Super>
|
|
void SpaceTest<Super>::SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size,
|
|
CreateSpaceFn create_space) {
|
|
if (object_size < SizeOfZeroLengthByteArray()) {
|
|
// Too small for the object layout/model.
|
|
return;
|
|
}
|
|
size_t initial_size = 4 * MB;
|
|
size_t growth_limit = 8 * MB;
|
|
size_t capacity = 16 * MB;
|
|
MallocSpace* space(create_space("test", initial_size, growth_limit, capacity));
|
|
ASSERT_TRUE(space != nullptr);
|
|
|
|
// Basic consistency check.
|
|
EXPECT_EQ(space->Capacity(), growth_limit);
|
|
EXPECT_EQ(space->NonGrowthLimitCapacity(), capacity);
|
|
|
|
// Make space findable to the heap, will also delete space when runtime is cleaned up
|
|
AddSpace(space);
|
|
|
|
// In this round we don't allocate with growth and therefore can't grow past the initial size.
|
|
// This effectively makes the growth_limit the initial_size, so assert this.
|
|
SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 1, initial_size);
|
|
SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 2, growth_limit);
|
|
// Remove growth limit
|
|
space->ClearGrowthLimit();
|
|
EXPECT_EQ(space->Capacity(), capacity);
|
|
SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 3, capacity);
|
|
}
|
|
|
|
#define TEST_SizeFootPrintGrowthLimitAndTrimStatic(name, spaceName, spaceFn, size) \
|
|
TEST_F(spaceName##StaticTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_##name) { \
|
|
SizeFootPrintGrowthLimitAndTrimDriver(size, spaceFn); \
|
|
}
|
|
|
|
#define TEST_SizeFootPrintGrowthLimitAndTrimRandom(name, spaceName, spaceFn, size) \
|
|
TEST_F(spaceName##RandomTest, SizeFootPrintGrowthLimitAndTrim_RandomAllocationsWithMax_##name) { \
|
|
SizeFootPrintGrowthLimitAndTrimDriver(-(size), spaceFn); \
|
|
}
|
|
|
|
#define TEST_SPACE_CREATE_FN_STATIC(spaceName, spaceFn) \
|
|
class spaceName##StaticTest : public SpaceTest<CommonRuntimeTest> { \
|
|
}; \
|
|
\
|
|
TEST_SizeFootPrintGrowthLimitAndTrimStatic(12B, spaceName, spaceFn, 12) \
|
|
TEST_SizeFootPrintGrowthLimitAndTrimStatic(16B, spaceName, spaceFn, 16) \
|
|
TEST_SizeFootPrintGrowthLimitAndTrimStatic(24B, spaceName, spaceFn, 24) \
|
|
TEST_SizeFootPrintGrowthLimitAndTrimStatic(32B, spaceName, spaceFn, 32) \
|
|
TEST_SizeFootPrintGrowthLimitAndTrimStatic(64B, spaceName, spaceFn, 64) \
|
|
TEST_SizeFootPrintGrowthLimitAndTrimStatic(128B, spaceName, spaceFn, 128) \
|
|
TEST_SizeFootPrintGrowthLimitAndTrimStatic(1KB, spaceName, spaceFn, 1 * KB) \
|
|
TEST_SizeFootPrintGrowthLimitAndTrimStatic(4KB, spaceName, spaceFn, 4 * KB) \
|
|
TEST_SizeFootPrintGrowthLimitAndTrimStatic(1MB, spaceName, spaceFn, 1 * MB) \
|
|
TEST_SizeFootPrintGrowthLimitAndTrimStatic(4MB, spaceName, spaceFn, 4 * MB) \
|
|
TEST_SizeFootPrintGrowthLimitAndTrimStatic(8MB, spaceName, spaceFn, 8 * MB)
|
|
|
|
#define TEST_SPACE_CREATE_FN_RANDOM(spaceName, spaceFn) \
|
|
class spaceName##RandomTest : public SpaceTest<CommonRuntimeTest> { \
|
|
}; \
|
|
\
|
|
TEST_SizeFootPrintGrowthLimitAndTrimRandom(16B, spaceName, spaceFn, 16) \
|
|
TEST_SizeFootPrintGrowthLimitAndTrimRandom(24B, spaceName, spaceFn, 24) \
|
|
TEST_SizeFootPrintGrowthLimitAndTrimRandom(32B, spaceName, spaceFn, 32) \
|
|
TEST_SizeFootPrintGrowthLimitAndTrimRandom(64B, spaceName, spaceFn, 64) \
|
|
TEST_SizeFootPrintGrowthLimitAndTrimRandom(128B, spaceName, spaceFn, 128) \
|
|
TEST_SizeFootPrintGrowthLimitAndTrimRandom(1KB, spaceName, spaceFn, 1 * KB) \
|
|
TEST_SizeFootPrintGrowthLimitAndTrimRandom(4KB, spaceName, spaceFn, 4 * KB) \
|
|
TEST_SizeFootPrintGrowthLimitAndTrimRandom(1MB, spaceName, spaceFn, 1 * MB) \
|
|
TEST_SizeFootPrintGrowthLimitAndTrimRandom(4MB, spaceName, spaceFn, 4 * MB) \
|
|
TEST_SizeFootPrintGrowthLimitAndTrimRandom(8MB, spaceName, spaceFn, 8 * MB)
|
|
|
|
} // namespace space
|
|
} // namespace gc
|
|
} // namespace art
|
|
|
|
#endif // ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
|