You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

639 lines
21 KiB

/*
* Copyright (C) 2015 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <errno.h>
#include <inttypes.h>
#include <signal.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>
#include <mutex>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include <android-base/stringprintf.h>
#include <android-base/thread_annotations.h>
#include <platform/bionic/macros.h>
#include "Config.h"
#include "DebugData.h"
#include "PointerData.h"
#include "backtrace.h"
#include "debug_log.h"
#include "malloc_debug.h"
#include "UnwindBacktrace.h"
extern "C" char* __cxa_demangle(const char*, char*, size_t*, int*);
std::atomic_uint8_t PointerData::backtrace_enabled_;
std::atomic_bool PointerData::backtrace_dump_;
std::mutex PointerData::pointer_mutex_;
std::unordered_map<uintptr_t, PointerInfoType> PointerData::pointers_ GUARDED_BY(
PointerData::pointer_mutex_);
std::mutex PointerData::frame_mutex_;
std::unordered_map<FrameKeyType, size_t> PointerData::key_to_index_ GUARDED_BY(
PointerData::frame_mutex_);
std::unordered_map<size_t, FrameInfoType> PointerData::frames_ GUARDED_BY(PointerData::frame_mutex_);
std::unordered_map<size_t, std::vector<unwindstack::LocalFrameData>> PointerData::backtraces_info_ GUARDED_BY(PointerData::frame_mutex_);
constexpr size_t kBacktraceEmptyIndex = 1;
size_t PointerData::cur_hash_index_ GUARDED_BY(PointerData::frame_mutex_);
std::mutex PointerData::free_pointer_mutex_;
std::deque<FreePointerInfoType> PointerData::free_pointers_ GUARDED_BY(
PointerData::free_pointer_mutex_);
// Buffer to use for comparison.
static constexpr size_t kCompareBufferSize = 512 * 1024;
static std::vector<uint8_t> g_cmp_mem(0);
static void ToggleBacktraceEnable(int, siginfo_t*, void*) {
g_debug->pointer->ToggleBacktraceEnabled();
}
static void EnableDump(int, siginfo_t*, void*) {
g_debug->pointer->EnableDumping();
}
PointerData::PointerData(DebugData* debug_data) : OptionData(debug_data) {}
bool PointerData::Initialize(const Config& config) NO_THREAD_SAFETY_ANALYSIS {
pointers_.clear();
key_to_index_.clear();
frames_.clear();
free_pointers_.clear();
// A hash index of kBacktraceEmptyIndex indicates that we tried to get
// a backtrace, but there was nothing recorded.
cur_hash_index_ = kBacktraceEmptyIndex + 1;
backtrace_enabled_ = config.backtrace_enabled();
if (config.backtrace_enable_on_signal()) {
struct sigaction64 enable_act = {};
enable_act.sa_sigaction = ToggleBacktraceEnable;
enable_act.sa_flags = SA_RESTART | SA_SIGINFO | SA_ONSTACK;
if (sigaction64(config.backtrace_signal(), &enable_act, nullptr) != 0) {
error_log("Unable to set up backtrace signal enable function: %s", strerror(errno));
return false;
}
if (config.options() & VERBOSE) {
info_log("%s: Run: 'kill -%d %d' to enable backtracing.", getprogname(),
config.backtrace_signal(), getpid());
}
}
if (config.options() & BACKTRACE) {
struct sigaction64 act = {};
act.sa_sigaction = EnableDump;
act.sa_flags = SA_RESTART | SA_SIGINFO | SA_ONSTACK;
if (sigaction64(config.backtrace_dump_signal(), &act, nullptr) != 0) {
error_log("Unable to set up backtrace dump signal function: %s", strerror(errno));
return false;
}
if (config.options() & VERBOSE) {
info_log("%s: Run: 'kill -%d %d' to dump the backtrace.", getprogname(),
config.backtrace_dump_signal(), getpid());
}
}
backtrace_dump_ = false;
if (config.options() & FREE_TRACK) {
g_cmp_mem.resize(kCompareBufferSize, config.fill_free_value());
}
return true;
}
size_t PointerData::AddBacktrace(size_t num_frames) {
std::vector<uintptr_t> frames;
std::vector<unwindstack::LocalFrameData> frames_info;
if (g_debug->config().options() & BACKTRACE_FULL) {
if (!Unwind(&frames, &frames_info, num_frames)) {
return kBacktraceEmptyIndex;
}
} else {
frames.resize(num_frames);
num_frames = backtrace_get(frames.data(), frames.size());
if (num_frames == 0) {
return kBacktraceEmptyIndex;
}
}
FrameKeyType key{.num_frames = num_frames, .frames = frames.data()};
size_t hash_index;
std::lock_guard<std::mutex> frame_guard(frame_mutex_);
auto entry = key_to_index_.find(key);
if (entry == key_to_index_.end()) {
frames.resize(num_frames);
hash_index = cur_hash_index_++;
key.frames = frames.data();
key_to_index_.emplace(key, hash_index);
frames_.emplace(hash_index, FrameInfoType{.references = 1, .frames = std::move(frames)});
if (g_debug->config().options() & BACKTRACE_FULL) {
backtraces_info_.emplace(hash_index, std::move(frames_info));
}
} else {
hash_index = entry->second;
FrameInfoType* frame_info = &frames_[hash_index];
frame_info->references++;
}
return hash_index;
}
void PointerData::RemoveBacktrace(size_t hash_index) {
if (hash_index <= kBacktraceEmptyIndex) {
return;
}
std::lock_guard<std::mutex> frame_guard(frame_mutex_);
auto frame_entry = frames_.find(hash_index);
if (frame_entry == frames_.end()) {
error_log("hash_index %zu does not have matching frame data.", hash_index);
return;
}
FrameInfoType* frame_info = &frame_entry->second;
if (--frame_info->references == 0) {
FrameKeyType key{.num_frames = frame_info->frames.size(), .frames = frame_info->frames.data()};
key_to_index_.erase(key);
frames_.erase(hash_index);
if (g_debug->config().options() & BACKTRACE_FULL) {
backtraces_info_.erase(hash_index);
}
}
}
void PointerData::Add(const void* ptr, size_t pointer_size) {
uintptr_t pointer = reinterpret_cast<uintptr_t>(ptr);
size_t hash_index = 0;
if (backtrace_enabled_) {
hash_index = AddBacktrace(g_debug->config().backtrace_frames());
}
std::lock_guard<std::mutex> pointer_guard(pointer_mutex_);
pointers_[pointer] = PointerInfoType{PointerInfoType::GetEncodedSize(pointer_size), hash_index};
}
void PointerData::Remove(const void* ptr) {
uintptr_t pointer = reinterpret_cast<uintptr_t>(ptr);
size_t hash_index;
{
std::lock_guard<std::mutex> pointer_guard(pointer_mutex_);
auto entry = pointers_.find(pointer);
if (entry == pointers_.end()) {
// Attempt to remove unknown pointer.
error_log("No tracked pointer found for 0x%" PRIxPTR, pointer);
return;
}
hash_index = entry->second.hash_index;
pointers_.erase(pointer);
}
RemoveBacktrace(hash_index);
}
size_t PointerData::GetFrames(const void* ptr, uintptr_t* frames, size_t max_frames) {
uintptr_t pointer = reinterpret_cast<uintptr_t>(ptr);
size_t hash_index;
{
std::lock_guard<std::mutex> pointer_guard(pointer_mutex_);
auto entry = pointers_.find(pointer);
if (entry == pointers_.end()) {
return 0;
}
hash_index = entry->second.hash_index;
}
if (hash_index <= kBacktraceEmptyIndex) {
return 0;
}
std::lock_guard<std::mutex> frame_guard(frame_mutex_);
auto frame_entry = frames_.find(hash_index);
if (frame_entry == frames_.end()) {
return 0;
}
FrameInfoType* frame_info = &frame_entry->second;
if (max_frames > frame_info->frames.size()) {
max_frames = frame_info->frames.size();
}
memcpy(frames, &frame_info->frames[0], max_frames * sizeof(uintptr_t));
return max_frames;
}
void PointerData::LogBacktrace(size_t hash_index) {
std::lock_guard<std::mutex> frame_guard(frame_mutex_);
if (g_debug->config().options() & BACKTRACE_FULL) {
auto backtrace_info_entry = backtraces_info_.find(hash_index);
if (backtrace_info_entry != backtraces_info_.end()) {
UnwindLog(backtrace_info_entry->second);
return;
}
} else {
auto frame_entry = frames_.find(hash_index);
if (frame_entry != frames_.end()) {
FrameInfoType* frame_info = &frame_entry->second;
backtrace_log(frame_info->frames.data(), frame_info->frames.size());
return;
}
}
error_log(" hash_index %zu does not have matching frame data.", hash_index);
}
void PointerData::LogFreeError(const FreePointerInfoType& info, size_t max_cmp_bytes) {
error_log(LOG_DIVIDER);
uint8_t* memory = reinterpret_cast<uint8_t*>(info.pointer);
error_log("+++ ALLOCATION %p USED AFTER FREE", memory);
uint8_t fill_free_value = g_debug->config().fill_free_value();
for (size_t i = 0; i < max_cmp_bytes; i++) {
if (memory[i] != fill_free_value) {
error_log(" allocation[%zu] = 0x%02x (expected 0x%02x)", i, memory[i], fill_free_value);
}
}
if (info.hash_index > kBacktraceEmptyIndex) {
error_log("Backtrace at time of free:");
LogBacktrace(info.hash_index);
}
error_log(LOG_DIVIDER);
if (g_debug->config().options() & ABORT_ON_ERROR) {
abort();
}
}
void PointerData::VerifyFreedPointer(const FreePointerInfoType& info) {
size_t usable_size;
if (g_debug->HeaderEnabled()) {
// Check to see if the tag data has been damaged.
Header* header = g_debug->GetHeader(reinterpret_cast<const void*>(info.pointer));
if (header->tag != DEBUG_FREE_TAG) {
error_log(LOG_DIVIDER);
error_log("+++ ALLOCATION 0x%" PRIxPTR " HAS CORRUPTED HEADER TAG 0x%x AFTER FREE",
info.pointer, header->tag);
error_log(LOG_DIVIDER);
if (g_debug->config().options() & ABORT_ON_ERROR) {
abort();
}
// Stop processing here, it is impossible to tell how the header
// may have been damaged.
return;
}
usable_size = header->usable_size;
} else {
usable_size = g_dispatch->malloc_usable_size(reinterpret_cast<const void*>(info.pointer));
}
size_t bytes = (usable_size < g_debug->config().fill_on_free_bytes())
? usable_size
: g_debug->config().fill_on_free_bytes();
size_t max_cmp_bytes = bytes;
const uint8_t* memory = reinterpret_cast<const uint8_t*>(info.pointer);
while (bytes > 0) {
size_t bytes_to_cmp = (bytes < g_cmp_mem.size()) ? bytes : g_cmp_mem.size();
if (memcmp(memory, g_cmp_mem.data(), bytes_to_cmp) != 0) {
LogFreeError(info, max_cmp_bytes);
}
bytes -= bytes_to_cmp;
memory = &memory[bytes_to_cmp];
}
}
void* PointerData::AddFreed(const void* ptr) {
uintptr_t pointer = reinterpret_cast<uintptr_t>(ptr);
size_t hash_index = 0;
size_t num_frames = g_debug->config().free_track_backtrace_num_frames();
if (num_frames) {
hash_index = AddBacktrace(num_frames);
}
void* last = nullptr;
std::lock_guard<std::mutex> freed_guard(free_pointer_mutex_);
if (free_pointers_.size() == g_debug->config().free_track_allocations()) {
FreePointerInfoType info(free_pointers_.front());
free_pointers_.pop_front();
VerifyFreedPointer(info);
RemoveBacktrace(info.hash_index);
last = reinterpret_cast<void*>(info.pointer);
}
free_pointers_.emplace_back(FreePointerInfoType{pointer, hash_index});
return last;
}
void PointerData::LogFreeBacktrace(const void* ptr) {
size_t hash_index = 0;
{
uintptr_t pointer = reinterpret_cast<uintptr_t>(ptr);
std::lock_guard<std::mutex> freed_guard(free_pointer_mutex_);
for (const auto& info : free_pointers_) {
if (info.pointer == pointer) {
hash_index = info.hash_index;
break;
}
}
}
if (hash_index <= kBacktraceEmptyIndex) {
return;
}
error_log("Backtrace of original free:");
LogBacktrace(hash_index);
}
void PointerData::VerifyAllFreed() {
std::lock_guard<std::mutex> freed_guard(free_pointer_mutex_);
for (auto& free_info : free_pointers_) {
VerifyFreedPointer(free_info);
}
}
void PointerData::GetList(std::vector<ListInfoType>* list, bool only_with_backtrace)
REQUIRES(pointer_mutex_, frame_mutex_) {
for (const auto& entry : pointers_) {
FrameInfoType* frame_info = nullptr;
std::vector<unwindstack::LocalFrameData>* backtrace_info = nullptr;
size_t hash_index = entry.second.hash_index;
if (hash_index > kBacktraceEmptyIndex) {
auto frame_entry = frames_.find(hash_index);
if (frame_entry == frames_.end()) {
// Somehow wound up with a pointer with a valid hash_index, but
// no frame data. This should not be possible since adding a pointer
// occurs after the hash_index and frame data have been added.
// When removing a pointer, the pointer is deleted before the frame
// data.
error_log("Pointer 0x%" PRIxPTR " hash_index %zu does not exist.", entry.first, hash_index);
} else {
frame_info = &frame_entry->second;
}
if (g_debug->config().options() & BACKTRACE_FULL) {
auto backtrace_entry = backtraces_info_.find(hash_index);
if (backtrace_entry == backtraces_info_.end()) {
error_log("Pointer 0x%" PRIxPTR " hash_index %zu does not exist.", entry.first, hash_index);
} else {
backtrace_info = &backtrace_entry->second;
}
}
}
if (hash_index == 0 && only_with_backtrace) {
continue;
}
list->emplace_back(ListInfoType{entry.first, 1, entry.second.RealSize(),
entry.second.ZygoteChildAlloc(), frame_info, backtrace_info});
}
// Sort by the size of the allocation.
std::sort(list->begin(), list->end(), [](const ListInfoType& a, const ListInfoType& b) {
// Put zygote child allocations first.
bool a_zygote_child_alloc = a.zygote_child_alloc;
bool b_zygote_child_alloc = b.zygote_child_alloc;
if (a_zygote_child_alloc && !b_zygote_child_alloc) {
return false;
}
if (!a_zygote_child_alloc && b_zygote_child_alloc) {
return true;
}
// Sort by size, descending order.
if (a.size != b.size) return a.size > b.size;
// Put pointers with no backtrace last.
FrameInfoType* a_frame = a.frame_info;
FrameInfoType* b_frame = b.frame_info;
if (a_frame == nullptr && b_frame != nullptr) {
return false;
} else if (a_frame != nullptr && b_frame == nullptr) {
return true;
} else if (a_frame == nullptr && b_frame == nullptr) {
return a.pointer < b.pointer;
}
// Put the pointers with longest backtrace first.
if (a_frame->frames.size() != b_frame->frames.size()) {
return a_frame->frames.size() > b_frame->frames.size();
}
// Last sort by pointer.
return a.pointer < b.pointer;
});
}
void PointerData::GetUniqueList(std::vector<ListInfoType>* list, bool only_with_backtrace)
REQUIRES(pointer_mutex_, frame_mutex_) {
GetList(list, only_with_backtrace);
// Remove duplicates of size/backtraces.
for (auto iter = list->begin(); iter != list->end();) {
auto dup_iter = iter + 1;
bool zygote_child_alloc = iter->zygote_child_alloc;
size_t size = iter->size;
FrameInfoType* frame_info = iter->frame_info;
for (; dup_iter != list->end(); ++dup_iter) {
if (zygote_child_alloc != dup_iter->zygote_child_alloc || size != dup_iter->size ||
frame_info != dup_iter->frame_info) {
break;
}
iter->num_allocations++;
}
iter = list->erase(iter + 1, dup_iter);
}
}
void PointerData::LogLeaks() {
std::vector<ListInfoType> list;
std::lock_guard<std::mutex> pointer_guard(pointer_mutex_);
std::lock_guard<std::mutex> frame_guard(frame_mutex_);
GetList(&list, false);
size_t track_count = 0;
for (const auto& list_info : list) {
error_log("+++ %s leaked block of size %zu at 0x%" PRIxPTR " (leak %zu of %zu)", getprogname(),
list_info.size, list_info.pointer, ++track_count, list.size());
if (list_info.backtrace_info != nullptr) {
error_log("Backtrace at time of allocation:");
UnwindLog(*list_info.backtrace_info);
} else if (list_info.frame_info != nullptr) {
error_log("Backtrace at time of allocation:");
backtrace_log(list_info.frame_info->frames.data(), list_info.frame_info->frames.size());
}
// Do not bother to free the pointers, we are about to exit any way.
}
}
void PointerData::GetAllocList(std::vector<ListInfoType>* list) {
std::lock_guard<std::mutex> pointer_guard(pointer_mutex_);
std::lock_guard<std::mutex> frame_guard(frame_mutex_);
if (pointers_.empty()) {
return;
}
GetList(list, false);
}
void PointerData::GetInfo(uint8_t** info, size_t* overall_size, size_t* info_size,
size_t* total_memory, size_t* backtrace_size) {
std::lock_guard<std::mutex> pointer_guard(pointer_mutex_);
std::lock_guard<std::mutex> frame_guard(frame_mutex_);
if (pointers_.empty()) {
return;
}
std::vector<ListInfoType> list;
GetUniqueList(&list, true);
if (list.empty()) {
return;
}
*backtrace_size = g_debug->config().backtrace_frames();
*info_size = sizeof(size_t) * 2 + sizeof(uintptr_t) * *backtrace_size;
*overall_size = *info_size * list.size();
*info = reinterpret_cast<uint8_t*>(g_dispatch->calloc(*info_size, list.size()));
if (*info == nullptr) {
return;
}
uint8_t* data = *info;
*total_memory = 0;
for (const auto& list_info : list) {
FrameInfoType* frame_info = list_info.frame_info;
*total_memory += list_info.size * list_info.num_allocations;
size_t allocation_size =
PointerInfoType::GetEncodedSize(list_info.zygote_child_alloc, list_info.size);
memcpy(data, &allocation_size, sizeof(size_t));
memcpy(&data[sizeof(size_t)], &list_info.num_allocations, sizeof(size_t));
if (frame_info != nullptr) {
memcpy(&data[2 * sizeof(size_t)], frame_info->frames.data(),
frame_info->frames.size() * sizeof(uintptr_t));
}
data += *info_size;
}
}
bool PointerData::Exists(const void* ptr) {
uintptr_t pointer = reinterpret_cast<uintptr_t>(ptr);
std::lock_guard<std::mutex> pointer_guard(pointer_mutex_);
return pointers_.count(pointer) != 0;
}
void PointerData::DumpLiveToFile(int fd) {
std::vector<ListInfoType> list;
std::lock_guard<std::mutex> pointer_guard(pointer_mutex_);
std::lock_guard<std::mutex> frame_guard(frame_mutex_);
GetUniqueList(&list, false);
size_t total_memory = 0;
for (const auto& info : list) {
total_memory += info.size * info.num_allocations;
}
dprintf(fd, "Total memory: %zu\n", total_memory);
dprintf(fd, "Allocation records: %zd\n", list.size());
dprintf(fd, "Backtrace size: %zu\n", g_debug->config().backtrace_frames());
dprintf(fd, "\n");
for (const auto& info : list) {
dprintf(fd, "z %d sz %8zu num %zu bt", (info.zygote_child_alloc) ? 1 : 0, info.size,
info.num_allocations);
FrameInfoType* frame_info = info.frame_info;
if (frame_info != nullptr) {
for (size_t i = 0; i < frame_info->frames.size(); i++) {
if (frame_info->frames[i] == 0) {
break;
}
dprintf(fd, " %" PRIxPTR, frame_info->frames[i]);
}
}
dprintf(fd, "\n");
if (info.backtrace_info != nullptr) {
dprintf(fd, " bt_info");
for (const auto& frame : *info.backtrace_info) {
dprintf(fd, " {");
if (frame.map_info != nullptr && !frame.map_info->name().empty()) {
dprintf(fd, "\"%s\"", frame.map_info->name().c_str());
} else {
dprintf(fd, "\"\"");
}
dprintf(fd, " %" PRIx64, frame.rel_pc);
if (frame.function_name.empty()) {
dprintf(fd, " \"\" 0}");
} else {
char* demangled_name = __cxa_demangle(frame.function_name.c_str(), nullptr, nullptr,
nullptr);
const char* name;
if (demangled_name != nullptr) {
name = demangled_name;
} else {
name = frame.function_name.c_str();
}
dprintf(fd, " \"%s\" %" PRIx64 "}", name, frame.function_offset);
free(demangled_name);
}
}
dprintf(fd, "\n");
}
}
}
void PointerData::PrepareFork() NO_THREAD_SAFETY_ANALYSIS {
free_pointer_mutex_.lock();
pointer_mutex_.lock();
frame_mutex_.lock();
}
void PointerData::PostForkParent() NO_THREAD_SAFETY_ANALYSIS {
frame_mutex_.unlock();
pointer_mutex_.unlock();
free_pointer_mutex_.unlock();
}
void PointerData::PostForkChild() __attribute__((no_thread_safety_analysis)) {
// Make sure that any potential mutexes have been released and are back
// to an initial state.
frame_mutex_.try_lock();
frame_mutex_.unlock();
pointer_mutex_.try_lock();
pointer_mutex_.unlock();
free_pointer_mutex_.try_lock();
free_pointer_mutex_.unlock();
}