You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

248 lines
7.8 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
#define ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
#include <cassert>
#include <cmath>
#include <istream>
#include <limits>
#include <numeric>
#include <type_traits>
#include <utility>
#include <vector>
#include "absl/random/bernoulli_distribution.h"
#include "absl/random/internal/iostream_state_saver.h"
#include "absl/random/uniform_int_distribution.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
// absl::discrete_distribution
//
// A discrete distribution produces random integers i, where 0 <= i < n
// distributed according to the discrete probability function:
//
// P(i|p0,...,pn1)=pi
//
// This class is an implementation of discrete_distribution (see
// [rand.dist.samp.discrete]).
//
// The algorithm used is Walker's Aliasing algorithm, described in Knuth, Vol 2.
// absl::discrete_distribution takes O(N) time to precompute the probabilities
// (where N is the number of possible outcomes in the distribution) at
// construction, and then takes O(1) time for each variate generation. Many
// other implementations also take O(N) time to construct an ordered sequence of
// partial sums, plus O(log N) time per variate to binary search.
//
template <typename IntType = int>
class discrete_distribution {
public:
using result_type = IntType;
class param_type {
public:
using distribution_type = discrete_distribution;
param_type() { init(); }
template <typename InputIterator>
explicit param_type(InputIterator begin, InputIterator end)
: p_(begin, end) {
init();
}
explicit param_type(std::initializer_list<double> weights) : p_(weights) {
init();
}
template <class UnaryOperation>
explicit param_type(size_t nw, double xmin, double xmax,
UnaryOperation fw) {
if (nw > 0) {
p_.reserve(nw);
double delta = (xmax - xmin) / static_cast<double>(nw);
assert(delta > 0);
double t = delta * 0.5;
for (size_t i = 0; i < nw; ++i) {
p_.push_back(fw(xmin + i * delta + t));
}
}
init();
}
const std::vector<double>& probabilities() const { return p_; }
size_t n() const { return p_.size() - 1; }
friend bool operator==(const param_type& a, const param_type& b) {
return a.probabilities() == b.probabilities();
}
friend bool operator!=(const param_type& a, const param_type& b) {
return !(a == b);
}
private:
friend class discrete_distribution;
void init();
std::vector<double> p_; // normalized probabilities
std::vector<std::pair<double, size_t>> q_; // (acceptance, alternate) pairs
static_assert(std::is_integral<result_type>::value,
"Class-template absl::discrete_distribution<> must be "
"parameterized using an integral type.");
};
discrete_distribution() : param_() {}
explicit discrete_distribution(const param_type& p) : param_(p) {}
template <typename InputIterator>
explicit discrete_distribution(InputIterator begin, InputIterator end)
: param_(begin, end) {}
explicit discrete_distribution(std::initializer_list<double> weights)
: param_(weights) {}
template <class UnaryOperation>
explicit discrete_distribution(size_t nw, double xmin, double xmax,
UnaryOperation fw)
: param_(nw, xmin, xmax, std::move(fw)) {}
void reset() {}
// generating functions
template <typename URBG>
result_type operator()(URBG& g) { // NOLINT(runtime/references)
return (*this)(g, param_);
}
template <typename URBG>
result_type operator()(URBG& g, // NOLINT(runtime/references)
const param_type& p);
const param_type& param() const { return param_; }
void param(const param_type& p) { param_ = p; }
result_type(min)() const { return 0; }
result_type(max)() const {
return static_cast<result_type>(param_.n());
} // inclusive
// NOTE [rand.dist.sample.discrete] returns a std::vector<double> not a
// const std::vector<double>&.
const std::vector<double>& probabilities() const {
return param_.probabilities();
}
friend bool operator==(const discrete_distribution& a,
const discrete_distribution& b) {
return a.param_ == b.param_;
}
friend bool operator!=(const discrete_distribution& a,
const discrete_distribution& b) {
return a.param_ != b.param_;
}
private:
param_type param_;
};
// --------------------------------------------------------------------------
// Implementation details only below
// --------------------------------------------------------------------------
namespace random_internal {
// Using the vector `*probabilities`, whose values are the weights or
// probabilities of an element being selected, constructs the proportional
// probabilities used by the discrete distribution. `*probabilities` will be
// scaled, if necessary, so that its entries sum to a value sufficiently close
// to 1.0.
std::vector<std::pair<double, size_t>> InitDiscreteDistribution(
std::vector<double>* probabilities);
} // namespace random_internal
template <typename IntType>
void discrete_distribution<IntType>::param_type::init() {
if (p_.empty()) {
p_.push_back(1.0);
q_.emplace_back(1.0, 0);
} else {
assert(n() <= (std::numeric_limits<IntType>::max)());
q_ = random_internal::InitDiscreteDistribution(&p_);
}
}
template <typename IntType>
template <typename URBG>
typename discrete_distribution<IntType>::result_type
discrete_distribution<IntType>::operator()(
URBG& g, // NOLINT(runtime/references)
const param_type& p) {
const auto idx = absl::uniform_int_distribution<result_type>(0, p.n())(g);
const auto& q = p.q_[idx];
const bool selected = absl::bernoulli_distribution(q.first)(g);
return selected ? idx : static_cast<result_type>(q.second);
}
template <typename CharT, typename Traits, typename IntType>
std::basic_ostream<CharT, Traits>& operator<<(
std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references)
const discrete_distribution<IntType>& x) {
auto saver = random_internal::make_ostream_state_saver(os);
const auto& probabilities = x.param().probabilities();
os << probabilities.size();
os.precision(random_internal::stream_precision_helper<double>::kPrecision);
for (const auto& p : probabilities) {
os << os.fill() << p;
}
return os;
}
template <typename CharT, typename Traits, typename IntType>
std::basic_istream<CharT, Traits>& operator>>(
std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references)
discrete_distribution<IntType>& x) { // NOLINT(runtime/references)
using param_type = typename discrete_distribution<IntType>::param_type;
auto saver = random_internal::make_istream_state_saver(is);
size_t n;
std::vector<double> p;
is >> n;
if (is.fail()) return is;
if (n > 0) {
p.reserve(n);
for (IntType i = 0; i < n && !is.fail(); ++i) {
auto tmp = random_internal::read_floating_point<double>(is);
if (is.fail()) return is;
p.push_back(tmp);
}
}
x.param(param_type(p.begin(), p.end()));
return is;
}
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_