You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
272 lines
10 KiB
272 lines
10 KiB
// Copyright 2019 The Abseil Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
// -----------------------------------------------------------------------------
|
|
// File: thread_annotations.h
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// WARNING: This is a backwards compatible header and it will be removed after
|
|
// the migration to prefixed thread annotations is finished; please include
|
|
// "absl/base/thread_annotations.h".
|
|
//
|
|
// This header file contains macro definitions for thread safety annotations
|
|
// that allow developers to document the locking policies of multi-threaded
|
|
// code. The annotations can also help program analysis tools to identify
|
|
// potential thread safety issues.
|
|
//
|
|
// These annotations are implemented using compiler attributes. Using the macros
|
|
// defined here instead of raw attributes allow for portability and future
|
|
// compatibility.
|
|
//
|
|
// When referring to mutexes in the arguments of the attributes, you should
|
|
// use variable names or more complex expressions (e.g. my_object->mutex_)
|
|
// that evaluate to a concrete mutex object whenever possible. If the mutex
|
|
// you want to refer to is not in scope, you may use a member pointer
|
|
// (e.g. &MyClass::mutex_) to refer to a mutex in some (unknown) object.
|
|
|
|
#ifndef ABSL_BASE_INTERNAL_THREAD_ANNOTATIONS_H_
|
|
#define ABSL_BASE_INTERNAL_THREAD_ANNOTATIONS_H_
|
|
|
|
#if defined(__clang__)
|
|
#define THREAD_ANNOTATION_ATTRIBUTE__(x) __attribute__((x))
|
|
#else
|
|
#define THREAD_ANNOTATION_ATTRIBUTE__(x) // no-op
|
|
#endif
|
|
|
|
// GUARDED_BY()
|
|
//
|
|
// Documents if a shared field or global variable needs to be protected by a
|
|
// mutex. GUARDED_BY() allows the user to specify a particular mutex that
|
|
// should be held when accessing the annotated variable.
|
|
//
|
|
// Although this annotation (and PT_GUARDED_BY, below) cannot be applied to
|
|
// local variables, a local variable and its associated mutex can often be
|
|
// combined into a small class or struct, thereby allowing the annotation.
|
|
//
|
|
// Example:
|
|
//
|
|
// class Foo {
|
|
// Mutex mu_;
|
|
// int p1_ GUARDED_BY(mu_);
|
|
// ...
|
|
// };
|
|
#define GUARDED_BY(x) THREAD_ANNOTATION_ATTRIBUTE__(guarded_by(x))
|
|
|
|
// PT_GUARDED_BY()
|
|
//
|
|
// Documents if the memory location pointed to by a pointer should be guarded
|
|
// by a mutex when dereferencing the pointer.
|
|
//
|
|
// Example:
|
|
// class Foo {
|
|
// Mutex mu_;
|
|
// int *p1_ PT_GUARDED_BY(mu_);
|
|
// ...
|
|
// };
|
|
//
|
|
// Note that a pointer variable to a shared memory location could itself be a
|
|
// shared variable.
|
|
//
|
|
// Example:
|
|
//
|
|
// // `q_`, guarded by `mu1_`, points to a shared memory location that is
|
|
// // guarded by `mu2_`:
|
|
// int *q_ GUARDED_BY(mu1_) PT_GUARDED_BY(mu2_);
|
|
#define PT_GUARDED_BY(x) THREAD_ANNOTATION_ATTRIBUTE__(pt_guarded_by(x))
|
|
|
|
// ACQUIRED_AFTER() / ACQUIRED_BEFORE()
|
|
//
|
|
// Documents the acquisition order between locks that can be held
|
|
// simultaneously by a thread. For any two locks that need to be annotated
|
|
// to establish an acquisition order, only one of them needs the annotation.
|
|
// (i.e. You don't have to annotate both locks with both ACQUIRED_AFTER
|
|
// and ACQUIRED_BEFORE.)
|
|
//
|
|
// As with GUARDED_BY, this is only applicable to mutexes that are shared
|
|
// fields or global variables.
|
|
//
|
|
// Example:
|
|
//
|
|
// Mutex m1_;
|
|
// Mutex m2_ ACQUIRED_AFTER(m1_);
|
|
#define ACQUIRED_AFTER(...) \
|
|
THREAD_ANNOTATION_ATTRIBUTE__(acquired_after(__VA_ARGS__))
|
|
|
|
#define ACQUIRED_BEFORE(...) \
|
|
THREAD_ANNOTATION_ATTRIBUTE__(acquired_before(__VA_ARGS__))
|
|
|
|
// EXCLUSIVE_LOCKS_REQUIRED() / SHARED_LOCKS_REQUIRED()
|
|
//
|
|
// Documents a function that expects a mutex to be held prior to entry.
|
|
// The mutex is expected to be held both on entry to, and exit from, the
|
|
// function.
|
|
//
|
|
// An exclusive lock allows read-write access to the guarded data member(s), and
|
|
// only one thread can acquire a lock exclusively at any one time. A shared lock
|
|
// allows read-only access, and any number of threads can acquire a shared lock
|
|
// concurrently.
|
|
//
|
|
// Generally, non-const methods should be annotated with
|
|
// EXCLUSIVE_LOCKS_REQUIRED, while const methods should be annotated with
|
|
// SHARED_LOCKS_REQUIRED.
|
|
//
|
|
// Example:
|
|
//
|
|
// Mutex mu1, mu2;
|
|
// int a GUARDED_BY(mu1);
|
|
// int b GUARDED_BY(mu2);
|
|
//
|
|
// void foo() EXCLUSIVE_LOCKS_REQUIRED(mu1, mu2) { ... }
|
|
// void bar() const SHARED_LOCKS_REQUIRED(mu1, mu2) { ... }
|
|
#define EXCLUSIVE_LOCKS_REQUIRED(...) \
|
|
THREAD_ANNOTATION_ATTRIBUTE__(exclusive_locks_required(__VA_ARGS__))
|
|
|
|
#define SHARED_LOCKS_REQUIRED(...) \
|
|
THREAD_ANNOTATION_ATTRIBUTE__(shared_locks_required(__VA_ARGS__))
|
|
|
|
// LOCKS_EXCLUDED()
|
|
//
|
|
// Documents the locks acquired in the body of the function. These locks
|
|
// cannot be held when calling this function (as Abseil's `Mutex` locks are
|
|
// non-reentrant).
|
|
#define LOCKS_EXCLUDED(...) \
|
|
THREAD_ANNOTATION_ATTRIBUTE__(locks_excluded(__VA_ARGS__))
|
|
|
|
// LOCK_RETURNED()
|
|
//
|
|
// Documents a function that returns a mutex without acquiring it. For example,
|
|
// a public getter method that returns a pointer to a private mutex should
|
|
// be annotated with LOCK_RETURNED.
|
|
#define LOCK_RETURNED(x) \
|
|
THREAD_ANNOTATION_ATTRIBUTE__(lock_returned(x))
|
|
|
|
// LOCKABLE
|
|
//
|
|
// Documents if a class/type is a lockable type (such as the `Mutex` class).
|
|
#define LOCKABLE \
|
|
THREAD_ANNOTATION_ATTRIBUTE__(lockable)
|
|
|
|
// SCOPED_LOCKABLE
|
|
//
|
|
// Documents if a class does RAII locking (such as the `MutexLock` class).
|
|
// The constructor should use `LOCK_FUNCTION()` to specify the mutex that is
|
|
// acquired, and the destructor should use `UNLOCK_FUNCTION()` with no
|
|
// arguments; the analysis will assume that the destructor unlocks whatever the
|
|
// constructor locked.
|
|
#define SCOPED_LOCKABLE \
|
|
THREAD_ANNOTATION_ATTRIBUTE__(scoped_lockable)
|
|
|
|
// EXCLUSIVE_LOCK_FUNCTION()
|
|
//
|
|
// Documents functions that acquire a lock in the body of a function, and do
|
|
// not release it.
|
|
#define EXCLUSIVE_LOCK_FUNCTION(...) \
|
|
THREAD_ANNOTATION_ATTRIBUTE__(exclusive_lock_function(__VA_ARGS__))
|
|
|
|
// SHARED_LOCK_FUNCTION()
|
|
//
|
|
// Documents functions that acquire a shared (reader) lock in the body of a
|
|
// function, and do not release it.
|
|
#define SHARED_LOCK_FUNCTION(...) \
|
|
THREAD_ANNOTATION_ATTRIBUTE__(shared_lock_function(__VA_ARGS__))
|
|
|
|
// UNLOCK_FUNCTION()
|
|
//
|
|
// Documents functions that expect a lock to be held on entry to the function,
|
|
// and release it in the body of the function.
|
|
#define UNLOCK_FUNCTION(...) \
|
|
THREAD_ANNOTATION_ATTRIBUTE__(unlock_function(__VA_ARGS__))
|
|
|
|
// EXCLUSIVE_TRYLOCK_FUNCTION() / SHARED_TRYLOCK_FUNCTION()
|
|
//
|
|
// Documents functions that try to acquire a lock, and return success or failure
|
|
// (or a non-boolean value that can be interpreted as a boolean).
|
|
// The first argument should be `true` for functions that return `true` on
|
|
// success, or `false` for functions that return `false` on success. The second
|
|
// argument specifies the mutex that is locked on success. If unspecified, this
|
|
// mutex is assumed to be `this`.
|
|
#define EXCLUSIVE_TRYLOCK_FUNCTION(...) \
|
|
THREAD_ANNOTATION_ATTRIBUTE__(exclusive_trylock_function(__VA_ARGS__))
|
|
|
|
#define SHARED_TRYLOCK_FUNCTION(...) \
|
|
THREAD_ANNOTATION_ATTRIBUTE__(shared_trylock_function(__VA_ARGS__))
|
|
|
|
// ASSERT_EXCLUSIVE_LOCK() / ASSERT_SHARED_LOCK()
|
|
//
|
|
// Documents functions that dynamically check to see if a lock is held, and fail
|
|
// if it is not held.
|
|
#define ASSERT_EXCLUSIVE_LOCK(...) \
|
|
THREAD_ANNOTATION_ATTRIBUTE__(assert_exclusive_lock(__VA_ARGS__))
|
|
|
|
#define ASSERT_SHARED_LOCK(...) \
|
|
THREAD_ANNOTATION_ATTRIBUTE__(assert_shared_lock(__VA_ARGS__))
|
|
|
|
// NO_THREAD_SAFETY_ANALYSIS
|
|
//
|
|
// Turns off thread safety checking within the body of a particular function.
|
|
// This annotation is used to mark functions that are known to be correct, but
|
|
// the locking behavior is more complicated than the analyzer can handle.
|
|
#define NO_THREAD_SAFETY_ANALYSIS \
|
|
THREAD_ANNOTATION_ATTRIBUTE__(no_thread_safety_analysis)
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Tool-Supplied Annotations
|
|
//------------------------------------------------------------------------------
|
|
|
|
// TS_UNCHECKED should be placed around lock expressions that are not valid
|
|
// C++ syntax, but which are present for documentation purposes. These
|
|
// annotations will be ignored by the analysis.
|
|
#define TS_UNCHECKED(x) ""
|
|
|
|
// TS_FIXME is used to mark lock expressions that are not valid C++ syntax.
|
|
// It is used by automated tools to mark and disable invalid expressions.
|
|
// The annotation should either be fixed, or changed to TS_UNCHECKED.
|
|
#define TS_FIXME(x) ""
|
|
|
|
// Like NO_THREAD_SAFETY_ANALYSIS, this turns off checking within the body of
|
|
// a particular function. However, this attribute is used to mark functions
|
|
// that are incorrect and need to be fixed. It is used by automated tools to
|
|
// avoid breaking the build when the analysis is updated.
|
|
// Code owners are expected to eventually fix the routine.
|
|
#define NO_THREAD_SAFETY_ANALYSIS_FIXME NO_THREAD_SAFETY_ANALYSIS
|
|
|
|
// Similar to NO_THREAD_SAFETY_ANALYSIS_FIXME, this macro marks a GUARDED_BY
|
|
// annotation that needs to be fixed, because it is producing thread safety
|
|
// warning. It disables the GUARDED_BY.
|
|
#define GUARDED_BY_FIXME(x)
|
|
|
|
// Disables warnings for a single read operation. This can be used to avoid
|
|
// warnings when it is known that the read is not actually involved in a race,
|
|
// but the compiler cannot confirm that.
|
|
#define TS_UNCHECKED_READ(x) thread_safety_analysis::ts_unchecked_read(x)
|
|
|
|
|
|
namespace thread_safety_analysis {
|
|
|
|
// Takes a reference to a guarded data member, and returns an unguarded
|
|
// reference.
|
|
template <typename T>
|
|
inline const T& ts_unchecked_read(const T& v) NO_THREAD_SAFETY_ANALYSIS {
|
|
return v;
|
|
}
|
|
|
|
template <typename T>
|
|
inline T& ts_unchecked_read(T& v) NO_THREAD_SAFETY_ANALYSIS {
|
|
return v;
|
|
}
|
|
|
|
} // namespace thread_safety_analysis
|
|
|
|
#endif // ABSL_BASE_INTERNAL_THREAD_ANNOTATIONS_H_
|