You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
364 lines
13 KiB
364 lines
13 KiB
// Copyright (c) Facebook, Inc. and its affiliates.
|
|
// All rights reserved.
|
|
//
|
|
// Copyright 2019 Google LLC
|
|
//
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree.
|
|
|
|
#pragma once
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <cstddef>
|
|
#include <cstdlib>
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <functional>
|
|
#include <limits>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
#include <xnnpack.h>
|
|
|
|
|
|
class FullyConnectedOperatorTester {
|
|
public:
|
|
inline FullyConnectedOperatorTester& input_channels(size_t input_channels) {
|
|
assert(input_channels >= 1);
|
|
this->input_channels_ = input_channels;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t input_channels() const {
|
|
return this->input_channels_;
|
|
}
|
|
|
|
inline FullyConnectedOperatorTester& output_channels(size_t output_channels) {
|
|
assert(output_channels >= 1);
|
|
this->output_channels_ = output_channels;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t output_channels() const {
|
|
return this->output_channels_;
|
|
}
|
|
|
|
inline FullyConnectedOperatorTester& batch_size(size_t batch_size) {
|
|
assert(batch_size >= 1);
|
|
this->batch_size_ = batch_size;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t batch_size() const {
|
|
return this->batch_size_;
|
|
}
|
|
|
|
inline FullyConnectedOperatorTester& input_stride(size_t input_stride) {
|
|
assert(input_stride >= 1);
|
|
this->input_stride_ = input_stride;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t input_stride() const {
|
|
if (this->input_stride_ == 0) {
|
|
return input_channels();
|
|
} else {
|
|
assert(this->input_stride_ >= input_channels());
|
|
return this->input_stride_;
|
|
}
|
|
}
|
|
|
|
inline FullyConnectedOperatorTester& output_stride(size_t output_stride) {
|
|
assert(output_stride >= 1);
|
|
this->output_stride_ = output_stride;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t output_stride() const {
|
|
if (this->output_stride_ == 0) {
|
|
return output_channels();
|
|
} else {
|
|
assert(this->output_stride_ >= output_channels());
|
|
return this->output_stride_;
|
|
}
|
|
}
|
|
|
|
inline FullyConnectedOperatorTester& qmin(uint8_t qmin) {
|
|
this->qmin_ = qmin;
|
|
return *this;
|
|
}
|
|
|
|
inline uint8_t qmin() const {
|
|
return this->qmin_;
|
|
}
|
|
|
|
inline FullyConnectedOperatorTester& qmax(uint8_t qmax) {
|
|
this->qmax_ = qmax;
|
|
return *this;
|
|
}
|
|
|
|
inline uint8_t qmax() const {
|
|
return this->qmax_;
|
|
}
|
|
|
|
inline FullyConnectedOperatorTester& transpose_weights(bool transpose_weights) {
|
|
this->transpose_weights_ = transpose_weights;
|
|
return *this;
|
|
}
|
|
|
|
inline bool transpose_weights() const {
|
|
return this->transpose_weights_;
|
|
}
|
|
|
|
inline FullyConnectedOperatorTester& has_bias(bool has_bias) {
|
|
this->has_bias_ = has_bias;
|
|
return *this;
|
|
}
|
|
|
|
inline bool has_bias() const {
|
|
return this->has_bias_;
|
|
}
|
|
|
|
inline FullyConnectedOperatorTester& iterations(size_t iterations) {
|
|
this->iterations_ = iterations;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t iterations() const {
|
|
return this->iterations_;
|
|
}
|
|
|
|
void TestQU8() const {
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto i32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), rng);
|
|
auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng);
|
|
|
|
std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) +
|
|
(batch_size() - 1) * input_stride() + input_channels());
|
|
std::vector<uint8_t> kernel(output_channels() * input_channels());
|
|
std::vector<int32_t> bias(output_channels());
|
|
std::vector<uint8_t> output((batch_size() - 1) * output_stride() + output_channels());
|
|
std::vector<int32_t> accumulators(batch_size() * output_channels());
|
|
std::vector<double> output_ref(batch_size() * output_channels());
|
|
|
|
const uint8_t input_zero_point = 127;
|
|
const uint8_t kernel_zero_point = 127;
|
|
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(input.begin(), input.end(), std::ref(u8rng));
|
|
std::generate(kernel.begin(), kernel.end(), std::ref(u8rng));
|
|
std::generate(bias.begin(), bias.end(), std::ref(i32rng));
|
|
std::fill(output.begin(), output.end(), 0xA5);
|
|
|
|
// Compute reference results, without renormalization.
|
|
if (has_bias()) {
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
for (size_t oc = 0; oc < output_channels(); oc++) {
|
|
accumulators[i * output_channels() + oc] = bias[oc];
|
|
}
|
|
}
|
|
} else {
|
|
std::fill(accumulators.begin(), accumulators.end(), 0);
|
|
}
|
|
if (transpose_weights()) {
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
for (size_t oc = 0; oc < output_channels(); oc++) {
|
|
for (size_t ic = 0; ic < input_channels(); ic++) {
|
|
accumulators[i * output_channels() + oc] +=
|
|
(int32_t(input[i * input_stride() + ic]) - int32_t(input_zero_point)) *
|
|
(int32_t(kernel[ic * output_channels() + oc]) - int32_t(kernel_zero_point));
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
for (size_t oc = 0; oc < output_channels(); oc++) {
|
|
for (size_t ic = 0; ic < input_channels(); ic++) {
|
|
accumulators[i * output_channels() + oc] +=
|
|
(int32_t(input[i * input_stride() + ic]) - int32_t(input_zero_point)) *
|
|
(int32_t(kernel[oc * input_channels() + ic]) - int32_t(kernel_zero_point));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute renormalization parameters.
|
|
const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend());
|
|
const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend());
|
|
|
|
const double output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0;
|
|
const uint8_t output_zero_point = uint8_t(std::max(std::min(
|
|
lrint(127.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale),
|
|
long(std::numeric_limits<uint8_t>::max())), long(std::numeric_limits<uint8_t>::min())));
|
|
|
|
// Renormalize reference results.
|
|
std::transform(accumulators.cbegin(), accumulators.cend(), output_ref.begin(),
|
|
[this, output_scale, output_zero_point](int32_t x) -> double {
|
|
return std::max<double>(std::min<double>(double(x) / output_scale, double(qmax()) - output_zero_point), double(qmin()) - output_zero_point);
|
|
});
|
|
|
|
// Create, setup, run, and destroy Fully Connected operator.
|
|
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
|
|
xnn_operator_t fully_connected_op = nullptr;
|
|
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_create_fully_connected_nc_qu8(
|
|
input_channels(), output_channels(),
|
|
input_stride(), output_stride(),
|
|
input_zero_point, 1.0f /* input scale */,
|
|
kernel_zero_point, 1.0f /* kernel scale */,
|
|
kernel.data(), has_bias() ? bias.data() : nullptr,
|
|
output_zero_point, output_scale, qmin(), qmax(),
|
|
transpose_weights() ? XNN_FLAG_TRANSPOSE_WEIGHTS : 0,
|
|
&fully_connected_op));
|
|
|
|
// Smart pointer to automatically delete fully_connected_op.
|
|
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_fully_connected_op(fully_connected_op, xnn_delete_operator);
|
|
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_setup_fully_connected_nc_qu8(
|
|
fully_connected_op,
|
|
batch_size(),
|
|
input.data(), output.data(),
|
|
nullptr /* thread pool */));
|
|
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_run_operator(fully_connected_op, nullptr /* thread pool */));
|
|
|
|
// Verify results.
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
for (size_t c = 0; c < output_channels(); c++) {
|
|
ASSERT_LE(int32_t(output[i * output_stride() + c]), int32_t(qmax()))
|
|
<< "batch index = " << i << ", channel = " << c;
|
|
ASSERT_GE(int32_t(output[i * output_stride() + c]), int32_t(qmin()))
|
|
<< "batch index = " << i << ", channel = " << c;
|
|
ASSERT_NEAR(
|
|
output_ref[i * output_channels() + c],
|
|
double(output[i * output_stride() + c]) - double(output_zero_point),
|
|
0.9)
|
|
<< "batch index = " << i << ", channel = " << c;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void TestF32() const {
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(0.1f, 1.0f), rng);
|
|
|
|
std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) +
|
|
(batch_size() - 1) * input_stride() + input_channels());
|
|
std::vector<float> kernel(output_channels() * input_channels());
|
|
std::vector<float> bias(output_channels());
|
|
std::vector<float> output((batch_size() - 1) * output_stride() + output_channels());
|
|
std::vector<float> output_ref(batch_size() * output_channels());
|
|
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(input.begin(), input.end(), std::ref(f32rng));
|
|
std::generate(kernel.begin(), kernel.end(), std::ref(f32rng));
|
|
std::generate(bias.begin(), bias.end(), std::ref(f32rng));
|
|
std::fill(output.begin(), output.end(), nanf(""));
|
|
|
|
// Compute reference results, without renormalization.
|
|
if (has_bias()) {
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
for (size_t oc = 0; oc < output_channels(); oc++) {
|
|
output_ref[i * output_channels() + oc] = bias[oc];
|
|
}
|
|
}
|
|
} else {
|
|
std::fill(output_ref.begin(), output_ref.end(), 0.0f);
|
|
}
|
|
if (transpose_weights()) {
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
for (size_t oc = 0; oc < output_channels(); oc++) {
|
|
for (size_t ic = 0; ic < input_channels(); ic++) {
|
|
output_ref[i * output_channels() + oc] +=
|
|
input[i * input_stride() + ic] * kernel[ic * output_channels() + oc];
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
for (size_t oc = 0; oc < output_channels(); oc++) {
|
|
for (size_t ic = 0; ic < input_channels(); ic++) {
|
|
output_ref[i * output_channels() + oc] +=
|
|
input[i * input_stride() + ic] * kernel[oc * input_channels() + ic];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute clamping parameters.
|
|
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
|
|
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
|
|
|
|
const float output_min = qmin() == 0 ? -std::numeric_limits<float>::infinity() :
|
|
accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin());
|
|
const float output_max = qmax() == 255 ? std::numeric_limits<float>::infinity() :
|
|
accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax());
|
|
|
|
// Clamp reference results.
|
|
for (float& value : output_ref) {
|
|
value = std::max(std::min(value, output_max), output_min);
|
|
}
|
|
|
|
// Create, setup, run, and destroy Fully Connected operator.
|
|
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
|
|
xnn_operator_t fully_connected_op = nullptr;
|
|
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_create_fully_connected_nc_f32(
|
|
input_channels(), output_channels(),
|
|
input_stride(), output_stride(),
|
|
kernel.data(), has_bias() ? bias.data() : nullptr,
|
|
output_min, output_max,
|
|
transpose_weights() ? XNN_FLAG_TRANSPOSE_WEIGHTS : 0,
|
|
&fully_connected_op));
|
|
|
|
// Smart pointer to automatically delete fully_connected_op.
|
|
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_fully_connected_op(fully_connected_op, xnn_delete_operator);
|
|
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_setup_fully_connected_nc_f32(
|
|
fully_connected_op,
|
|
batch_size(),
|
|
input.data(), output.data(),
|
|
nullptr /* thread pool */));
|
|
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_run_operator(fully_connected_op, nullptr /* thread pool */));
|
|
|
|
// Verify results.
|
|
for (size_t i = 0; i < batch_size(); i++) {
|
|
for (size_t c = 0; c < output_channels(); c++) {
|
|
ASSERT_LE(output[i * output_stride() + c], output_max)
|
|
<< "batch index = " << i << ", channel = " << c;
|
|
ASSERT_GE(output[i * output_stride() + c], output_min)
|
|
<< "batch index = " << i << ", channel = " << c;
|
|
ASSERT_NEAR(
|
|
output_ref[i * output_channels() + c],
|
|
output[i * output_stride() + c],
|
|
1.0e-4 * std::abs(output_ref[i * output_channels() + c]))
|
|
<< "batch index = " << i << ", channel = " << c;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
size_t input_channels_{1};
|
|
size_t input_stride_{0};
|
|
size_t output_channels_{1};
|
|
size_t output_stride_{0};
|
|
size_t batch_size_{1};
|
|
uint8_t qmin_{0};
|
|
uint8_t qmax_{255};
|
|
bool transpose_weights_{false};
|
|
bool has_bias_{true};
|
|
size_t iterations_{1};
|
|
};
|