You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
292 lines
10 KiB
292 lines
10 KiB
// Copyright (c) Facebook, Inc. and its affiliates.
|
|
// All rights reserved.
|
|
//
|
|
// Copyright 2019 Google LLC
|
|
//
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree.
|
|
|
|
#include <algorithm>
|
|
#include <cfloat>
|
|
#include <cmath>
|
|
#include <functional>
|
|
#include <limits>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
#include <xnnpack.h>
|
|
|
|
#include <benchmark/benchmark.h>
|
|
#include <fp16.h>
|
|
#include "bench/utils.h"
|
|
|
|
#ifndef XNN_NO_QU8_OPERATORS
|
|
static void global_average_pooling_qu8(benchmark::State& state) {
|
|
const size_t batch_size = state.range(0);
|
|
const size_t input_height = state.range(1);
|
|
const size_t input_width = state.range(2);
|
|
const size_t channels = state.range(3);
|
|
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), std::ref(rng));
|
|
|
|
std::vector<uint8_t> input(batch_size * input_height * input_width * channels);
|
|
std::generate(input.begin(), input.end(), std::ref(u8rng));
|
|
std::vector<uint8_t> output(batch_size * channels);
|
|
|
|
xnn_status status = xnn_initialize(nullptr /* allocator */);
|
|
if (status != xnn_status_success) {
|
|
state.SkipWithError("failed to initialize XNNPACK");
|
|
}
|
|
|
|
xnn_operator_t global_pooling_op = nullptr;
|
|
status = xnn_create_global_average_pooling_nwc_qu8(
|
|
channels, channels /* input stride */, channels /* output stride */,
|
|
127 /* input zero point */, 0.75f /* input scale */,
|
|
127 /* output zero point */, 1.25f /* output scale */,
|
|
0, 255,
|
|
0 /* flags */, &global_pooling_op);
|
|
if (status != xnn_status_success) {
|
|
state.SkipWithError("failed to create Global Average Pooling operator");
|
|
}
|
|
|
|
status = xnn_setup_global_average_pooling_nwc_qu8(
|
|
global_pooling_op,
|
|
batch_size, input_height * input_width,
|
|
input.data(), output.data(),
|
|
nullptr /* thread pool */);
|
|
if (status != xnn_status_success) {
|
|
state.SkipWithError("failed to setup Global Average Pooling operator");
|
|
}
|
|
|
|
for (auto _ : state) {
|
|
xnn_run_operator(global_pooling_op, nullptr /* thread pool */);
|
|
}
|
|
|
|
status = xnn_delete_operator(global_pooling_op);
|
|
if (status != xnn_status_success) {
|
|
state.SkipWithError("failed to delete Global Average Pooling operator");
|
|
}
|
|
global_pooling_op = nullptr;
|
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
|
|
if (cpu_frequency != 0) {
|
|
state.counters["cpufreq"] = cpu_frequency;
|
|
}
|
|
|
|
state.counters["bytes"] = benchmark::Counter(
|
|
uint64_t(state.iterations()) *
|
|
batch_size * (input_height * input_width + 1) * channels * sizeof(uint8_t),
|
|
benchmark::Counter::kIsRate);
|
|
}
|
|
#endif // XNN_NO_QU8_OPERATORS
|
|
|
|
#ifndef XNN_NO_QS8_OPERATORS
|
|
static void global_average_pooling_qs8(benchmark::State& state) {
|
|
const size_t batch_size = state.range(0);
|
|
const size_t input_height = state.range(1);
|
|
const size_t input_width = state.range(2);
|
|
const size_t channels = state.range(3);
|
|
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto i8rng = std::bind(
|
|
std::uniform_int_distribution<uint32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), std::ref(rng));
|
|
|
|
std::vector<int8_t> input(batch_size * input_height * input_width * channels);
|
|
std::generate(input.begin(), input.end(), std::ref(i8rng));
|
|
std::vector<int8_t> output(batch_size * channels);
|
|
|
|
xnn_status status = xnn_initialize(nullptr /* allocator */);
|
|
if (status != xnn_status_success) {
|
|
state.SkipWithError("failed to initialize XNNPACK");
|
|
}
|
|
|
|
xnn_operator_t global_pooling_op = nullptr;
|
|
status = xnn_create_global_average_pooling_nwc_qs8(
|
|
channels, channels /* input stride */, channels /* output stride */,
|
|
-1 /* input zero point */, 0.75f /* input scale */,
|
|
-1 /* output zero point */, 1.25f /* output scale */,
|
|
-128, 127,
|
|
0 /* flags */, &global_pooling_op);
|
|
if (status != xnn_status_success) {
|
|
state.SkipWithError("failed to create Global Average Pooling operator");
|
|
}
|
|
|
|
status = xnn_setup_global_average_pooling_nwc_qs8(
|
|
global_pooling_op,
|
|
batch_size, input_height * input_width,
|
|
input.data(), output.data(),
|
|
nullptr /* thread pool */);
|
|
if (status != xnn_status_success) {
|
|
state.SkipWithError("failed to setup Global Average Pooling operator");
|
|
}
|
|
|
|
for (auto _ : state) {
|
|
xnn_run_operator(global_pooling_op, nullptr /* thread pool */);
|
|
}
|
|
|
|
status = xnn_delete_operator(global_pooling_op);
|
|
if (status != xnn_status_success) {
|
|
state.SkipWithError("failed to delete Global Average Pooling operator");
|
|
}
|
|
global_pooling_op = nullptr;
|
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
|
|
if (cpu_frequency != 0) {
|
|
state.counters["cpufreq"] = cpu_frequency;
|
|
}
|
|
|
|
state.counters["bytes"] = benchmark::Counter(
|
|
uint64_t(state.iterations()) *
|
|
batch_size * (input_height * input_width + 1) * channels * sizeof(int8_t),
|
|
benchmark::Counter::kIsRate);
|
|
}
|
|
#endif // XNN_NO_QS8_OPERATORS
|
|
|
|
#ifndef XNN_NO_F16_OPERATORS
|
|
static void global_average_pooling_f16(benchmark::State& state) {
|
|
if (!benchmark::utils::CheckNEONFP16ARITH(state)) {
|
|
return;
|
|
}
|
|
const size_t batch_size = state.range(0);
|
|
const size_t input_height = state.range(1);
|
|
const size_t input_width = state.range(2);
|
|
const size_t channels = state.range(3);
|
|
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(0.1f, 1.0f), std::ref(rng));
|
|
auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
|
|
|
|
std::vector<uint16_t> input(batch_size * input_height * input_width * channels);
|
|
std::generate(input.begin(), input.end(), std::ref(f16rng));
|
|
std::vector<uint16_t> output(batch_size * channels);
|
|
|
|
xnn_status status = xnn_initialize(nullptr /* allocator */);
|
|
if (status != xnn_status_success) {
|
|
state.SkipWithError("failed to initialize XNNPACK");
|
|
}
|
|
|
|
xnn_operator_t global_pooling_op = nullptr;
|
|
status = xnn_create_global_average_pooling_nwc_f16(
|
|
channels, channels /* input stride */, channels /* output stride */,
|
|
-std::numeric_limits<float>::infinity(), +std::numeric_limits<float>::infinity(),
|
|
0 /* flags */, &global_pooling_op);
|
|
if (status != xnn_status_success) {
|
|
state.SkipWithError("failed to create Global Average Pooling operator");
|
|
}
|
|
|
|
status = xnn_setup_global_average_pooling_nwc_f16(
|
|
global_pooling_op,
|
|
batch_size, input_height * input_width,
|
|
input.data(), output.data(),
|
|
nullptr /* thread pool */);
|
|
if (status != xnn_status_success) {
|
|
state.SkipWithError("failed to setup Global Average Pooling operator");
|
|
}
|
|
|
|
for (auto _ : state) {
|
|
xnn_run_operator(global_pooling_op, nullptr /* thread pool */);
|
|
}
|
|
|
|
status = xnn_delete_operator(global_pooling_op);
|
|
if (status != xnn_status_success) {
|
|
state.SkipWithError("failed to delete Global Average Pooling operator");
|
|
}
|
|
global_pooling_op = nullptr;
|
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
|
|
if (cpu_frequency != 0) {
|
|
state.counters["cpufreq"] = cpu_frequency;
|
|
}
|
|
|
|
state.counters["bytes"] = benchmark::Counter(
|
|
uint64_t(state.iterations()) *
|
|
batch_size * (input_height * input_width + 1) * channels * sizeof(uint16_t),
|
|
benchmark::Counter::kIsRate);
|
|
}
|
|
#endif // XNN_NO_F16_OPERATORS
|
|
|
|
static void global_average_pooling_f32(benchmark::State& state) {
|
|
const size_t batch_size = state.range(0);
|
|
const size_t input_height = state.range(1);
|
|
const size_t input_width = state.range(2);
|
|
const size_t channels = state.range(3);
|
|
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(), std::ref(rng));
|
|
|
|
std::vector<float> input(batch_size * input_height * input_width * channels);
|
|
std::generate(input.begin(), input.end(), std::ref(f32rng));
|
|
std::vector<float> output(batch_size * channels);
|
|
|
|
xnn_status status = xnn_initialize(nullptr /* allocator */);
|
|
if (status != xnn_status_success) {
|
|
state.SkipWithError("failed to initialize XNNPACK");
|
|
}
|
|
|
|
xnn_operator_t global_pooling_op = nullptr;
|
|
status = xnn_create_global_average_pooling_nwc_f32(
|
|
channels, channels /* input stride */, channels /* output stride */,
|
|
-std::numeric_limits<float>::infinity(), +std::numeric_limits<float>::infinity(),
|
|
0 /* flags */, &global_pooling_op);
|
|
if (status != xnn_status_success) {
|
|
state.SkipWithError("failed to create Global Average Pooling operator");
|
|
}
|
|
|
|
status = xnn_setup_global_average_pooling_nwc_f32(
|
|
global_pooling_op,
|
|
batch_size, input_height * input_width,
|
|
input.data(), output.data(),
|
|
nullptr /* thread pool */);
|
|
if (status != xnn_status_success) {
|
|
state.SkipWithError("failed to setup Global Average Pooling operator");
|
|
}
|
|
|
|
for (auto _ : state) {
|
|
xnn_run_operator(global_pooling_op, nullptr /* thread pool */);
|
|
}
|
|
|
|
status = xnn_delete_operator(global_pooling_op);
|
|
if (status != xnn_status_success) {
|
|
state.SkipWithError("failed to delete Global Average Pooling operator");
|
|
}
|
|
global_pooling_op = nullptr;
|
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
|
|
if (cpu_frequency != 0) {
|
|
state.counters["cpufreq"] = cpu_frequency;
|
|
}
|
|
|
|
state.counters["bytes"] = benchmark::Counter(
|
|
uint64_t(state.iterations()) *
|
|
batch_size * (input_height * input_width + 1) * channels * sizeof(float),
|
|
benchmark::Counter::kIsRate);
|
|
}
|
|
|
|
static void ImageNetArguments(benchmark::internal::Benchmark* b) {
|
|
b->ArgNames({"N", "H", "W", "C"});
|
|
|
|
/* N IH IW C */
|
|
b->Args({1, 7, 7, 1000});
|
|
b->Args({1, 13, 13, 1000});
|
|
}
|
|
|
|
#ifndef XNN_NO_QU8_OPERATORS
|
|
BENCHMARK(global_average_pooling_qu8)->Apply(ImageNetArguments)->UseRealTime();
|
|
#endif // XNN_NO_QU8_OPERATORS
|
|
#ifndef XNN_NO_QS8_OPERATORS
|
|
BENCHMARK(global_average_pooling_qs8)->Apply(ImageNetArguments)->UseRealTime();
|
|
#endif // XNN_NO_QS8_OPERATORS
|
|
#ifndef XNN_NO_F16_OPERATORS
|
|
BENCHMARK(global_average_pooling_f16)->Apply(ImageNetArguments)->UseRealTime();
|
|
#endif // XNN_NO_F16_OPERATORS
|
|
BENCHMARK(global_average_pooling_f32)->Apply(ImageNetArguments)->UseRealTime();
|
|
|
|
#ifndef XNNPACK_BENCHMARK_NO_MAIN
|
|
BENCHMARK_MAIN();
|
|
#endif
|