You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
314 lines
11 KiB
314 lines
11 KiB
//
|
|
// Copyright (c) 2017 The Khronos Group Inc.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
#include "harness/compat.h"
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
|
|
#include "procs.h"
|
|
#include "harness/testHarness.h"
|
|
#include "harness/errorHelpers.h"
|
|
|
|
static const char *read3d_kernel_code =
|
|
"\n"
|
|
"__kernel void read3d(read_only image3d_t srcimg, __global unsigned char *dst, sampler_t sampler)\n"
|
|
"{\n"
|
|
" int tid_x = get_global_id(0);\n"
|
|
" int tid_y = get_global_id(1);\n"
|
|
" int tid_z = get_global_id(2);\n"
|
|
" int indx = (tid_z * get_image_height(srcimg) + tid_y) * get_image_width(srcimg) + tid_x;\n"
|
|
" float4 color;\n"
|
|
"\n"
|
|
" color = read_imagef(srcimg, sampler, (int4)(tid_x, tid_y, tid_z, 0));\n"
|
|
" indx *= 4;\n"
|
|
" dst[indx+0] = (unsigned char)(color.x * 255.0f);\n"
|
|
" dst[indx+1] = (unsigned char)(color.y * 255.0f);\n"
|
|
" dst[indx+2] = (unsigned char)(color.z * 255.0f);\n"
|
|
" dst[indx+3] = (unsigned char)(color.w * 255.0f);\n"
|
|
"\n"
|
|
"}\n";
|
|
|
|
|
|
static cl_uchar *createImage( int elements, MTdata d )
|
|
{
|
|
int i;
|
|
cl_uchar *ptr = (cl_uchar *)malloc( elements * sizeof( cl_uchar ) );
|
|
if( ! ptr )
|
|
return NULL;
|
|
|
|
for( i = 0; i < elements; i++ ){
|
|
ptr[i] = (cl_uchar)genrand_int32(d);
|
|
}
|
|
|
|
return ptr;
|
|
|
|
} // end createImage()
|
|
|
|
|
|
static int verifyImages( cl_uchar *ptr0, cl_uchar *ptr1, cl_uchar tolerance, int xsize, int ysize, int zsize, int nChannels )
|
|
{
|
|
int x, y, z, c;
|
|
cl_uchar *p0 = ptr0;
|
|
cl_uchar *p1 = ptr1;
|
|
|
|
for( z = 0; z < zsize; z++ ){
|
|
for( y = 0; y < ysize; y++ ){
|
|
for( x = 0; x < xsize; x++ ){
|
|
for( c = 0; c < nChannels; c++ ){
|
|
if( (cl_uchar)abs( (int)( *p0++ - *p1++ ) ) > tolerance ){
|
|
log_error( " images differ at x,y,z = %d,%d,%d channel = %d, %d to %d\n",
|
|
x, y, z, c, (int)p0[-1], (int)p1[-1] );
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
} // end verifyImages()
|
|
|
|
|
|
static int run_kernel( cl_device_id device, cl_context context, cl_command_queue queue,
|
|
int w, int h, int d, int nChannels, cl_uchar *inptr, cl_uchar *outptr )
|
|
{
|
|
cl_program program[1];
|
|
cl_kernel kernel[1];
|
|
cl_mem memobjs[2];
|
|
cl_image_format image_format_desc = { CL_RGBA, CL_UNORM_INT8 };
|
|
cl_event executeEvent = NULL;
|
|
cl_ulong queueStart, submitStart, writeStart, writeEnd;
|
|
size_t threads[3];
|
|
size_t localThreads[3];
|
|
int err = 0;
|
|
|
|
// set thread dimensions
|
|
threads[0] = w;
|
|
threads[1] = h;
|
|
threads[2] = d;
|
|
|
|
err = clGetDeviceInfo( device, CL_DEVICE_MAX_WORK_ITEM_SIZES, sizeof( cl_uint ), (size_t*)localThreads, NULL );
|
|
if (err)
|
|
{
|
|
localThreads[0] = 256; localThreads[1] = 1; localThreads[2] = 1;
|
|
err = 0;
|
|
}
|
|
if( localThreads[0] > threads[0] )
|
|
localThreads[0] = threads[0];
|
|
if( localThreads[1] > threads[1] )
|
|
localThreads[1] = threads[1];
|
|
|
|
cl_sampler sampler = clCreateSampler( context, CL_FALSE, CL_ADDRESS_CLAMP_TO_EDGE, CL_FILTER_NEAREST, &err );
|
|
if( err ){
|
|
log_error( " clCreateSampler failed.\n" );
|
|
return -1;
|
|
}
|
|
|
|
// allocate the input and output image memory objects
|
|
memobjs[0] =
|
|
create_image_3d(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
|
|
&image_format_desc, w, h, d, 0, 0, inptr, &err);
|
|
if( memobjs[0] == (cl_mem)0 ){
|
|
log_error( " unable to create 2D image using create_image_2d\n" );
|
|
return -1;
|
|
}
|
|
|
|
// allocate an array memory object to load the filter weights
|
|
memobjs[1] =
|
|
clCreateBuffer(context, CL_MEM_READ_WRITE,
|
|
sizeof(cl_float) * w * h * d * nChannels, NULL, &err);
|
|
if( memobjs[1] == (cl_mem)0 ){
|
|
log_error( " unable to create array using clCreateBuffer\n" );
|
|
clReleaseMemObject( memobjs[0] );
|
|
return -1;
|
|
}
|
|
|
|
// create the compute program
|
|
err = create_single_kernel_helper( context, &program[0], &kernel[0], 1, &read3d_kernel_code, "read3d" );
|
|
if( err ){
|
|
clReleaseMemObject( memobjs[1] );
|
|
clReleaseMemObject( memobjs[0] );
|
|
return -1;
|
|
}
|
|
|
|
|
|
// create kernel args object and set arg values.
|
|
// set the args values
|
|
err |= clSetKernelArg( kernel[0], 0, sizeof( cl_mem ), (void *)&memobjs[0] );
|
|
err |= clSetKernelArg( kernel[0], 1, sizeof( cl_mem ), (void *)&memobjs[1] );
|
|
err |= clSetKernelArg(kernel[0], 2, sizeof sampler, &sampler);
|
|
|
|
if( err != CL_SUCCESS ){
|
|
print_error( err, "clSetKernelArg failed\n" );
|
|
clReleaseKernel( kernel[0] );
|
|
clReleaseProgram( program[0] );
|
|
clReleaseMemObject( memobjs[1] );
|
|
clReleaseMemObject( memobjs[0] );
|
|
return -1;
|
|
}
|
|
|
|
err = clEnqueueNDRangeKernel( queue, kernel[0], 3, NULL, threads, localThreads, 0, NULL, &executeEvent );
|
|
|
|
if( err != CL_SUCCESS ){
|
|
print_error( err, "clEnqueueNDRangeKernel failed\n" );
|
|
clReleaseKernel( kernel[0] );
|
|
clReleaseProgram( program[0] );
|
|
clReleaseMemObject( memobjs[1] );
|
|
clReleaseMemObject( memobjs[0] );
|
|
return -1;
|
|
}
|
|
|
|
if (executeEvent) {
|
|
|
|
// This synchronization point is needed in order to assume the data is valid.
|
|
// Getting profiling information is not a synchronization point.
|
|
err = clWaitForEvents( 1, &executeEvent );
|
|
if( err != CL_SUCCESS )
|
|
{
|
|
print_error( err, "clWaitForEvents failed\n" );
|
|
clReleaseKernel( kernel[0] );
|
|
clReleaseProgram( program[0] );
|
|
clReleaseMemObject( memobjs[1] );
|
|
clReleaseMemObject( memobjs[0] );
|
|
return -1;
|
|
}
|
|
|
|
// test profiling
|
|
while( ( err = clGetEventProfilingInfo( executeEvent, CL_PROFILING_COMMAND_QUEUED, sizeof( cl_ulong ), &queueStart, NULL ) ) == CL_PROFILING_INFO_NOT_AVAILABLE );
|
|
if( err != CL_SUCCESS ){
|
|
print_error( err, "clGetEventProfilingInfo failed" );
|
|
clReleaseKernel( kernel[0] );
|
|
clReleaseProgram( program[0] );
|
|
clReleaseMemObject( memobjs[1] );
|
|
clReleaseMemObject( memobjs[0] );
|
|
return -1;
|
|
}
|
|
|
|
while( ( err = clGetEventProfilingInfo( executeEvent, CL_PROFILING_COMMAND_SUBMIT, sizeof( cl_ulong ), &submitStart, NULL ) ) == CL_PROFILING_INFO_NOT_AVAILABLE );
|
|
if( err != CL_SUCCESS ){
|
|
print_error( err, "clGetEventProfilingInfo failed" );
|
|
clReleaseKernel( kernel[0] );
|
|
clReleaseProgram( program[0] );
|
|
clReleaseMemObject( memobjs[1] );
|
|
clReleaseMemObject( memobjs[0] );
|
|
return -1;
|
|
}
|
|
|
|
err = clGetEventProfilingInfo( executeEvent, CL_PROFILING_COMMAND_START, sizeof( cl_ulong ), &writeStart, NULL );
|
|
if( err != CL_SUCCESS ){
|
|
print_error( err, "clGetEventProfilingInfo failed" );
|
|
clReleaseKernel( kernel[0] );
|
|
clReleaseProgram( program[0] );
|
|
clReleaseMemObject( memobjs[1] );
|
|
clReleaseMemObject( memobjs[0] );
|
|
return -1;
|
|
}
|
|
|
|
err = clGetEventProfilingInfo( executeEvent, CL_PROFILING_COMMAND_END, sizeof( cl_ulong ), &writeEnd, NULL );
|
|
if( err != CL_SUCCESS ){
|
|
print_error( err, "clGetEventProfilingInfo failed" );
|
|
clReleaseKernel( kernel[0] );
|
|
clReleaseProgram( program[0] );
|
|
clReleaseMemObject( memobjs[1] );
|
|
clReleaseMemObject( memobjs[0] );
|
|
return -1;
|
|
}
|
|
|
|
log_info( "Profiling info:\n" );
|
|
log_info( "Time from queue to start of clEnqueueNDRangeKernel: %f seconds\n", (double)(writeStart - queueStart) / 1000000000000.f );
|
|
log_info( "Time from start of clEnqueueNDRangeKernel to end: %f seconds\n", (double)(writeEnd - writeStart) / 1000000000000.f );
|
|
}
|
|
|
|
// read output image
|
|
err = clEnqueueReadBuffer(queue, memobjs[1], CL_TRUE, 0, w*h*d*nChannels*4, outptr, 0, NULL, NULL);
|
|
if( err != CL_SUCCESS ){
|
|
print_error( err, "clReadImage failed\n" );
|
|
clReleaseKernel( kernel[0] );
|
|
clReleaseProgram( program[0] );
|
|
clReleaseMemObject( memobjs[1] );
|
|
clReleaseMemObject( memobjs[0] );
|
|
return -1;
|
|
}
|
|
|
|
// release kernel, program, and memory objects
|
|
clReleaseKernel( kernel[0] );
|
|
clReleaseProgram( program[0] );
|
|
clReleaseMemObject( memobjs[1] );
|
|
clReleaseMemObject( memobjs[0] );
|
|
|
|
return err;
|
|
|
|
} // end run_kernel()
|
|
|
|
|
|
// The main point of this test is to exercise code that causes a multipass cld launch for a single
|
|
// kernel exec at the cl level. This is done on the gpu for 3d launches, and it's also done
|
|
// to handle gdims that excede the maximums allowed by the hardware. In this case we
|
|
// use 3d to exercise the multipass events. In the future 3d may not be multpass, in which
|
|
// case we will need to ensure that we use gdims large enough to force multipass.
|
|
|
|
int execute_multipass( cl_device_id device, cl_context context, cl_command_queue queue, int num_elements )
|
|
{
|
|
cl_uchar *inptr;
|
|
cl_uchar *outptr;
|
|
int w = 256, h = 128, d = 32;
|
|
int nChannels = 4;
|
|
int nElements = w * h * d * nChannels;
|
|
int err = 0;
|
|
MTdata mtData;
|
|
|
|
PASSIVE_REQUIRE_IMAGE_SUPPORT( device )
|
|
|
|
mtData = init_genrand( gRandomSeed );
|
|
inptr = createImage( nElements, mtData );
|
|
free_mtdata( mtData); mtData = NULL;
|
|
if( ! inptr ){
|
|
log_error( " unable to allocate %d bytes of memory for image\n", nElements );
|
|
return -1;
|
|
}
|
|
|
|
outptr = (cl_uchar *)malloc( nElements * sizeof( cl_uchar ) );
|
|
if( ! outptr ){
|
|
log_error( " unable to allocate %d bytes of memory for output image #1\n", nElements );
|
|
free( (void *)inptr );
|
|
return -1;
|
|
}
|
|
|
|
|
|
err = run_kernel( device, context, queue, w, h, d, nChannels, inptr, outptr );
|
|
|
|
if( ! err ){
|
|
// verify that the images are the same
|
|
err = verifyImages( outptr, inptr, (cl_uchar)0x1, w, h, d, nChannels );
|
|
if( err )
|
|
log_error( " images do not match\n" );
|
|
}
|
|
|
|
// clean up
|
|
free( (void *)outptr );
|
|
free( (void *)inptr );
|
|
|
|
return err;
|
|
|
|
} // end execute()
|
|
|
|
|
|
|