You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
639 lines
23 KiB
639 lines
23 KiB
// Copyright 2017 The Abseil Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
// HERMETIC NOTE: The randen_hwaes target must not introduce duplicate
|
|
// symbols from arbitrary system and other headers, since it may be built
|
|
// with different flags from other targets, using different levels of
|
|
// optimization, potentially introducing ODR violations.
|
|
|
|
#include "absl/random/internal/randen_hwaes.h"
|
|
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
|
|
#include "absl/base/attributes.h"
|
|
#include "absl/random/internal/platform.h"
|
|
|
|
// ABSL_RANDEN_HWAES_IMPL indicates whether this file will contain
|
|
// a hardware accelerated implementation of randen, or whether it
|
|
// will contain stubs that exit the process.
|
|
#if defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32)
|
|
// The platform.h directives are sufficient to indicate whether
|
|
// we should build accelerated implementations for x86.
|
|
#if (ABSL_HAVE_ACCELERATED_AES || ABSL_RANDOM_INTERNAL_AES_DISPATCH)
|
|
#define ABSL_RANDEN_HWAES_IMPL 1
|
|
#endif
|
|
#elif defined(ABSL_ARCH_PPC)
|
|
// The platform.h directives are sufficient to indicate whether
|
|
// we should build accelerated implementations for PPC.
|
|
//
|
|
// NOTE: This has mostly been tested on 64-bit Power variants,
|
|
// and not embedded cpus such as powerpc32-8540
|
|
#if ABSL_HAVE_ACCELERATED_AES
|
|
#define ABSL_RANDEN_HWAES_IMPL 1
|
|
#endif
|
|
#elif defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64)
|
|
// ARM is somewhat more complicated. We might support crypto natively...
|
|
#if ABSL_HAVE_ACCELERATED_AES || \
|
|
(defined(__ARM_NEON) && defined(__ARM_FEATURE_CRYPTO))
|
|
#define ABSL_RANDEN_HWAES_IMPL 1
|
|
|
|
#elif ABSL_RANDOM_INTERNAL_AES_DISPATCH && !defined(__APPLE__) && \
|
|
(defined(__GNUC__) && __GNUC__ > 4 || __GNUC__ == 4 && __GNUC_MINOR__ > 9)
|
|
// ...or, on GCC, we can use an ASM directive to
|
|
// instruct the assember to allow crypto instructions.
|
|
#define ABSL_RANDEN_HWAES_IMPL 1
|
|
#define ABSL_RANDEN_HWAES_IMPL_CRYPTO_DIRECTIVE 1
|
|
#endif
|
|
#else
|
|
// HWAES is unsupported by these architectures / platforms:
|
|
// __myriad2__
|
|
// __mips__
|
|
//
|
|
// Other architectures / platforms are unknown.
|
|
//
|
|
// See the Abseil documentation on supported macros at:
|
|
// https://abseil.io/docs/cpp/platforms/macros
|
|
#endif
|
|
|
|
#if !defined(ABSL_RANDEN_HWAES_IMPL)
|
|
// No accelerated implementation is supported.
|
|
// The RandenHwAes functions are stubs that print an error and exit.
|
|
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
|
|
namespace absl {
|
|
ABSL_NAMESPACE_BEGIN
|
|
namespace random_internal {
|
|
|
|
// No accelerated implementation.
|
|
bool HasRandenHwAesImplementation() { return false; }
|
|
|
|
// NOLINTNEXTLINE
|
|
const void* RandenHwAes::GetKeys() {
|
|
// Attempted to dispatch to an unsupported dispatch target.
|
|
const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH;
|
|
fprintf(stderr, "AES Hardware detection failed (%d).\n", d);
|
|
exit(1);
|
|
return nullptr;
|
|
}
|
|
|
|
// NOLINTNEXTLINE
|
|
void RandenHwAes::Absorb(const void*, void*) {
|
|
// Attempted to dispatch to an unsupported dispatch target.
|
|
const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH;
|
|
fprintf(stderr, "AES Hardware detection failed (%d).\n", d);
|
|
exit(1);
|
|
}
|
|
|
|
// NOLINTNEXTLINE
|
|
void RandenHwAes::Generate(const void*, void*) {
|
|
// Attempted to dispatch to an unsupported dispatch target.
|
|
const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH;
|
|
fprintf(stderr, "AES Hardware detection failed (%d).\n", d);
|
|
exit(1);
|
|
}
|
|
|
|
} // namespace random_internal
|
|
ABSL_NAMESPACE_END
|
|
} // namespace absl
|
|
|
|
#else // defined(ABSL_RANDEN_HWAES_IMPL)
|
|
//
|
|
// Accelerated implementations are supported.
|
|
// We need the per-architecture includes and defines.
|
|
//
|
|
|
|
#include "absl/random/internal/randen_traits.h"
|
|
|
|
// TARGET_CRYPTO defines a crypto attribute for each architecture.
|
|
//
|
|
// NOTE: Evaluate whether we should eliminate ABSL_TARGET_CRYPTO.
|
|
#if (defined(__clang__) || defined(__GNUC__))
|
|
#if defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32)
|
|
#define ABSL_TARGET_CRYPTO __attribute__((target("aes")))
|
|
#elif defined(ABSL_ARCH_PPC)
|
|
#define ABSL_TARGET_CRYPTO __attribute__((target("crypto")))
|
|
#else
|
|
#define ABSL_TARGET_CRYPTO
|
|
#endif
|
|
#else
|
|
#define ABSL_TARGET_CRYPTO
|
|
#endif
|
|
|
|
#if defined(ABSL_ARCH_PPC)
|
|
// NOTE: Keep in mind that PPC can operate in little-endian or big-endian mode,
|
|
// however the PPC altivec vector registers (and thus the AES instructions)
|
|
// always operate in big-endian mode.
|
|
|
|
#include <altivec.h>
|
|
// <altivec.h> #defines vector __vector; in C++, this is bad form.
|
|
#undef vector
|
|
|
|
// Rely on the PowerPC AltiVec vector operations for accelerated AES
|
|
// instructions. GCC support of the PPC vector types is described in:
|
|
// https://gcc.gnu.org/onlinedocs/gcc-4.9.0/gcc/PowerPC-AltiVec_002fVSX-Built-in-Functions.html
|
|
//
|
|
// Already provides operator^=.
|
|
using Vector128 = __vector unsigned long long; // NOLINT(runtime/int)
|
|
|
|
namespace {
|
|
|
|
inline ABSL_TARGET_CRYPTO Vector128 ReverseBytes(const Vector128& v) {
|
|
// Reverses the bytes of the vector.
|
|
const __vector unsigned char perm = {15, 14, 13, 12, 11, 10, 9, 8,
|
|
7, 6, 5, 4, 3, 2, 1, 0};
|
|
return vec_perm(v, v, perm);
|
|
}
|
|
|
|
// WARNING: these load/store in native byte order. It is OK to load and then
|
|
// store an unchanged vector, but interpreting the bits as a number or input
|
|
// to AES will have undefined results.
|
|
inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* from) {
|
|
return vec_vsx_ld(0, reinterpret_cast<const Vector128*>(from));
|
|
}
|
|
|
|
inline ABSL_TARGET_CRYPTO void Vector128Store(const Vector128& v, void* to) {
|
|
vec_vsx_st(v, 0, reinterpret_cast<Vector128*>(to));
|
|
}
|
|
|
|
// One round of AES. "round_key" is a public constant for breaking the
|
|
// symmetry of AES (ensures previously equal columns differ afterwards).
|
|
inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state,
|
|
const Vector128& round_key) {
|
|
return Vector128(__builtin_crypto_vcipher(state, round_key));
|
|
}
|
|
|
|
// Enables native loads in the round loop by pre-swapping.
|
|
inline ABSL_TARGET_CRYPTO void SwapEndian(uint64_t* state) {
|
|
using absl::random_internal::RandenTraits;
|
|
constexpr size_t kLanes = 2;
|
|
constexpr size_t kFeistelBlocks = RandenTraits::kFeistelBlocks;
|
|
|
|
for (uint32_t branch = 0; branch < kFeistelBlocks; ++branch) {
|
|
const Vector128 v = ReverseBytes(Vector128Load(state + kLanes * branch));
|
|
Vector128Store(v, state + kLanes * branch);
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
#elif defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64)
|
|
|
|
// This asm directive will cause the file to be compiled with crypto extensions
|
|
// whether or not the cpu-architecture supports it.
|
|
#if ABSL_RANDEN_HWAES_IMPL_CRYPTO_DIRECTIVE
|
|
asm(".arch_extension crypto\n");
|
|
|
|
// Override missing defines.
|
|
#if !defined(__ARM_NEON)
|
|
#define __ARM_NEON 1
|
|
#endif
|
|
|
|
#if !defined(__ARM_FEATURE_CRYPTO)
|
|
#define __ARM_FEATURE_CRYPTO 1
|
|
#endif
|
|
|
|
#endif
|
|
|
|
// Rely on the ARM NEON+Crypto advanced simd types, defined in <arm_neon.h>.
|
|
// uint8x16_t is the user alias for underlying __simd128_uint8_t type.
|
|
// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf
|
|
//
|
|
// <arm_neon> defines the following
|
|
//
|
|
// typedef __attribute__((neon_vector_type(16))) uint8_t uint8x16_t;
|
|
// typedef __attribute__((neon_vector_type(16))) int8_t int8x16_t;
|
|
// typedef __attribute__((neon_polyvector_type(16))) int8_t poly8x16_t;
|
|
//
|
|
// vld1q_v
|
|
// vst1q_v
|
|
// vaeseq_v
|
|
// vaesmcq_v
|
|
#include <arm_neon.h>
|
|
|
|
// Already provides operator^=.
|
|
using Vector128 = uint8x16_t;
|
|
|
|
namespace {
|
|
|
|
inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* from) {
|
|
return vld1q_u8(reinterpret_cast<const uint8_t*>(from));
|
|
}
|
|
|
|
inline ABSL_TARGET_CRYPTO void Vector128Store(const Vector128& v, void* to) {
|
|
vst1q_u8(reinterpret_cast<uint8_t*>(to), v);
|
|
}
|
|
|
|
// One round of AES. "round_key" is a public constant for breaking the
|
|
// symmetry of AES (ensures previously equal columns differ afterwards).
|
|
inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state,
|
|
const Vector128& round_key) {
|
|
// It is important to always use the full round function - omitting the
|
|
// final MixColumns reduces security [https://eprint.iacr.org/2010/041.pdf]
|
|
// and does not help because we never decrypt.
|
|
//
|
|
// Note that ARM divides AES instructions differently than x86 / PPC,
|
|
// And we need to skip the first AddRoundKey step and add an extra
|
|
// AddRoundKey step to the end. Lucky for us this is just XOR.
|
|
return vaesmcq_u8(vaeseq_u8(state, uint8x16_t{})) ^ round_key;
|
|
}
|
|
|
|
inline ABSL_TARGET_CRYPTO void SwapEndian(uint64_t*) {}
|
|
|
|
} // namespace
|
|
|
|
#elif defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32)
|
|
// On x86 we rely on the aesni instructions
|
|
#include <wmmintrin.h>
|
|
|
|
namespace {
|
|
|
|
// Vector128 class is only wrapper for __m128i, benchmark indicates that it's
|
|
// faster than using __m128i directly.
|
|
class Vector128 {
|
|
public:
|
|
// Convert from/to intrinsics.
|
|
inline explicit Vector128(const __m128i& Vector128) : data_(Vector128) {}
|
|
|
|
inline __m128i data() const { return data_; }
|
|
|
|
inline Vector128& operator^=(const Vector128& other) {
|
|
data_ = _mm_xor_si128(data_, other.data());
|
|
return *this;
|
|
}
|
|
|
|
private:
|
|
__m128i data_;
|
|
};
|
|
|
|
inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* from) {
|
|
return Vector128(_mm_load_si128(reinterpret_cast<const __m128i*>(from)));
|
|
}
|
|
|
|
inline ABSL_TARGET_CRYPTO void Vector128Store(const Vector128& v, void* to) {
|
|
_mm_store_si128(reinterpret_cast<__m128i*>(to), v.data());
|
|
}
|
|
|
|
// One round of AES. "round_key" is a public constant for breaking the
|
|
// symmetry of AES (ensures previously equal columns differ afterwards).
|
|
inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state,
|
|
const Vector128& round_key) {
|
|
// It is important to always use the full round function - omitting the
|
|
// final MixColumns reduces security [https://eprint.iacr.org/2010/041.pdf]
|
|
// and does not help because we never decrypt.
|
|
return Vector128(_mm_aesenc_si128(state.data(), round_key.data()));
|
|
}
|
|
|
|
inline ABSL_TARGET_CRYPTO void SwapEndian(uint64_t*) {}
|
|
|
|
} // namespace
|
|
|
|
#endif
|
|
|
|
namespace {
|
|
|
|
// u64x2 is a 128-bit, (2 x uint64_t lanes) struct used to store
|
|
// the randen_keys.
|
|
struct alignas(16) u64x2 {
|
|
constexpr u64x2(uint64_t hi, uint64_t lo)
|
|
#if defined(ABSL_ARCH_PPC)
|
|
// This has been tested with PPC running in little-endian mode;
|
|
// We byte-swap the u64x2 structure from little-endian to big-endian
|
|
// because altivec always runs in big-endian mode.
|
|
: v{__builtin_bswap64(hi), __builtin_bswap64(lo)} {
|
|
#else
|
|
: v{lo, hi} {
|
|
#endif
|
|
}
|
|
|
|
constexpr bool operator==(const u64x2& other) const {
|
|
return v[0] == other.v[0] && v[1] == other.v[1];
|
|
}
|
|
|
|
constexpr bool operator!=(const u64x2& other) const {
|
|
return !(*this == other);
|
|
}
|
|
|
|
uint64_t v[2];
|
|
}; // namespace
|
|
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Wunknown-pragmas"
|
|
#endif
|
|
|
|
// At this point, all of the platform-specific features have been defined /
|
|
// implemented.
|
|
//
|
|
// REQUIRES: using u64x2 = ...
|
|
// REQUIRES: using Vector128 = ...
|
|
// REQUIRES: Vector128 Vector128Load(void*) {...}
|
|
// REQUIRES: void Vector128Store(Vector128, void*) {...}
|
|
// REQUIRES: Vector128 AesRound(Vector128, Vector128) {...}
|
|
// REQUIRES: void SwapEndian(uint64_t*) {...}
|
|
//
|
|
// PROVIDES: absl::random_internal::RandenHwAes::Absorb
|
|
// PROVIDES: absl::random_internal::RandenHwAes::Generate
|
|
|
|
// RANDen = RANDom generator or beetroots in Swiss German.
|
|
// 'Strong' (well-distributed, unpredictable, backtracking-resistant) random
|
|
// generator, faster in some benchmarks than std::mt19937_64 and pcg64_c32.
|
|
//
|
|
// High-level summary:
|
|
// 1) Reverie (see "A Robust and Sponge-Like PRNG with Improved Efficiency") is
|
|
// a sponge-like random generator that requires a cryptographic permutation.
|
|
// It improves upon "Provably Robust Sponge-Based PRNGs and KDFs" by
|
|
// achieving backtracking resistance with only one Permute() per buffer.
|
|
//
|
|
// 2) "Simpira v2: A Family of Efficient Permutations Using the AES Round
|
|
// Function" constructs up to 1024-bit permutations using an improved
|
|
// Generalized Feistel network with 2-round AES-128 functions. This Feistel
|
|
// block shuffle achieves diffusion faster and is less vulnerable to
|
|
// sliced-biclique attacks than the Type-2 cyclic shuffle.
|
|
//
|
|
// 3) "Improving the Generalized Feistel" and "New criterion for diffusion
|
|
// property" extends the same kind of improved Feistel block shuffle to 16
|
|
// branches, which enables a 2048-bit permutation.
|
|
//
|
|
// We combine these three ideas and also change Simpira's subround keys from
|
|
// structured/low-entropy counters to digits of Pi.
|
|
|
|
// Randen constants.
|
|
using absl::random_internal::RandenTraits;
|
|
constexpr size_t kStateBytes = RandenTraits::kStateBytes;
|
|
constexpr size_t kCapacityBytes = RandenTraits::kCapacityBytes;
|
|
constexpr size_t kFeistelBlocks = RandenTraits::kFeistelBlocks;
|
|
constexpr size_t kFeistelRounds = RandenTraits::kFeistelRounds;
|
|
constexpr size_t kFeistelFunctions = RandenTraits::kFeistelFunctions;
|
|
|
|
// Independent keys (272 = 2.1 KiB) for the first AES subround of each function.
|
|
constexpr size_t kKeys = kFeistelRounds * kFeistelFunctions;
|
|
|
|
// INCLUDE keys.
|
|
#include "absl/random/internal/randen-keys.inc"
|
|
|
|
static_assert(kKeys == kRoundKeys, "kKeys and kRoundKeys must be equal");
|
|
static_assert(round_keys[kKeys - 1] != u64x2(0, 0),
|
|
"Too few round_keys initializers");
|
|
|
|
// Number of uint64_t lanes per 128-bit vector;
|
|
constexpr size_t kLanes = 2;
|
|
|
|
// Block shuffles applies a shuffle to the entire state between AES rounds.
|
|
// Improved odd-even shuffle from "New criterion for diffusion property".
|
|
inline ABSL_TARGET_CRYPTO void BlockShuffle(uint64_t* state) {
|
|
static_assert(kFeistelBlocks == 16, "Expecting 16 FeistelBlocks.");
|
|
|
|
constexpr size_t shuffle[kFeistelBlocks] = {7, 2, 13, 4, 11, 8, 3, 6,
|
|
15, 0, 9, 10, 1, 14, 5, 12};
|
|
|
|
// The fully unrolled loop without the memcpy improves the speed by about
|
|
// 30% over the equivalent loop.
|
|
const Vector128 v0 = Vector128Load(state + kLanes * shuffle[0]);
|
|
const Vector128 v1 = Vector128Load(state + kLanes * shuffle[1]);
|
|
const Vector128 v2 = Vector128Load(state + kLanes * shuffle[2]);
|
|
const Vector128 v3 = Vector128Load(state + kLanes * shuffle[3]);
|
|
const Vector128 v4 = Vector128Load(state + kLanes * shuffle[4]);
|
|
const Vector128 v5 = Vector128Load(state + kLanes * shuffle[5]);
|
|
const Vector128 v6 = Vector128Load(state + kLanes * shuffle[6]);
|
|
const Vector128 v7 = Vector128Load(state + kLanes * shuffle[7]);
|
|
const Vector128 w0 = Vector128Load(state + kLanes * shuffle[8]);
|
|
const Vector128 w1 = Vector128Load(state + kLanes * shuffle[9]);
|
|
const Vector128 w2 = Vector128Load(state + kLanes * shuffle[10]);
|
|
const Vector128 w3 = Vector128Load(state + kLanes * shuffle[11]);
|
|
const Vector128 w4 = Vector128Load(state + kLanes * shuffle[12]);
|
|
const Vector128 w5 = Vector128Load(state + kLanes * shuffle[13]);
|
|
const Vector128 w6 = Vector128Load(state + kLanes * shuffle[14]);
|
|
const Vector128 w7 = Vector128Load(state + kLanes * shuffle[15]);
|
|
|
|
Vector128Store(v0, state + kLanes * 0);
|
|
Vector128Store(v1, state + kLanes * 1);
|
|
Vector128Store(v2, state + kLanes * 2);
|
|
Vector128Store(v3, state + kLanes * 3);
|
|
Vector128Store(v4, state + kLanes * 4);
|
|
Vector128Store(v5, state + kLanes * 5);
|
|
Vector128Store(v6, state + kLanes * 6);
|
|
Vector128Store(v7, state + kLanes * 7);
|
|
Vector128Store(w0, state + kLanes * 8);
|
|
Vector128Store(w1, state + kLanes * 9);
|
|
Vector128Store(w2, state + kLanes * 10);
|
|
Vector128Store(w3, state + kLanes * 11);
|
|
Vector128Store(w4, state + kLanes * 12);
|
|
Vector128Store(w5, state + kLanes * 13);
|
|
Vector128Store(w6, state + kLanes * 14);
|
|
Vector128Store(w7, state + kLanes * 15);
|
|
}
|
|
|
|
// Feistel round function using two AES subrounds. Very similar to F()
|
|
// from Simpira v2, but with independent subround keys. Uses 17 AES rounds
|
|
// per 16 bytes (vs. 10 for AES-CTR). Computing eight round functions in
|
|
// parallel hides the 7-cycle AESNI latency on HSW. Note that the Feistel
|
|
// XORs are 'free' (included in the second AES instruction).
|
|
inline ABSL_TARGET_CRYPTO const u64x2* FeistelRound(
|
|
uint64_t* state, const u64x2* ABSL_RANDOM_INTERNAL_RESTRICT keys) {
|
|
static_assert(kFeistelBlocks == 16, "Expecting 16 FeistelBlocks.");
|
|
|
|
// MSVC does a horrible job at unrolling loops.
|
|
// So we unroll the loop by hand to improve the performance.
|
|
const Vector128 s0 = Vector128Load(state + kLanes * 0);
|
|
const Vector128 s1 = Vector128Load(state + kLanes * 1);
|
|
const Vector128 s2 = Vector128Load(state + kLanes * 2);
|
|
const Vector128 s3 = Vector128Load(state + kLanes * 3);
|
|
const Vector128 s4 = Vector128Load(state + kLanes * 4);
|
|
const Vector128 s5 = Vector128Load(state + kLanes * 5);
|
|
const Vector128 s6 = Vector128Load(state + kLanes * 6);
|
|
const Vector128 s7 = Vector128Load(state + kLanes * 7);
|
|
const Vector128 s8 = Vector128Load(state + kLanes * 8);
|
|
const Vector128 s9 = Vector128Load(state + kLanes * 9);
|
|
const Vector128 s10 = Vector128Load(state + kLanes * 10);
|
|
const Vector128 s11 = Vector128Load(state + kLanes * 11);
|
|
const Vector128 s12 = Vector128Load(state + kLanes * 12);
|
|
const Vector128 s13 = Vector128Load(state + kLanes * 13);
|
|
const Vector128 s14 = Vector128Load(state + kLanes * 14);
|
|
const Vector128 s15 = Vector128Load(state + kLanes * 15);
|
|
|
|
// Encode even blocks with keys.
|
|
const Vector128 e0 = AesRound(s0, Vector128Load(keys + 0));
|
|
const Vector128 e2 = AesRound(s2, Vector128Load(keys + 1));
|
|
const Vector128 e4 = AesRound(s4, Vector128Load(keys + 2));
|
|
const Vector128 e6 = AesRound(s6, Vector128Load(keys + 3));
|
|
const Vector128 e8 = AesRound(s8, Vector128Load(keys + 4));
|
|
const Vector128 e10 = AesRound(s10, Vector128Load(keys + 5));
|
|
const Vector128 e12 = AesRound(s12, Vector128Load(keys + 6));
|
|
const Vector128 e14 = AesRound(s14, Vector128Load(keys + 7));
|
|
|
|
// Encode odd blocks with even output from above.
|
|
const Vector128 o1 = AesRound(e0, s1);
|
|
const Vector128 o3 = AesRound(e2, s3);
|
|
const Vector128 o5 = AesRound(e4, s5);
|
|
const Vector128 o7 = AesRound(e6, s7);
|
|
const Vector128 o9 = AesRound(e8, s9);
|
|
const Vector128 o11 = AesRound(e10, s11);
|
|
const Vector128 o13 = AesRound(e12, s13);
|
|
const Vector128 o15 = AesRound(e14, s15);
|
|
|
|
// Store odd blocks. (These will be shuffled later).
|
|
Vector128Store(o1, state + kLanes * 1);
|
|
Vector128Store(o3, state + kLanes * 3);
|
|
Vector128Store(o5, state + kLanes * 5);
|
|
Vector128Store(o7, state + kLanes * 7);
|
|
Vector128Store(o9, state + kLanes * 9);
|
|
Vector128Store(o11, state + kLanes * 11);
|
|
Vector128Store(o13, state + kLanes * 13);
|
|
Vector128Store(o15, state + kLanes * 15);
|
|
|
|
return keys + 8;
|
|
}
|
|
|
|
// Cryptographic permutation based via type-2 Generalized Feistel Network.
|
|
// Indistinguishable from ideal by chosen-ciphertext adversaries using less than
|
|
// 2^64 queries if the round function is a PRF. This is similar to the b=8 case
|
|
// of Simpira v2, but more efficient than its generic construction for b=16.
|
|
inline ABSL_TARGET_CRYPTO void Permute(
|
|
const void* ABSL_RANDOM_INTERNAL_RESTRICT keys, uint64_t* state) {
|
|
const u64x2* ABSL_RANDOM_INTERNAL_RESTRICT keys128 =
|
|
static_cast<const u64x2*>(keys);
|
|
|
|
// (Successfully unrolled; the first iteration jumps into the second half)
|
|
#ifdef __clang__
|
|
#pragma clang loop unroll_count(2)
|
|
#endif
|
|
for (size_t round = 0; round < kFeistelRounds; ++round) {
|
|
keys128 = FeistelRound(state, keys128);
|
|
BlockShuffle(state);
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
namespace absl {
|
|
ABSL_NAMESPACE_BEGIN
|
|
namespace random_internal {
|
|
|
|
bool HasRandenHwAesImplementation() { return true; }
|
|
|
|
const void* ABSL_TARGET_CRYPTO RandenHwAes::GetKeys() {
|
|
// Round keys for one AES per Feistel round and branch.
|
|
// The canonical implementation uses first digits of Pi.
|
|
return round_keys;
|
|
}
|
|
|
|
// NOLINTNEXTLINE
|
|
void ABSL_TARGET_CRYPTO RandenHwAes::Absorb(const void* seed_void,
|
|
void* state_void) {
|
|
auto* state = static_cast<uint64_t*>(state_void);
|
|
const auto* seed = static_cast<const uint64_t*>(seed_void);
|
|
|
|
constexpr size_t kCapacityBlocks = kCapacityBytes / sizeof(Vector128);
|
|
constexpr size_t kStateBlocks = kStateBytes / sizeof(Vector128);
|
|
|
|
static_assert(kCapacityBlocks * sizeof(Vector128) == kCapacityBytes,
|
|
"Not i*V");
|
|
static_assert(kCapacityBlocks == 1, "Unexpected Randen kCapacityBlocks");
|
|
static_assert(kStateBlocks == 16, "Unexpected Randen kStateBlocks");
|
|
|
|
Vector128 b1 = Vector128Load(state + kLanes * 1);
|
|
b1 ^= Vector128Load(seed + kLanes * 0);
|
|
Vector128Store(b1, state + kLanes * 1);
|
|
|
|
Vector128 b2 = Vector128Load(state + kLanes * 2);
|
|
b2 ^= Vector128Load(seed + kLanes * 1);
|
|
Vector128Store(b2, state + kLanes * 2);
|
|
|
|
Vector128 b3 = Vector128Load(state + kLanes * 3);
|
|
b3 ^= Vector128Load(seed + kLanes * 2);
|
|
Vector128Store(b3, state + kLanes * 3);
|
|
|
|
Vector128 b4 = Vector128Load(state + kLanes * 4);
|
|
b4 ^= Vector128Load(seed + kLanes * 3);
|
|
Vector128Store(b4, state + kLanes * 4);
|
|
|
|
Vector128 b5 = Vector128Load(state + kLanes * 5);
|
|
b5 ^= Vector128Load(seed + kLanes * 4);
|
|
Vector128Store(b5, state + kLanes * 5);
|
|
|
|
Vector128 b6 = Vector128Load(state + kLanes * 6);
|
|
b6 ^= Vector128Load(seed + kLanes * 5);
|
|
Vector128Store(b6, state + kLanes * 6);
|
|
|
|
Vector128 b7 = Vector128Load(state + kLanes * 7);
|
|
b7 ^= Vector128Load(seed + kLanes * 6);
|
|
Vector128Store(b7, state + kLanes * 7);
|
|
|
|
Vector128 b8 = Vector128Load(state + kLanes * 8);
|
|
b8 ^= Vector128Load(seed + kLanes * 7);
|
|
Vector128Store(b8, state + kLanes * 8);
|
|
|
|
Vector128 b9 = Vector128Load(state + kLanes * 9);
|
|
b9 ^= Vector128Load(seed + kLanes * 8);
|
|
Vector128Store(b9, state + kLanes * 9);
|
|
|
|
Vector128 b10 = Vector128Load(state + kLanes * 10);
|
|
b10 ^= Vector128Load(seed + kLanes * 9);
|
|
Vector128Store(b10, state + kLanes * 10);
|
|
|
|
Vector128 b11 = Vector128Load(state + kLanes * 11);
|
|
b11 ^= Vector128Load(seed + kLanes * 10);
|
|
Vector128Store(b11, state + kLanes * 11);
|
|
|
|
Vector128 b12 = Vector128Load(state + kLanes * 12);
|
|
b12 ^= Vector128Load(seed + kLanes * 11);
|
|
Vector128Store(b12, state + kLanes * 12);
|
|
|
|
Vector128 b13 = Vector128Load(state + kLanes * 13);
|
|
b13 ^= Vector128Load(seed + kLanes * 12);
|
|
Vector128Store(b13, state + kLanes * 13);
|
|
|
|
Vector128 b14 = Vector128Load(state + kLanes * 14);
|
|
b14 ^= Vector128Load(seed + kLanes * 13);
|
|
Vector128Store(b14, state + kLanes * 14);
|
|
|
|
Vector128 b15 = Vector128Load(state + kLanes * 15);
|
|
b15 ^= Vector128Load(seed + kLanes * 14);
|
|
Vector128Store(b15, state + kLanes * 15);
|
|
}
|
|
|
|
// NOLINTNEXTLINE
|
|
void ABSL_TARGET_CRYPTO RandenHwAes::Generate(const void* keys,
|
|
void* state_void) {
|
|
static_assert(kCapacityBytes == sizeof(Vector128), "Capacity mismatch");
|
|
|
|
auto* state = static_cast<uint64_t*>(state_void);
|
|
|
|
const Vector128 prev_inner = Vector128Load(state);
|
|
|
|
SwapEndian(state);
|
|
|
|
Permute(keys, state);
|
|
|
|
SwapEndian(state);
|
|
|
|
// Ensure backtracking resistance.
|
|
Vector128 inner = Vector128Load(state);
|
|
inner ^= prev_inner;
|
|
Vector128Store(inner, state);
|
|
}
|
|
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic pop
|
|
#endif
|
|
|
|
} // namespace random_internal
|
|
ABSL_NAMESPACE_END
|
|
} // namespace absl
|
|
|
|
#endif // (ABSL_RANDEN_HWAES_IMPL)
|