You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
424 lines
14 KiB
424 lines
14 KiB
//===-- asan_interface_test.cc --------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of AddressSanitizer, an address sanity checker.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "asan_test_utils.h"
|
|
#include <sanitizer/allocator_interface.h>
|
|
#include <sanitizer/asan_interface.h>
|
|
|
|
TEST(AddressSanitizerInterface, GetEstimatedAllocatedSize) {
|
|
EXPECT_EQ(0U, __sanitizer_get_estimated_allocated_size(0));
|
|
const size_t sizes[] = { 1, 30, 1<<30 };
|
|
for (size_t i = 0; i < 3; i++) {
|
|
EXPECT_EQ(sizes[i], __sanitizer_get_estimated_allocated_size(sizes[i]));
|
|
}
|
|
}
|
|
|
|
static const char* kGetAllocatedSizeErrorMsg =
|
|
"attempting to call __sanitizer_get_allocated_size";
|
|
|
|
TEST(AddressSanitizerInterface, GetAllocatedSizeAndOwnershipTest) {
|
|
const size_t kArraySize = 100;
|
|
char *array = Ident((char*)malloc(kArraySize));
|
|
int *int_ptr = Ident(new int);
|
|
|
|
// Allocated memory is owned by allocator. Allocated size should be
|
|
// equal to requested size.
|
|
EXPECT_EQ(true, __sanitizer_get_ownership(array));
|
|
EXPECT_EQ(kArraySize, __sanitizer_get_allocated_size(array));
|
|
EXPECT_EQ(true, __sanitizer_get_ownership(int_ptr));
|
|
EXPECT_EQ(sizeof(int), __sanitizer_get_allocated_size(int_ptr));
|
|
|
|
// We cannot call GetAllocatedSize from the memory we didn't map,
|
|
// and from the interior pointers (not returned by previous malloc).
|
|
void *wild_addr = (void*)0x1;
|
|
EXPECT_FALSE(__sanitizer_get_ownership(wild_addr));
|
|
EXPECT_DEATH(__sanitizer_get_allocated_size(wild_addr),
|
|
kGetAllocatedSizeErrorMsg);
|
|
EXPECT_FALSE(__sanitizer_get_ownership(array + kArraySize / 2));
|
|
EXPECT_DEATH(__sanitizer_get_allocated_size(array + kArraySize / 2),
|
|
kGetAllocatedSizeErrorMsg);
|
|
|
|
// NULL is not owned, but is a valid argument for
|
|
// __sanitizer_get_allocated_size().
|
|
EXPECT_FALSE(__sanitizer_get_ownership(NULL));
|
|
EXPECT_EQ(0U, __sanitizer_get_allocated_size(NULL));
|
|
|
|
// When memory is freed, it's not owned, and call to GetAllocatedSize
|
|
// is forbidden.
|
|
free(array);
|
|
EXPECT_FALSE(__sanitizer_get_ownership(array));
|
|
EXPECT_DEATH(__sanitizer_get_allocated_size(array),
|
|
kGetAllocatedSizeErrorMsg);
|
|
delete int_ptr;
|
|
|
|
void *zero_alloc = Ident(malloc(0));
|
|
if (zero_alloc != 0) {
|
|
// If malloc(0) is not null, this pointer is owned and should have valid
|
|
// allocated size.
|
|
EXPECT_TRUE(__sanitizer_get_ownership(zero_alloc));
|
|
// Allocated size is 0 or 1 depending on the allocator used.
|
|
EXPECT_LT(__sanitizer_get_allocated_size(zero_alloc), 2U);
|
|
}
|
|
free(zero_alloc);
|
|
}
|
|
|
|
TEST(AddressSanitizerInterface, GetCurrentAllocatedBytesTest) {
|
|
size_t before_malloc, after_malloc, after_free;
|
|
char *array;
|
|
const size_t kMallocSize = 100;
|
|
before_malloc = __sanitizer_get_current_allocated_bytes();
|
|
|
|
array = Ident((char*)malloc(kMallocSize));
|
|
after_malloc = __sanitizer_get_current_allocated_bytes();
|
|
EXPECT_EQ(before_malloc + kMallocSize, after_malloc);
|
|
|
|
free(array);
|
|
after_free = __sanitizer_get_current_allocated_bytes();
|
|
EXPECT_EQ(before_malloc, after_free);
|
|
}
|
|
|
|
TEST(AddressSanitizerInterface, GetHeapSizeTest) {
|
|
// ASan allocator does not keep huge chunks in free list, but unmaps them.
|
|
// The chunk should be greater than the quarantine size,
|
|
// otherwise it will be stuck in quarantine instead of being unmaped.
|
|
static const size_t kLargeMallocSize = (1 << 28) + 1; // 256M
|
|
free(Ident(malloc(kLargeMallocSize))); // Drain quarantine.
|
|
size_t old_heap_size = __sanitizer_get_heap_size();
|
|
for (int i = 0; i < 3; i++) {
|
|
// fprintf(stderr, "allocating %zu bytes:\n", kLargeMallocSize);
|
|
free(Ident(malloc(kLargeMallocSize)));
|
|
EXPECT_EQ(old_heap_size, __sanitizer_get_heap_size());
|
|
}
|
|
}
|
|
|
|
static const size_t kManyThreadsMallocSizes[] = {5, 1UL<<10, 1UL<<14, 357};
|
|
static const size_t kManyThreadsIterations = 250;
|
|
static const size_t kManyThreadsNumThreads =
|
|
(SANITIZER_WORDSIZE == 32) ? 40 : 200;
|
|
|
|
static void *ManyThreadsWithStatsWorker(void *arg) {
|
|
(void)arg;
|
|
for (size_t iter = 0; iter < kManyThreadsIterations; iter++) {
|
|
for (size_t size_index = 0; size_index < 4; size_index++) {
|
|
free(Ident(malloc(kManyThreadsMallocSizes[size_index])));
|
|
}
|
|
}
|
|
// Just one large allocation.
|
|
free(Ident(malloc(1 << 20)));
|
|
return 0;
|
|
}
|
|
|
|
TEST(AddressSanitizerInterface, ManyThreadsWithStatsStressTest) {
|
|
size_t before_test, after_test, i;
|
|
pthread_t threads[kManyThreadsNumThreads];
|
|
before_test = __sanitizer_get_current_allocated_bytes();
|
|
for (i = 0; i < kManyThreadsNumThreads; i++) {
|
|
PTHREAD_CREATE(&threads[i], 0,
|
|
(void* (*)(void *x))ManyThreadsWithStatsWorker, (void*)i);
|
|
}
|
|
for (i = 0; i < kManyThreadsNumThreads; i++) {
|
|
PTHREAD_JOIN(threads[i], 0);
|
|
}
|
|
after_test = __sanitizer_get_current_allocated_bytes();
|
|
// ASan stats also reflect memory usage of internal ASan RTL structs,
|
|
// so we can't check for equality here.
|
|
EXPECT_LT(after_test, before_test + (1UL<<20));
|
|
}
|
|
|
|
static void DoDoubleFree() {
|
|
int *x = Ident(new int);
|
|
delete Ident(x);
|
|
delete Ident(x);
|
|
}
|
|
|
|
static void MyDeathCallback() {
|
|
fprintf(stderr, "MyDeathCallback\n");
|
|
fflush(0); // On Windows, stderr doesn't flush on crash.
|
|
}
|
|
|
|
TEST(AddressSanitizerInterface, DeathCallbackTest) {
|
|
__asan_set_death_callback(MyDeathCallback);
|
|
EXPECT_DEATH(DoDoubleFree(), "MyDeathCallback");
|
|
__asan_set_death_callback(NULL);
|
|
}
|
|
|
|
static const char* kUseAfterPoisonErrorMessage = "use-after-poison";
|
|
|
|
#define GOOD_ACCESS(ptr, offset) \
|
|
EXPECT_FALSE(__asan_address_is_poisoned(ptr + offset))
|
|
|
|
#define BAD_ACCESS(ptr, offset) \
|
|
EXPECT_TRUE(__asan_address_is_poisoned(ptr + offset))
|
|
|
|
TEST(AddressSanitizerInterface, SimplePoisonMemoryRegionTest) {
|
|
char *array = Ident((char*)malloc(120));
|
|
// poison array[40..80)
|
|
__asan_poison_memory_region(array + 40, 40);
|
|
GOOD_ACCESS(array, 39);
|
|
GOOD_ACCESS(array, 80);
|
|
BAD_ACCESS(array, 40);
|
|
BAD_ACCESS(array, 60);
|
|
BAD_ACCESS(array, 79);
|
|
char value;
|
|
EXPECT_DEATH(value = Ident(array[40]), kUseAfterPoisonErrorMessage);
|
|
__asan_unpoison_memory_region(array + 40, 40);
|
|
// access previously poisoned memory.
|
|
GOOD_ACCESS(array, 40);
|
|
GOOD_ACCESS(array, 79);
|
|
free(array);
|
|
}
|
|
|
|
TEST(AddressSanitizerInterface, OverlappingPoisonMemoryRegionTest) {
|
|
char *array = Ident((char*)malloc(120));
|
|
// Poison [0..40) and [80..120)
|
|
__asan_poison_memory_region(array, 40);
|
|
__asan_poison_memory_region(array + 80, 40);
|
|
BAD_ACCESS(array, 20);
|
|
GOOD_ACCESS(array, 60);
|
|
BAD_ACCESS(array, 100);
|
|
// Poison whole array - [0..120)
|
|
__asan_poison_memory_region(array, 120);
|
|
BAD_ACCESS(array, 60);
|
|
// Unpoison [24..96)
|
|
__asan_unpoison_memory_region(array + 24, 72);
|
|
BAD_ACCESS(array, 23);
|
|
GOOD_ACCESS(array, 24);
|
|
GOOD_ACCESS(array, 60);
|
|
GOOD_ACCESS(array, 95);
|
|
BAD_ACCESS(array, 96);
|
|
free(array);
|
|
}
|
|
|
|
TEST(AddressSanitizerInterface, PushAndPopWithPoisoningTest) {
|
|
// Vector of capacity 20
|
|
char *vec = Ident((char*)malloc(20));
|
|
__asan_poison_memory_region(vec, 20);
|
|
for (size_t i = 0; i < 7; i++) {
|
|
// Simulate push_back.
|
|
__asan_unpoison_memory_region(vec + i, 1);
|
|
GOOD_ACCESS(vec, i);
|
|
BAD_ACCESS(vec, i + 1);
|
|
}
|
|
for (size_t i = 7; i > 0; i--) {
|
|
// Simulate pop_back.
|
|
__asan_poison_memory_region(vec + i - 1, 1);
|
|
BAD_ACCESS(vec, i - 1);
|
|
if (i > 1) GOOD_ACCESS(vec, i - 2);
|
|
}
|
|
free(vec);
|
|
}
|
|
|
|
// Make sure that each aligned block of size "2^granularity" doesn't have
|
|
// "true" value before "false" value.
|
|
static void MakeShadowValid(bool *shadow, int length, int granularity) {
|
|
bool can_be_poisoned = true;
|
|
for (int i = length - 1; i >= 0; i--) {
|
|
if (!shadow[i])
|
|
can_be_poisoned = false;
|
|
if (!can_be_poisoned)
|
|
shadow[i] = false;
|
|
if (i % (1 << granularity) == 0) {
|
|
can_be_poisoned = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(AddressSanitizerInterface, PoisoningStressTest) {
|
|
const size_t kSize = 24;
|
|
bool expected[kSize];
|
|
char *arr = Ident((char*)malloc(kSize));
|
|
for (size_t l1 = 0; l1 < kSize; l1++) {
|
|
for (size_t s1 = 1; l1 + s1 <= kSize; s1++) {
|
|
for (size_t l2 = 0; l2 < kSize; l2++) {
|
|
for (size_t s2 = 1; l2 + s2 <= kSize; s2++) {
|
|
// Poison [l1, l1+s1), [l2, l2+s2) and check result.
|
|
__asan_unpoison_memory_region(arr, kSize);
|
|
__asan_poison_memory_region(arr + l1, s1);
|
|
__asan_poison_memory_region(arr + l2, s2);
|
|
memset(expected, false, kSize);
|
|
memset(expected + l1, true, s1);
|
|
MakeShadowValid(expected, kSize, /*granularity*/ 3);
|
|
memset(expected + l2, true, s2);
|
|
MakeShadowValid(expected, kSize, /*granularity*/ 3);
|
|
for (size_t i = 0; i < kSize; i++) {
|
|
ASSERT_EQ(expected[i], __asan_address_is_poisoned(arr + i));
|
|
}
|
|
// Unpoison [l1, l1+s1) and [l2, l2+s2) and check result.
|
|
__asan_poison_memory_region(arr, kSize);
|
|
__asan_unpoison_memory_region(arr + l1, s1);
|
|
__asan_unpoison_memory_region(arr + l2, s2);
|
|
memset(expected, true, kSize);
|
|
memset(expected + l1, false, s1);
|
|
MakeShadowValid(expected, kSize, /*granularity*/ 3);
|
|
memset(expected + l2, false, s2);
|
|
MakeShadowValid(expected, kSize, /*granularity*/ 3);
|
|
for (size_t i = 0; i < kSize; i++) {
|
|
ASSERT_EQ(expected[i], __asan_address_is_poisoned(arr + i));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
free(arr);
|
|
}
|
|
|
|
TEST(AddressSanitizerInterface, GlobalRedzones) {
|
|
GOOD_ACCESS(glob1, 1 - 1);
|
|
GOOD_ACCESS(glob2, 2 - 1);
|
|
GOOD_ACCESS(glob3, 3 - 1);
|
|
GOOD_ACCESS(glob4, 4 - 1);
|
|
GOOD_ACCESS(glob5, 5 - 1);
|
|
GOOD_ACCESS(glob6, 6 - 1);
|
|
GOOD_ACCESS(glob7, 7 - 1);
|
|
GOOD_ACCESS(glob8, 8 - 1);
|
|
GOOD_ACCESS(glob9, 9 - 1);
|
|
GOOD_ACCESS(glob10, 10 - 1);
|
|
GOOD_ACCESS(glob11, 11 - 1);
|
|
GOOD_ACCESS(glob12, 12 - 1);
|
|
GOOD_ACCESS(glob13, 13 - 1);
|
|
GOOD_ACCESS(glob14, 14 - 1);
|
|
GOOD_ACCESS(glob15, 15 - 1);
|
|
GOOD_ACCESS(glob16, 16 - 1);
|
|
GOOD_ACCESS(glob17, 17 - 1);
|
|
GOOD_ACCESS(glob1000, 1000 - 1);
|
|
GOOD_ACCESS(glob10000, 10000 - 1);
|
|
GOOD_ACCESS(glob100000, 100000 - 1);
|
|
|
|
BAD_ACCESS(glob1, 1);
|
|
BAD_ACCESS(glob2, 2);
|
|
BAD_ACCESS(glob3, 3);
|
|
BAD_ACCESS(glob4, 4);
|
|
BAD_ACCESS(glob5, 5);
|
|
BAD_ACCESS(glob6, 6);
|
|
BAD_ACCESS(glob7, 7);
|
|
BAD_ACCESS(glob8, 8);
|
|
BAD_ACCESS(glob9, 9);
|
|
BAD_ACCESS(glob10, 10);
|
|
BAD_ACCESS(glob11, 11);
|
|
BAD_ACCESS(glob12, 12);
|
|
BAD_ACCESS(glob13, 13);
|
|
BAD_ACCESS(glob14, 14);
|
|
BAD_ACCESS(glob15, 15);
|
|
BAD_ACCESS(glob16, 16);
|
|
BAD_ACCESS(glob17, 17);
|
|
BAD_ACCESS(glob1000, 1000);
|
|
BAD_ACCESS(glob1000, 1100); // Redzone is at least 101 bytes.
|
|
BAD_ACCESS(glob10000, 10000);
|
|
BAD_ACCESS(glob10000, 11000); // Redzone is at least 1001 bytes.
|
|
BAD_ACCESS(glob100000, 100000);
|
|
BAD_ACCESS(glob100000, 110000); // Redzone is at least 10001 bytes.
|
|
}
|
|
|
|
TEST(AddressSanitizerInterface, PoisonedRegion) {
|
|
size_t rz = 16;
|
|
for (size_t size = 1; size <= 64; size++) {
|
|
char *p = new char[size];
|
|
for (size_t beg = 0; beg < size + rz; beg++) {
|
|
for (size_t end = beg; end < size + rz; end++) {
|
|
void *first_poisoned = __asan_region_is_poisoned(p + beg, end - beg);
|
|
if (beg == end) {
|
|
EXPECT_FALSE(first_poisoned);
|
|
} else if (beg < size && end <= size) {
|
|
EXPECT_FALSE(first_poisoned);
|
|
} else if (beg >= size) {
|
|
EXPECT_EQ(p + beg, first_poisoned);
|
|
} else {
|
|
EXPECT_GT(end, size);
|
|
EXPECT_EQ(p + size, first_poisoned);
|
|
}
|
|
}
|
|
}
|
|
delete [] p;
|
|
}
|
|
}
|
|
|
|
// This is a performance benchmark for manual runs.
|
|
// asan's memset interceptor calls mem_is_zero for the entire shadow region.
|
|
// the profile should look like this:
|
|
// 89.10% [.] __memset_sse2
|
|
// 10.50% [.] __sanitizer::mem_is_zero
|
|
// I.e. mem_is_zero should consume ~ SHADOW_GRANULARITY less CPU cycles
|
|
// than memset itself.
|
|
TEST(AddressSanitizerInterface, DISABLED_StressLargeMemset) {
|
|
size_t size = 1 << 20;
|
|
char *x = new char[size];
|
|
for (int i = 0; i < 100000; i++)
|
|
Ident(memset)(x, 0, size);
|
|
delete [] x;
|
|
}
|
|
|
|
// Same here, but we run memset with small sizes.
|
|
TEST(AddressSanitizerInterface, DISABLED_StressSmallMemset) {
|
|
size_t size = 32;
|
|
char *x = new char[size];
|
|
for (int i = 0; i < 100000000; i++)
|
|
Ident(memset)(x, 0, size);
|
|
delete [] x;
|
|
}
|
|
static const char *kInvalidPoisonMessage = "invalid-poison-memory-range";
|
|
static const char *kInvalidUnpoisonMessage = "invalid-unpoison-memory-range";
|
|
|
|
TEST(AddressSanitizerInterface, DISABLED_InvalidPoisonAndUnpoisonCallsTest) {
|
|
char *array = Ident((char*)malloc(120));
|
|
__asan_unpoison_memory_region(array, 120);
|
|
// Try to unpoison not owned memory
|
|
EXPECT_DEATH(__asan_unpoison_memory_region(array, 121),
|
|
kInvalidUnpoisonMessage);
|
|
EXPECT_DEATH(__asan_unpoison_memory_region(array - 1, 120),
|
|
kInvalidUnpoisonMessage);
|
|
|
|
__asan_poison_memory_region(array, 120);
|
|
// Try to poison not owned memory.
|
|
EXPECT_DEATH(__asan_poison_memory_region(array, 121), kInvalidPoisonMessage);
|
|
EXPECT_DEATH(__asan_poison_memory_region(array - 1, 120),
|
|
kInvalidPoisonMessage);
|
|
free(array);
|
|
}
|
|
|
|
#if !defined(_WIN32) // FIXME: This should really be a lit test.
|
|
static void ErrorReportCallbackOneToZ(const char *report) {
|
|
int report_len = strlen(report);
|
|
ASSERT_EQ(6, write(2, "ABCDEF", 6));
|
|
ASSERT_EQ(report_len, write(2, report, report_len));
|
|
ASSERT_EQ(6, write(2, "ABCDEF", 6));
|
|
_exit(1);
|
|
}
|
|
|
|
TEST(AddressSanitizerInterface, SetErrorReportCallbackTest) {
|
|
__asan_set_error_report_callback(ErrorReportCallbackOneToZ);
|
|
EXPECT_DEATH(__asan_report_error(0, 0, 0, 0, true, 1),
|
|
ASAN_PCRE_DOTALL "ABCDEF.*AddressSanitizer.*WRITE.*ABCDEF");
|
|
__asan_set_error_report_callback(NULL);
|
|
}
|
|
#endif
|
|
|
|
TEST(AddressSanitizerInterface, GetOwnershipStressTest) {
|
|
std::vector<char *> pointers;
|
|
std::vector<size_t> sizes;
|
|
const size_t kNumMallocs = 1 << 9;
|
|
for (size_t i = 0; i < kNumMallocs; i++) {
|
|
size_t size = i * 100 + 1;
|
|
pointers.push_back((char*)malloc(size));
|
|
sizes.push_back(size);
|
|
}
|
|
for (size_t i = 0; i < 4000000; i++) {
|
|
EXPECT_FALSE(__sanitizer_get_ownership(&pointers));
|
|
EXPECT_FALSE(__sanitizer_get_ownership((void*)0x1234));
|
|
size_t idx = i % kNumMallocs;
|
|
EXPECT_TRUE(__sanitizer_get_ownership(pointers[idx]));
|
|
EXPECT_EQ(sizes[idx], __sanitizer_get_allocated_size(pointers[idx]));
|
|
}
|
|
for (size_t i = 0, n = pointers.size(); i < n; i++)
|
|
free(pointers[i]);
|
|
}
|
|
|