You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
304 lines
8.3 KiB
304 lines
8.3 KiB
//===-- tsan_mman.cc ------------------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of ThreadSanitizer (TSan), a race detector.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "sanitizer_common/sanitizer_allocator_interface.h"
|
|
#include "sanitizer_common/sanitizer_common.h"
|
|
#include "sanitizer_common/sanitizer_placement_new.h"
|
|
#include "tsan_mman.h"
|
|
#include "tsan_rtl.h"
|
|
#include "tsan_report.h"
|
|
#include "tsan_flags.h"
|
|
|
|
// May be overriden by front-end.
|
|
SANITIZER_WEAK_DEFAULT_IMPL
|
|
void __sanitizer_malloc_hook(void *ptr, uptr size) {
|
|
(void)ptr;
|
|
(void)size;
|
|
}
|
|
|
|
SANITIZER_WEAK_DEFAULT_IMPL
|
|
void __sanitizer_free_hook(void *ptr) {
|
|
(void)ptr;
|
|
}
|
|
|
|
namespace __tsan {
|
|
|
|
struct MapUnmapCallback {
|
|
void OnMap(uptr p, uptr size) const { }
|
|
void OnUnmap(uptr p, uptr size) const {
|
|
// We are about to unmap a chunk of user memory.
|
|
// Mark the corresponding shadow memory as not needed.
|
|
DontNeedShadowFor(p, size);
|
|
// Mark the corresponding meta shadow memory as not needed.
|
|
// Note the block does not contain any meta info at this point
|
|
// (this happens after free).
|
|
const uptr kMetaRatio = kMetaShadowCell / kMetaShadowSize;
|
|
const uptr kPageSize = GetPageSizeCached() * kMetaRatio;
|
|
// Block came from LargeMmapAllocator, so must be large.
|
|
// We rely on this in the calculations below.
|
|
CHECK_GE(size, 2 * kPageSize);
|
|
uptr diff = RoundUp(p, kPageSize) - p;
|
|
if (diff != 0) {
|
|
p += diff;
|
|
size -= diff;
|
|
}
|
|
diff = p + size - RoundDown(p + size, kPageSize);
|
|
if (diff != 0)
|
|
size -= diff;
|
|
FlushUnneededShadowMemory((uptr)MemToMeta(p), size / kMetaRatio);
|
|
}
|
|
};
|
|
|
|
static char allocator_placeholder[sizeof(Allocator)] ALIGNED(64);
|
|
Allocator *allocator() {
|
|
return reinterpret_cast<Allocator*>(&allocator_placeholder);
|
|
}
|
|
|
|
struct GlobalProc {
|
|
Mutex mtx;
|
|
Processor *proc;
|
|
|
|
GlobalProc()
|
|
: mtx(MutexTypeGlobalProc, StatMtxGlobalProc)
|
|
, proc(ProcCreate()) {
|
|
}
|
|
};
|
|
|
|
static char global_proc_placeholder[sizeof(GlobalProc)] ALIGNED(64);
|
|
GlobalProc *global_proc() {
|
|
return reinterpret_cast<GlobalProc*>(&global_proc_placeholder);
|
|
}
|
|
|
|
ScopedGlobalProcessor::ScopedGlobalProcessor() {
|
|
GlobalProc *gp = global_proc();
|
|
ThreadState *thr = cur_thread();
|
|
if (thr->proc())
|
|
return;
|
|
// If we don't have a proc, use the global one.
|
|
// There are currently only two known case where this path is triggered:
|
|
// __interceptor_free
|
|
// __nptl_deallocate_tsd
|
|
// start_thread
|
|
// clone
|
|
// and:
|
|
// ResetRange
|
|
// __interceptor_munmap
|
|
// __deallocate_stack
|
|
// start_thread
|
|
// clone
|
|
// Ideally, we destroy thread state (and unwire proc) when a thread actually
|
|
// exits (i.e. when we join/wait it). Then we would not need the global proc
|
|
gp->mtx.Lock();
|
|
ProcWire(gp->proc, thr);
|
|
}
|
|
|
|
ScopedGlobalProcessor::~ScopedGlobalProcessor() {
|
|
GlobalProc *gp = global_proc();
|
|
ThreadState *thr = cur_thread();
|
|
if (thr->proc() != gp->proc)
|
|
return;
|
|
ProcUnwire(gp->proc, thr);
|
|
gp->mtx.Unlock();
|
|
}
|
|
|
|
void InitializeAllocator() {
|
|
allocator()->Init(common_flags()->allocator_may_return_null);
|
|
}
|
|
|
|
void InitializeAllocatorLate() {
|
|
new(global_proc()) GlobalProc();
|
|
}
|
|
|
|
void AllocatorProcStart(Processor *proc) {
|
|
allocator()->InitCache(&proc->alloc_cache);
|
|
internal_allocator()->InitCache(&proc->internal_alloc_cache);
|
|
}
|
|
|
|
void AllocatorProcFinish(Processor *proc) {
|
|
allocator()->DestroyCache(&proc->alloc_cache);
|
|
internal_allocator()->DestroyCache(&proc->internal_alloc_cache);
|
|
}
|
|
|
|
void AllocatorPrintStats() {
|
|
allocator()->PrintStats();
|
|
}
|
|
|
|
static void SignalUnsafeCall(ThreadState *thr, uptr pc) {
|
|
if (atomic_load_relaxed(&thr->in_signal_handler) == 0 ||
|
|
!flags()->report_signal_unsafe)
|
|
return;
|
|
VarSizeStackTrace stack;
|
|
ObtainCurrentStack(thr, pc, &stack);
|
|
if (IsFiredSuppression(ctx, ReportTypeSignalUnsafe, stack))
|
|
return;
|
|
ThreadRegistryLock l(ctx->thread_registry);
|
|
ScopedReport rep(ReportTypeSignalUnsafe);
|
|
rep.AddStack(stack, true);
|
|
OutputReport(thr, rep);
|
|
}
|
|
|
|
void *user_alloc(ThreadState *thr, uptr pc, uptr sz, uptr align, bool signal) {
|
|
if ((sz >= (1ull << 40)) || (align >= (1ull << 40)))
|
|
return allocator()->ReturnNullOrDie();
|
|
void *p = allocator()->Allocate(&thr->proc()->alloc_cache, sz, align);
|
|
if (p == 0)
|
|
return 0;
|
|
if (ctx && ctx->initialized)
|
|
OnUserAlloc(thr, pc, (uptr)p, sz, true);
|
|
if (signal)
|
|
SignalUnsafeCall(thr, pc);
|
|
return p;
|
|
}
|
|
|
|
void *user_calloc(ThreadState *thr, uptr pc, uptr size, uptr n) {
|
|
if (CallocShouldReturnNullDueToOverflow(size, n))
|
|
return allocator()->ReturnNullOrDie();
|
|
void *p = user_alloc(thr, pc, n * size);
|
|
if (p)
|
|
internal_memset(p, 0, n * size);
|
|
return p;
|
|
}
|
|
|
|
void user_free(ThreadState *thr, uptr pc, void *p, bool signal) {
|
|
ScopedGlobalProcessor sgp;
|
|
if (ctx && ctx->initialized)
|
|
OnUserFree(thr, pc, (uptr)p, true);
|
|
allocator()->Deallocate(&thr->proc()->alloc_cache, p);
|
|
if (signal)
|
|
SignalUnsafeCall(thr, pc);
|
|
}
|
|
|
|
void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write) {
|
|
DPrintf("#%d: alloc(%zu) = %p\n", thr->tid, sz, p);
|
|
ctx->metamap.AllocBlock(thr, pc, p, sz);
|
|
if (write && thr->ignore_reads_and_writes == 0)
|
|
MemoryRangeImitateWrite(thr, pc, (uptr)p, sz);
|
|
else
|
|
MemoryResetRange(thr, pc, (uptr)p, sz);
|
|
}
|
|
|
|
void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write) {
|
|
CHECK_NE(p, (void*)0);
|
|
uptr sz = ctx->metamap.FreeBlock(thr->proc(), p);
|
|
DPrintf("#%d: free(%p, %zu)\n", thr->tid, p, sz);
|
|
if (write && thr->ignore_reads_and_writes == 0)
|
|
MemoryRangeFreed(thr, pc, (uptr)p, sz);
|
|
}
|
|
|
|
void *user_realloc(ThreadState *thr, uptr pc, void *p, uptr sz) {
|
|
void *p2 = 0;
|
|
// FIXME: Handle "shrinking" more efficiently,
|
|
// it seems that some software actually does this.
|
|
if (sz) {
|
|
p2 = user_alloc(thr, pc, sz);
|
|
if (p2 == 0)
|
|
return 0;
|
|
if (p) {
|
|
uptr oldsz = user_alloc_usable_size(p);
|
|
internal_memcpy(p2, p, min(oldsz, sz));
|
|
}
|
|
}
|
|
if (p)
|
|
user_free(thr, pc, p);
|
|
return p2;
|
|
}
|
|
|
|
uptr user_alloc_usable_size(const void *p) {
|
|
if (p == 0)
|
|
return 0;
|
|
MBlock *b = ctx->metamap.GetBlock((uptr)p);
|
|
if (!b)
|
|
return 0; // Not a valid pointer.
|
|
if (b->siz == 0)
|
|
return 1; // Zero-sized allocations are actually 1 byte.
|
|
return b->siz;
|
|
}
|
|
|
|
void invoke_malloc_hook(void *ptr, uptr size) {
|
|
ThreadState *thr = cur_thread();
|
|
if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
|
|
return;
|
|
__sanitizer_malloc_hook(ptr, size);
|
|
RunMallocHooks(ptr, size);
|
|
}
|
|
|
|
void invoke_free_hook(void *ptr) {
|
|
ThreadState *thr = cur_thread();
|
|
if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
|
|
return;
|
|
__sanitizer_free_hook(ptr);
|
|
RunFreeHooks(ptr);
|
|
}
|
|
|
|
void *internal_alloc(MBlockType typ, uptr sz) {
|
|
ThreadState *thr = cur_thread();
|
|
if (thr->nomalloc) {
|
|
thr->nomalloc = 0; // CHECK calls internal_malloc().
|
|
CHECK(0);
|
|
}
|
|
return InternalAlloc(sz, &thr->proc()->internal_alloc_cache);
|
|
}
|
|
|
|
void internal_free(void *p) {
|
|
ThreadState *thr = cur_thread();
|
|
if (thr->nomalloc) {
|
|
thr->nomalloc = 0; // CHECK calls internal_malloc().
|
|
CHECK(0);
|
|
}
|
|
InternalFree(p, &thr->proc()->internal_alloc_cache);
|
|
}
|
|
|
|
} // namespace __tsan
|
|
|
|
using namespace __tsan;
|
|
|
|
extern "C" {
|
|
uptr __sanitizer_get_current_allocated_bytes() {
|
|
uptr stats[AllocatorStatCount];
|
|
allocator()->GetStats(stats);
|
|
return stats[AllocatorStatAllocated];
|
|
}
|
|
|
|
uptr __sanitizer_get_heap_size() {
|
|
uptr stats[AllocatorStatCount];
|
|
allocator()->GetStats(stats);
|
|
return stats[AllocatorStatMapped];
|
|
}
|
|
|
|
uptr __sanitizer_get_free_bytes() {
|
|
return 1;
|
|
}
|
|
|
|
uptr __sanitizer_get_unmapped_bytes() {
|
|
return 1;
|
|
}
|
|
|
|
uptr __sanitizer_get_estimated_allocated_size(uptr size) {
|
|
return size;
|
|
}
|
|
|
|
int __sanitizer_get_ownership(const void *p) {
|
|
return allocator()->GetBlockBegin(p) != 0;
|
|
}
|
|
|
|
uptr __sanitizer_get_allocated_size(const void *p) {
|
|
return user_alloc_usable_size(p);
|
|
}
|
|
|
|
void __tsan_on_thread_idle() {
|
|
ThreadState *thr = cur_thread();
|
|
allocator()->SwallowCache(&thr->proc()->alloc_cache);
|
|
internal_allocator()->SwallowCache(&thr->proc()->internal_alloc_cache);
|
|
ctx->metamap.OnProcIdle(thr->proc());
|
|
}
|
|
} // extern "C"
|