You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

244 lines
8.9 KiB

//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Most users requiring mutual exclusion should use Mutex.
// SpinLock is provided for use in three situations:
// - for use in code that Mutex itself depends on
// - to get a faster fast-path release under low contention (without an
// atomic read-modify-write) In return, SpinLock has worse behaviour under
// contention, which is why Mutex is preferred in most situations.
// - for async signal safety (see below)
// SpinLock is async signal safe. If a spinlock is used within a signal
// handler, all code that acquires the lock must ensure that the signal cannot
// arrive while they are holding the lock. Typically, this is done by blocking
// the signal.
#ifndef ABSL_BASE_INTERNAL_SPINLOCK_H_
#define ABSL_BASE_INTERNAL_SPINLOCK_H_
#include <stdint.h>
#include <sys/types.h>
#include <atomic>
#include "absl/base/attributes.h"
#include "absl/base/dynamic_annotations.h"
#include "absl/base/internal/low_level_scheduling.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/internal/scheduling_mode.h"
#include "absl/base/internal/tsan_mutex_interface.h"
#include "absl/base/macros.h"
#include "absl/base/port.h"
#include "absl/base/thread_annotations.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace base_internal {
class ABSL_LOCKABLE SpinLock {
public:
SpinLock() : lockword_(kSpinLockCooperative) {
ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_not_static);
}
// Special constructor for use with static SpinLock objects. E.g.,
//
// static SpinLock lock(base_internal::kLinkerInitialized);
//
// When initialized using this constructor, we depend on the fact
// that the linker has already initialized the memory appropriately. The lock
// is initialized in non-cooperative mode.
//
// A SpinLock constructed like this can be freely used from global
// initializers without worrying about the order in which global
// initializers run.
explicit SpinLock(base_internal::LinkerInitialized) {
// Does nothing; lockword_ is already initialized
ABSL_TSAN_MUTEX_CREATE(this, 0);
}
// Constructors that allow non-cooperative spinlocks to be created for use
// inside thread schedulers. Normal clients should not use these.
explicit SpinLock(base_internal::SchedulingMode mode);
SpinLock(base_internal::LinkerInitialized,
base_internal::SchedulingMode mode);
~SpinLock() { ABSL_TSAN_MUTEX_DESTROY(this, __tsan_mutex_not_static); }
// Acquire this SpinLock.
inline void Lock() ABSL_EXCLUSIVE_LOCK_FUNCTION() {
ABSL_TSAN_MUTEX_PRE_LOCK(this, 0);
if (!TryLockImpl()) {
SlowLock();
}
ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0);
}
// Try to acquire this SpinLock without blocking and return true if the
// acquisition was successful. If the lock was not acquired, false is
// returned. If this SpinLock is free at the time of the call, TryLock
// will return true with high probability.
inline bool TryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true) {
ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_try_lock);
bool res = TryLockImpl();
ABSL_TSAN_MUTEX_POST_LOCK(
this, __tsan_mutex_try_lock | (res ? 0 : __tsan_mutex_try_lock_failed),
0);
return res;
}
// Release this SpinLock, which must be held by the calling thread.
inline void Unlock() ABSL_UNLOCK_FUNCTION() {
ABSL_TSAN_MUTEX_PRE_UNLOCK(this, 0);
uint32_t lock_value = lockword_.load(std::memory_order_relaxed);
lock_value = lockword_.exchange(lock_value & kSpinLockCooperative,
std::memory_order_release);
if ((lock_value & kSpinLockDisabledScheduling) != 0) {
base_internal::SchedulingGuard::EnableRescheduling(true);
}
if ((lock_value & kWaitTimeMask) != 0) {
// Collect contentionz profile info, and speed the wakeup of any waiter.
// The wait_cycles value indicates how long this thread spent waiting
// for the lock.
SlowUnlock(lock_value);
}
ABSL_TSAN_MUTEX_POST_UNLOCK(this, 0);
}
// Determine if the lock is held. When the lock is held by the invoking
// thread, true will always be returned. Intended to be used as
// CHECK(lock.IsHeld()).
inline bool IsHeld() const {
return (lockword_.load(std::memory_order_relaxed) & kSpinLockHeld) != 0;
}
protected:
// These should not be exported except for testing.
// Store number of cycles between wait_start_time and wait_end_time in a
// lock value.
static uint32_t EncodeWaitCycles(int64_t wait_start_time,
int64_t wait_end_time);
// Extract number of wait cycles in a lock value.
static uint64_t DecodeWaitCycles(uint32_t lock_value);
// Provide access to protected method above. Use for testing only.
friend struct SpinLockTest;
private:
// lockword_ is used to store the following:
//
// bit[0] encodes whether a lock is being held.
// bit[1] encodes whether a lock uses cooperative scheduling.
// bit[2] encodes whether a lock disables scheduling.
// bit[3:31] encodes time a lock spent on waiting as a 29-bit unsigned int.
enum { kSpinLockHeld = 1 };
enum { kSpinLockCooperative = 2 };
enum { kSpinLockDisabledScheduling = 4 };
enum { kSpinLockSleeper = 8 };
enum { kWaitTimeMask = // Includes kSpinLockSleeper.
~(kSpinLockHeld | kSpinLockCooperative | kSpinLockDisabledScheduling) };
// Returns true if the provided scheduling mode is cooperative.
static constexpr bool IsCooperative(
base_internal::SchedulingMode scheduling_mode) {
return scheduling_mode == base_internal::SCHEDULE_COOPERATIVE_AND_KERNEL;
}
uint32_t TryLockInternal(uint32_t lock_value, uint32_t wait_cycles);
void InitLinkerInitializedAndCooperative();
void SlowLock() ABSL_ATTRIBUTE_COLD;
void SlowUnlock(uint32_t lock_value) ABSL_ATTRIBUTE_COLD;
uint32_t SpinLoop();
inline bool TryLockImpl() {
uint32_t lock_value = lockword_.load(std::memory_order_relaxed);
return (TryLockInternal(lock_value, 0) & kSpinLockHeld) == 0;
}
std::atomic<uint32_t> lockword_;
SpinLock(const SpinLock&) = delete;
SpinLock& operator=(const SpinLock&) = delete;
};
// Corresponding locker object that arranges to acquire a spinlock for
// the duration of a C++ scope.
class ABSL_SCOPED_LOCKABLE SpinLockHolder {
public:
inline explicit SpinLockHolder(SpinLock* l) ABSL_EXCLUSIVE_LOCK_FUNCTION(l)
: lock_(l) {
l->Lock();
}
inline ~SpinLockHolder() ABSL_UNLOCK_FUNCTION() { lock_->Unlock(); }
SpinLockHolder(const SpinLockHolder&) = delete;
SpinLockHolder& operator=(const SpinLockHolder&) = delete;
private:
SpinLock* lock_;
};
// Register a hook for profiling support.
//
// The function pointer registered here will be called whenever a spinlock is
// contended. The callback is given an opaque handle to the contended spinlock
// and the number of wait cycles. This is thread-safe, but only a single
// profiler can be registered. It is an error to call this function multiple
// times with different arguments.
void RegisterSpinLockProfiler(void (*fn)(const void* lock,
int64_t wait_cycles));
//------------------------------------------------------------------------------
// Public interface ends here.
//------------------------------------------------------------------------------
// If (result & kSpinLockHeld) == 0, then *this was successfully locked.
// Otherwise, returns last observed value for lockword_.
inline uint32_t SpinLock::TryLockInternal(uint32_t lock_value,
uint32_t wait_cycles) {
if ((lock_value & kSpinLockHeld) != 0) {
return lock_value;
}
uint32_t sched_disabled_bit = 0;
if ((lock_value & kSpinLockCooperative) == 0) {
// For non-cooperative locks we must make sure we mark ourselves as
// non-reschedulable before we attempt to CompareAndSwap.
if (base_internal::SchedulingGuard::DisableRescheduling()) {
sched_disabled_bit = kSpinLockDisabledScheduling;
}
}
if (!lockword_.compare_exchange_strong(
lock_value,
kSpinLockHeld | lock_value | wait_cycles | sched_disabled_bit,
std::memory_order_acquire, std::memory_order_relaxed)) {
base_internal::SchedulingGuard::EnableRescheduling(sched_disabled_bit != 0);
}
return lock_value;
}
} // namespace base_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_BASE_INTERNAL_SPINLOCK_H_