You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

672 lines
24 KiB

//
// Copyright 2019 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_FLAGS_INTERNAL_FLAG_H_
#define ABSL_FLAGS_INTERNAL_FLAG_H_
#include <stdint.h>
#include <atomic>
#include <cstring>
#include <memory>
#include <string>
#include <type_traits>
#include "absl/base/call_once.h"
#include "absl/base/config.h"
#include "absl/base/thread_annotations.h"
#include "absl/flags/config.h"
#include "absl/flags/internal/commandlineflag.h"
#include "absl/flags/internal/registry.h"
#include "absl/memory/memory.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
#include "absl/synchronization/mutex.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace flags_internal {
template <typename T>
class Flag;
///////////////////////////////////////////////////////////////////////////////
// Flag value type operations, eg., parsing, copying, etc. are provided
// by function specific to that type with a signature matching FlagOpFn.
enum class FlagOp {
kDelete,
kClone,
kCopy,
kCopyConstruct,
kSizeof,
kStaticTypeId,
kParse,
kUnparse,
};
using FlagOpFn = void* (*)(FlagOp, const void*, void*, void*);
// Flag value specific operations routine.
template <typename T>
void* FlagOps(FlagOp op, const void* v1, void* v2, void* v3) {
switch (op) {
case FlagOp::kDelete:
delete static_cast<const T*>(v1);
return nullptr;
case FlagOp::kClone:
return new T(*static_cast<const T*>(v1));
case FlagOp::kCopy:
*static_cast<T*>(v2) = *static_cast<const T*>(v1);
return nullptr;
case FlagOp::kCopyConstruct:
new (v2) T(*static_cast<const T*>(v1));
return nullptr;
case FlagOp::kSizeof:
return reinterpret_cast<void*>(sizeof(T));
case FlagOp::kStaticTypeId:
return reinterpret_cast<void*>(&FlagStaticTypeIdGen<T>);
case FlagOp::kParse: {
// Initialize the temporary instance of type T based on current value in
// destination (which is going to be flag's default value).
T temp(*static_cast<T*>(v2));
if (!absl::ParseFlag<T>(*static_cast<const absl::string_view*>(v1), &temp,
static_cast<std::string*>(v3))) {
return nullptr;
}
*static_cast<T*>(v2) = std::move(temp);
return v2;
}
case FlagOp::kUnparse:
*static_cast<std::string*>(v2) =
absl::UnparseFlag<T>(*static_cast<const T*>(v1));
return nullptr;
default:
return nullptr;
}
}
// Deletes memory interpreting obj as flag value type pointer.
inline void Delete(FlagOpFn op, const void* obj) {
op(FlagOp::kDelete, obj, nullptr, nullptr);
}
// Makes a copy of flag value pointed by obj.
inline void* Clone(FlagOpFn op, const void* obj) {
return op(FlagOp::kClone, obj, nullptr, nullptr);
}
// Copies src to dst interpreting as flag value type pointers.
inline void Copy(FlagOpFn op, const void* src, void* dst) {
op(FlagOp::kCopy, src, dst, nullptr);
}
// Construct a copy of flag value in a location pointed by dst
// based on src - pointer to the flag's value.
inline void CopyConstruct(FlagOpFn op, const void* src, void* dst) {
op(FlagOp::kCopyConstruct, src, dst, nullptr);
}
// Returns true if parsing of input text is successfull.
inline bool Parse(FlagOpFn op, absl::string_view text, void* dst,
std::string* error) {
return op(FlagOp::kParse, &text, dst, error) != nullptr;
}
// Returns string representing supplied value.
inline std::string Unparse(FlagOpFn op, const void* val) {
std::string result;
op(FlagOp::kUnparse, val, &result, nullptr);
return result;
}
// Returns size of flag value type.
inline size_t Sizeof(FlagOpFn op) {
// This sequence of casts reverses the sequence from
// `flags_internal::FlagOps()`
return static_cast<size_t>(reinterpret_cast<intptr_t>(
op(FlagOp::kSizeof, nullptr, nullptr, nullptr)));
}
// Returns static type id coresponding to the value type.
inline FlagStaticTypeId StaticTypeId(FlagOpFn op) {
return reinterpret_cast<FlagStaticTypeId>(
op(FlagOp::kStaticTypeId, nullptr, nullptr, nullptr));
}
///////////////////////////////////////////////////////////////////////////////
// Persistent state of the flag data.
template <typename T>
class FlagState : public flags_internal::FlagStateInterface {
public:
FlagState(Flag<T>* flag, T&& cur, bool modified, bool on_command_line,
int64_t counter)
: flag_(flag),
cur_value_(std::move(cur)),
modified_(modified),
on_command_line_(on_command_line),
counter_(counter) {}
~FlagState() override = default;
private:
friend class Flag<T>;
// Restores the flag to the saved state.
void Restore() const override;
// Flag and saved flag data.
Flag<T>* flag_;
T cur_value_;
bool modified_;
bool on_command_line_;
int64_t counter_;
};
///////////////////////////////////////////////////////////////////////////////
// Flag help auxiliary structs.
// This is help argument for absl::Flag encapsulating the string literal pointer
// or pointer to function generating it as well as enum descriminating two
// cases.
using HelpGenFunc = std::string (*)();
union FlagHelpMsg {
constexpr explicit FlagHelpMsg(const char* help_msg) : literal(help_msg) {}
constexpr explicit FlagHelpMsg(HelpGenFunc help_gen) : gen_func(help_gen) {}
const char* literal;
HelpGenFunc gen_func;
};
enum class FlagHelpKind : uint8_t { kLiteral = 0, kGenFunc = 1 };
struct FlagHelpArg {
FlagHelpMsg source;
FlagHelpKind kind;
};
extern const char kStrippedFlagHelp[];
// HelpConstexprWrap is used by struct AbslFlagHelpGenFor##name generated by
// ABSL_FLAG macro. It is only used to silence the compiler in the case where
// help message expression is not constexpr and does not have type const char*.
// If help message expression is indeed constexpr const char* HelpConstexprWrap
// is just a trivial identity function.
template <typename T>
const char* HelpConstexprWrap(const T&) {
return nullptr;
}
constexpr const char* HelpConstexprWrap(const char* p) { return p; }
constexpr const char* HelpConstexprWrap(char* p) { return p; }
// These two HelpArg overloads allows us to select at compile time one of two
// way to pass Help argument to absl::Flag. We'll be passing
// AbslFlagHelpGenFor##name as T and integer 0 as a single argument to prefer
// first overload if possible. If T::Const is evaluatable on constexpr
// context (see non template int parameter below) we'll choose first overload.
// In this case the help message expression is immediately evaluated and is used
// to construct the absl::Flag. No additionl code is generated by ABSL_FLAG.
// Otherwise SFINAE kicks in and first overload is dropped from the
// consideration, in which case the second overload will be used. The second
// overload does not attempt to evaluate the help message expression
// immediately and instead delays the evaluation by returing the function
// pointer (&T::NonConst) genering the help message when necessary. This is
// evaluatable in constexpr context, but the cost is an extra function being
// generated in the ABSL_FLAG code.
template <typename T, int = (T::Const(), 1)>
constexpr FlagHelpArg HelpArg(int) {
return {FlagHelpMsg(T::Const()), FlagHelpKind::kLiteral};
}
template <typename T>
constexpr FlagHelpArg HelpArg(char) {
return {FlagHelpMsg(&T::NonConst), FlagHelpKind::kGenFunc};
}
///////////////////////////////////////////////////////////////////////////////
// Flag default value auxiliary structs.
// Signature for the function generating the initial flag value (usually
// based on default value supplied in flag's definition)
using FlagDfltGenFunc = void* (*)();
union FlagDefaultSrc {
constexpr explicit FlagDefaultSrc(FlagDfltGenFunc gen_func_arg)
: gen_func(gen_func_arg) {}
void* dynamic_value;
FlagDfltGenFunc gen_func;
};
enum class FlagDefaultKind : uint8_t { kDynamicValue = 0, kGenFunc = 1 };
///////////////////////////////////////////////////////////////////////////////
// Flag current value auxiliary structs.
// The minimum atomic size we believe to generate lock free code, i.e. all
// trivially copyable types not bigger this size generate lock free code.
static constexpr int kMinLockFreeAtomicSize = 8;
// The same as kMinLockFreeAtomicSize but maximum atomic size. As double words
// might use two registers, we want to dispatch the logic for them.
#if defined(ABSL_FLAGS_INTERNAL_ATOMIC_DOUBLE_WORD)
static constexpr int kMaxLockFreeAtomicSize = 16;
#else
static constexpr int kMaxLockFreeAtomicSize = 8;
#endif
// We can use atomic in cases when it fits in the register, trivially copyable
// in order to make memcpy operations.
template <typename T>
struct IsAtomicFlagTypeTrait {
static constexpr bool value =
(sizeof(T) <= kMaxLockFreeAtomicSize &&
type_traits_internal::is_trivially_copyable<T>::value);
};
// Clang does not always produce cmpxchg16b instruction when alignment of a 16
// bytes type is not 16.
struct alignas(16) FlagsInternalTwoWordsType {
int64_t first;
int64_t second;
};
constexpr bool operator==(const FlagsInternalTwoWordsType& that,
const FlagsInternalTwoWordsType& other) {
return that.first == other.first && that.second == other.second;
}
constexpr bool operator!=(const FlagsInternalTwoWordsType& that,
const FlagsInternalTwoWordsType& other) {
return !(that == other);
}
constexpr int64_t SmallAtomicInit() { return 0xababababababababll; }
template <typename T, typename S = void>
struct BestAtomicType {
using type = int64_t;
static constexpr int64_t AtomicInit() { return SmallAtomicInit(); }
};
template <typename T>
struct BestAtomicType<
T, typename std::enable_if<(kMinLockFreeAtomicSize < sizeof(T) &&
sizeof(T) <= kMaxLockFreeAtomicSize),
void>::type> {
using type = FlagsInternalTwoWordsType;
static constexpr FlagsInternalTwoWordsType AtomicInit() {
return {SmallAtomicInit(), SmallAtomicInit()};
}
};
struct FlagValue {
// Heap allocated value.
void* dynamic = nullptr;
// For some types, a copy of the current value is kept in an atomically
// accessible field.
union Atomics {
// Using small atomic for small types.
std::atomic<int64_t> small_atomic;
template <typename T,
typename K = typename std::enable_if<
(sizeof(T) <= kMinLockFreeAtomicSize), void>::type>
int64_t load() const {
return small_atomic.load(std::memory_order_acquire);
}
#if defined(ABSL_FLAGS_INTERNAL_ATOMIC_DOUBLE_WORD)
// Using big atomics for big types.
std::atomic<FlagsInternalTwoWordsType> big_atomic;
template <typename T, typename K = typename std::enable_if<
(kMinLockFreeAtomicSize < sizeof(T) &&
sizeof(T) <= kMaxLockFreeAtomicSize),
void>::type>
FlagsInternalTwoWordsType load() const {
return big_atomic.load(std::memory_order_acquire);
}
constexpr Atomics()
: big_atomic{FlagsInternalTwoWordsType{SmallAtomicInit(),
SmallAtomicInit()}} {}
#else
constexpr Atomics() : small_atomic{SmallAtomicInit()} {}
#endif
};
Atomics atomics{};
};
///////////////////////////////////////////////////////////////////////////////
// Flag callback auxiliary structs.
// Signature for the mutation callback used by watched Flags
// The callback is noexcept.
// TODO(rogeeff): add noexcept after C++17 support is added.
using FlagCallbackFunc = void (*)();
struct FlagCallback {
FlagCallbackFunc func;
absl::Mutex guard; // Guard for concurrent callback invocations.
};
///////////////////////////////////////////////////////////////////////////////
// Flag implementation, which does not depend on flag value type.
// The class encapsulates the Flag's data and access to it.
struct DynValueDeleter {
explicit DynValueDeleter(FlagOpFn op_arg = nullptr) : op(op_arg) {}
void operator()(void* ptr) const {
if (op != nullptr) Delete(op, ptr);
}
FlagOpFn op;
};
class FlagImpl {
public:
constexpr FlagImpl(const char* name, const char* filename, FlagOpFn op,
FlagHelpArg help, FlagDfltGenFunc default_value_gen)
: name_(name),
filename_(filename),
op_(op),
help_(help.source),
help_source_kind_(static_cast<uint8_t>(help.kind)),
def_kind_(static_cast<uint8_t>(FlagDefaultKind::kGenFunc)),
modified_(false),
on_command_line_(false),
counter_(0),
callback_(nullptr),
default_value_(default_value_gen),
data_guard_{} {}
// Constant access methods
absl::string_view Name() const;
std::string Filename() const;
std::string Help() const;
bool IsModified() const ABSL_LOCKS_EXCLUDED(*DataGuard());
bool IsSpecifiedOnCommandLine() const ABSL_LOCKS_EXCLUDED(*DataGuard());
std::string DefaultValue() const ABSL_LOCKS_EXCLUDED(*DataGuard());
std::string CurrentValue() const ABSL_LOCKS_EXCLUDED(*DataGuard());
void Read(void* dst) const ABSL_LOCKS_EXCLUDED(*DataGuard());
template <typename T, typename std::enable_if<
!IsAtomicFlagTypeTrait<T>::value, int>::type = 0>
void Get(T* dst) const {
AssertValidType(&flags_internal::FlagStaticTypeIdGen<T>);
Read(dst);
}
// Overload for `GetFlag()` for types that support lock-free reads.
template <typename T, typename std::enable_if<IsAtomicFlagTypeTrait<T>::value,
int>::type = 0>
void Get(T* dst) const {
// For flags of types which can be accessed "atomically" we want to avoid
// slowing down flag value access due to type validation. That's why
// this validation is hidden behind !NDEBUG
#ifndef NDEBUG
AssertValidType(&flags_internal::FlagStaticTypeIdGen<T>);
#endif
using U = flags_internal::BestAtomicType<T>;
typename U::type r = value_.atomics.template load<T>();
if (r != U::AtomicInit()) {
std::memcpy(static_cast<void*>(dst), &r, sizeof(T));
} else {
Read(dst);
}
}
template <typename T>
void Set(const T& src) {
AssertValidType(&flags_internal::FlagStaticTypeIdGen<T>);
Write(&src);
}
// Mutating access methods
void Write(const void* src) ABSL_LOCKS_EXCLUDED(*DataGuard());
bool SetFromString(absl::string_view value, FlagSettingMode set_mode,
ValueSource source, std::string* err)
ABSL_LOCKS_EXCLUDED(*DataGuard());
// If possible, updates copy of the Flag's value that is stored in an
// atomic word.
void StoreAtomic() ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
// Interfaces to operate on callbacks.
void SetCallback(const FlagCallbackFunc mutation_callback)
ABSL_LOCKS_EXCLUDED(*DataGuard());
void InvokeCallback() const ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
// Interfaces to save/restore mutable flag data
template <typename T>
std::unique_ptr<FlagStateInterface> SaveState(Flag<T>* flag) const
ABSL_LOCKS_EXCLUDED(*DataGuard()) {
T&& cur_value = flag->Get();
absl::MutexLock l(DataGuard());
return absl::make_unique<FlagState<T>>(
flag, std::move(cur_value), modified_, on_command_line_, counter_);
}
bool RestoreState(const void* value, bool modified, bool on_command_line,
int64_t counter) ABSL_LOCKS_EXCLUDED(*DataGuard());
// Value validation interfaces.
void CheckDefaultValueParsingRoundtrip() const
ABSL_LOCKS_EXCLUDED(*DataGuard());
bool ValidateInputValue(absl::string_view value) const
ABSL_LOCKS_EXCLUDED(*DataGuard());
private:
// Ensures that `data_guard_` is initialized and returns it.
absl::Mutex* DataGuard() const ABSL_LOCK_RETURNED((absl::Mutex*)&data_guard_);
// Returns heap allocated value of type T initialized with default value.
std::unique_ptr<void, DynValueDeleter> MakeInitValue() const
ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
// Flag initialization called via absl::call_once.
void Init();
// Attempts to parse supplied `value` std::string. If parsing is successful,
// returns new value. Otherwise returns nullptr.
std::unique_ptr<void, DynValueDeleter> TryParse(absl::string_view value,
std::string* err) const
ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
// Stores the flag value based on the pointer to the source.
void StoreValue(const void* src) ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
FlagHelpKind HelpSourceKind() const {
return static_cast<FlagHelpKind>(help_source_kind_);
}
FlagDefaultKind DefaultKind() const
ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard()) {
return static_cast<FlagDefaultKind>(def_kind_);
}
// Used in read/write operations to validate source/target has correct type.
// For example if flag is declared as absl::Flag<int> FLAGS_foo, a call to
// absl::GetFlag(FLAGS_foo) validates that the type of FLAGS_foo is indeed
// int. To do that we pass the "assumed" type id (which is deduced from type
// int) as an argument `op`, which is in turn is validated against the type id
// stored in flag object by flag definition statement.
void AssertValidType(FlagStaticTypeId type_id) const;
// Immutable flag's state.
// Flags name passed to ABSL_FLAG as second arg.
const char* const name_;
// The file name where ABSL_FLAG resides.
const char* const filename_;
// Type-specific operations "vtable".
const FlagOpFn op_;
// Help message literal or function to generate it.
const FlagHelpMsg help_;
// Indicates if help message was supplied as literal or generator func.
const uint8_t help_source_kind_ : 1;
// ------------------------------------------------------------------------
// The bytes containing the const bitfields must not be shared with bytes
// containing the mutable bitfields.
// ------------------------------------------------------------------------
// Unique tag for absl::call_once call to initialize this flag.
//
// The placement of this variable between the immutable and mutable bitfields
// is important as prevents them from occupying the same byte. If you remove
// this variable, make sure to maintain this property.
absl::once_flag init_control_;
// Mutable flag's state (guarded by `data_guard_`).
// If def_kind_ == kDynamicValue, default_value_ holds a dynamically allocated
// value.
uint8_t def_kind_ : 1 ABSL_GUARDED_BY(*DataGuard());
// Has this flag's value been modified?
bool modified_ : 1 ABSL_GUARDED_BY(*DataGuard());
// Has this flag been specified on command line.
bool on_command_line_ : 1 ABSL_GUARDED_BY(*DataGuard());
// Mutation counter
int64_t counter_ ABSL_GUARDED_BY(*DataGuard());
// Optional flag's callback and absl::Mutex to guard the invocations.
FlagCallback* callback_ ABSL_GUARDED_BY(*DataGuard());
// Either a pointer to the function generating the default value based on the
// value specified in ABSL_FLAG or pointer to the dynamically set default
// value via SetCommandLineOptionWithMode. def_kind_ is used to distinguish
// these two cases.
FlagDefaultSrc default_value_ ABSL_GUARDED_BY(*DataGuard());
// Current Flag Value
FlagValue value_;
// This is reserved space for an absl::Mutex to guard flag data. It will be
// initialized in FlagImpl::Init via placement new.
// We can't use "absl::Mutex data_guard_", since this class is not literal.
// We do not want to use "absl::Mutex* data_guard_", since this would require
// heap allocation during initialization, which is both slows program startup
// and can fail. Using reserved space + placement new allows us to avoid both
// problems.
alignas(absl::Mutex) mutable char data_guard_[sizeof(absl::Mutex)];
};
///////////////////////////////////////////////////////////////////////////////
// The Flag object parameterized by the flag's value type. This class implements
// flag reflection handle interface.
template <typename T>
class Flag final : public flags_internal::CommandLineFlag {
public:
constexpr Flag(const char* name, const char* filename, const FlagHelpArg help,
const FlagDfltGenFunc default_value_gen)
: impl_(name, filename, &FlagOps<T>, help, default_value_gen) {}
T Get() const {
// See implementation notes in CommandLineFlag::Get().
union U {
T value;
U() {}
~U() { value.~T(); }
};
U u;
impl_.Get(&u.value);
return std::move(u.value);
}
void Set(const T& v) { impl_.Set(v); }
void SetCallback(const FlagCallbackFunc mutation_callback) {
impl_.SetCallback(mutation_callback);
}
// CommandLineFlag interface
absl::string_view Name() const override { return impl_.Name(); }
std::string Filename() const override { return impl_.Filename(); }
absl::string_view Typename() const override { return ""; }
std::string Help() const override { return impl_.Help(); }
bool IsModified() const override { return impl_.IsModified(); }
bool IsSpecifiedOnCommandLine() const override {
return impl_.IsSpecifiedOnCommandLine();
}
std::string DefaultValue() const override { return impl_.DefaultValue(); }
std::string CurrentValue() const override { return impl_.CurrentValue(); }
bool ValidateInputValue(absl::string_view value) const override {
return impl_.ValidateInputValue(value);
}
// Interfaces to save and restore flags to/from persistent state.
// Returns current flag state or nullptr if flag does not support
// saving and restoring a state.
std::unique_ptr<FlagStateInterface> SaveState() override {
return impl_.SaveState(this);
}
// Restores the flag state to the supplied state object. If there is
// nothing to restore returns false. Otherwise returns true.
bool RestoreState(const FlagState<T>& flag_state) {
return impl_.RestoreState(&flag_state.cur_value_, flag_state.modified_,
flag_state.on_command_line_, flag_state.counter_);
}
bool SetFromString(absl::string_view value, FlagSettingMode set_mode,
ValueSource source, std::string* error) override {
return impl_.SetFromString(value, set_mode, source, error);
}
void CheckDefaultValueParsingRoundtrip() const override {
impl_.CheckDefaultValueParsingRoundtrip();
}
private:
friend class FlagState<T>;
void Read(void* dst) const override { impl_.Read(dst); }
FlagStaticTypeId TypeId() const override { return &FlagStaticTypeIdGen<T>; }
// Flag's data
FlagImpl impl_;
};
template <typename T>
inline void FlagState<T>::Restore() const {
if (flag_->RestoreState(*this)) {
ABSL_INTERNAL_LOG(INFO,
absl::StrCat("Restore saved value of ", flag_->Name(),
" to: ", flag_->CurrentValue()));
}
}
// This class facilitates Flag object registration and tail expression-based
// flag definition, for example:
// ABSL_FLAG(int, foo, 42, "Foo help").OnUpdate(NotifyFooWatcher);
template <typename T, bool do_register>
class FlagRegistrar {
public:
explicit FlagRegistrar(Flag<T>* flag) : flag_(flag) {
if (do_register) flags_internal::RegisterCommandLineFlag(flag_);
}
FlagRegistrar& OnUpdate(FlagCallbackFunc cb) && {
flag_->SetCallback(cb);
return *this;
}
// Make the registrar "die" gracefully as a bool on a line where registration
// happens. Registrar objects are intended to live only as temporary.
operator bool() const { return true; } // NOLINT
private:
Flag<T>* flag_; // Flag being registered (not owned).
};
// This struct and corresponding overload to MakeDefaultValue are used to
// facilitate usage of {} as default value in ABSL_FLAG macro.
struct EmptyBraces {};
template <typename T>
T* MakeFromDefaultValue(T t) {
return new T(std::move(t));
}
template <typename T>
T* MakeFromDefaultValue(EmptyBraces) {
return new T;
}
} // namespace flags_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_FLAGS_INTERNAL_FLAG_H_