You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
348 lines
12 KiB
348 lines
12 KiB
// Copyright (c) 2018 Google LLC.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASI,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#ifndef SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_
|
|
#define SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_
|
|
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "source/opt/tree_iterator.h"
|
|
|
|
namespace spvtools {
|
|
namespace opt {
|
|
|
|
class Loop;
|
|
class ScalarEvolutionAnalysis;
|
|
class SEConstantNode;
|
|
class SERecurrentNode;
|
|
class SEAddNode;
|
|
class SEMultiplyNode;
|
|
class SENegative;
|
|
class SEValueUnknown;
|
|
class SECantCompute;
|
|
|
|
// Abstract class representing a node in the scalar evolution DAG. Each node
|
|
// contains a vector of pointers to its children and each subclass of SENode
|
|
// implements GetType and an As method to allow casting. SENodes can be hashed
|
|
// using the SENodeHash functor. The vector of children is sorted when a node is
|
|
// added. This is important as it allows the hash of X+Y to be the same as Y+X.
|
|
class SENode {
|
|
public:
|
|
enum SENodeType {
|
|
Constant,
|
|
RecurrentAddExpr,
|
|
Add,
|
|
Multiply,
|
|
Negative,
|
|
ValueUnknown,
|
|
CanNotCompute
|
|
};
|
|
|
|
using ChildContainerType = std::vector<SENode*>;
|
|
|
|
explicit SENode(ScalarEvolutionAnalysis* parent_analysis)
|
|
: parent_analysis_(parent_analysis), unique_id_(++NumberOfNodes) {}
|
|
|
|
virtual SENodeType GetType() const = 0;
|
|
|
|
virtual ~SENode() {}
|
|
|
|
virtual inline void AddChild(SENode* child) {
|
|
// If this is a constant node, assert.
|
|
if (AsSEConstantNode()) {
|
|
assert(false && "Trying to add a child node to a constant!");
|
|
}
|
|
|
|
// Find the first point in the vector where |child| is greater than the node
|
|
// currently in the vector.
|
|
auto find_first_less_than = [child](const SENode* node) {
|
|
return child->unique_id_ <= node->unique_id_;
|
|
};
|
|
|
|
auto position = std::find_if_not(children_.begin(), children_.end(),
|
|
find_first_less_than);
|
|
// Children are sorted so the hashing and equality operator will be the same
|
|
// for a node with the same children. X+Y should be the same as Y+X.
|
|
children_.insert(position, child);
|
|
}
|
|
|
|
// Get the type as an std::string. This is used to represent the node in the
|
|
// dot output and is used to hash the type as well.
|
|
std::string AsString() const;
|
|
|
|
// Dump the SENode and its immediate children, if |recurse| is true then it
|
|
// will recurse through all children to print the DAG starting from this node
|
|
// as a root.
|
|
void DumpDot(std::ostream& out, bool recurse = false) const;
|
|
|
|
// Checks if two nodes are the same by hashing them.
|
|
bool operator==(const SENode& other) const;
|
|
|
|
// Checks if two nodes are not the same by comparing the hashes.
|
|
bool operator!=(const SENode& other) const;
|
|
|
|
// Return the child node at |index|.
|
|
inline SENode* GetChild(size_t index) { return children_[index]; }
|
|
inline const SENode* GetChild(size_t index) const { return children_[index]; }
|
|
|
|
// Iterator to iterate over the child nodes.
|
|
using iterator = ChildContainerType::iterator;
|
|
using const_iterator = ChildContainerType::const_iterator;
|
|
|
|
// Iterate over immediate child nodes.
|
|
iterator begin() { return children_.begin(); }
|
|
iterator end() { return children_.end(); }
|
|
|
|
// Constant overloads for iterating over immediate child nodes.
|
|
const_iterator begin() const { return children_.cbegin(); }
|
|
const_iterator end() const { return children_.cend(); }
|
|
const_iterator cbegin() { return children_.cbegin(); }
|
|
const_iterator cend() { return children_.cend(); }
|
|
|
|
// Collect all the recurrent nodes in this SENode
|
|
std::vector<SERecurrentNode*> CollectRecurrentNodes() {
|
|
std::vector<SERecurrentNode*> recurrent_nodes{};
|
|
|
|
if (auto recurrent_node = AsSERecurrentNode()) {
|
|
recurrent_nodes.push_back(recurrent_node);
|
|
}
|
|
|
|
for (auto child : GetChildren()) {
|
|
auto child_recurrent_nodes = child->CollectRecurrentNodes();
|
|
recurrent_nodes.insert(recurrent_nodes.end(),
|
|
child_recurrent_nodes.begin(),
|
|
child_recurrent_nodes.end());
|
|
}
|
|
|
|
return recurrent_nodes;
|
|
}
|
|
|
|
// Collect all the value unknown nodes in this SENode
|
|
std::vector<SEValueUnknown*> CollectValueUnknownNodes() {
|
|
std::vector<SEValueUnknown*> value_unknown_nodes{};
|
|
|
|
if (auto value_unknown_node = AsSEValueUnknown()) {
|
|
value_unknown_nodes.push_back(value_unknown_node);
|
|
}
|
|
|
|
for (auto child : GetChildren()) {
|
|
auto child_value_unknown_nodes = child->CollectValueUnknownNodes();
|
|
value_unknown_nodes.insert(value_unknown_nodes.end(),
|
|
child_value_unknown_nodes.begin(),
|
|
child_value_unknown_nodes.end());
|
|
}
|
|
|
|
return value_unknown_nodes;
|
|
}
|
|
|
|
// Iterator to iterate over the entire DAG. Even though we are using the tree
|
|
// iterator it should still be safe to iterate over. However, nodes with
|
|
// multiple parents will be visited multiple times, unlike in a tree.
|
|
using dag_iterator = TreeDFIterator<SENode>;
|
|
using const_dag_iterator = TreeDFIterator<const SENode>;
|
|
|
|
// Iterate over all child nodes in the graph.
|
|
dag_iterator graph_begin() { return dag_iterator(this); }
|
|
dag_iterator graph_end() { return dag_iterator(); }
|
|
const_dag_iterator graph_begin() const { return graph_cbegin(); }
|
|
const_dag_iterator graph_end() const { return graph_cend(); }
|
|
const_dag_iterator graph_cbegin() const { return const_dag_iterator(this); }
|
|
const_dag_iterator graph_cend() const { return const_dag_iterator(); }
|
|
|
|
// Return the vector of immediate children.
|
|
const ChildContainerType& GetChildren() const { return children_; }
|
|
ChildContainerType& GetChildren() { return children_; }
|
|
|
|
// Return true if this node is a cant compute node.
|
|
bool IsCantCompute() const { return GetType() == CanNotCompute; }
|
|
|
|
// Implements a casting method for each type.
|
|
// clang-format off
|
|
#define DeclareCastMethod(target) \
|
|
virtual target* As##target() { return nullptr; } \
|
|
virtual const target* As##target() const { return nullptr; }
|
|
DeclareCastMethod(SEConstantNode)
|
|
DeclareCastMethod(SERecurrentNode)
|
|
DeclareCastMethod(SEAddNode)
|
|
DeclareCastMethod(SEMultiplyNode)
|
|
DeclareCastMethod(SENegative)
|
|
DeclareCastMethod(SEValueUnknown)
|
|
DeclareCastMethod(SECantCompute)
|
|
#undef DeclareCastMethod
|
|
|
|
// Get the analysis which has this node in its cache.
|
|
inline ScalarEvolutionAnalysis* GetParentAnalysis() const {
|
|
return parent_analysis_;
|
|
}
|
|
|
|
protected:
|
|
ChildContainerType children_;
|
|
|
|
ScalarEvolutionAnalysis* parent_analysis_;
|
|
|
|
// The unique id of this node, assigned on creation by incrementing the static
|
|
// node count.
|
|
uint32_t unique_id_;
|
|
|
|
// The number of nodes created.
|
|
static uint32_t NumberOfNodes;
|
|
};
|
|
// clang-format on
|
|
|
|
// Function object to handle the hashing of SENodes. Hashing algorithm hashes
|
|
// the type (as a string), the literal value of any constants, and the child
|
|
// pointers which are assumed to be unique.
|
|
struct SENodeHash {
|
|
size_t operator()(const std::unique_ptr<SENode>& node) const;
|
|
size_t operator()(const SENode* node) const;
|
|
};
|
|
|
|
// A node representing a constant integer.
|
|
class SEConstantNode : public SENode {
|
|
public:
|
|
SEConstantNode(ScalarEvolutionAnalysis* parent_analysis, int64_t value)
|
|
: SENode(parent_analysis), literal_value_(value) {}
|
|
|
|
SENodeType GetType() const final { return Constant; }
|
|
|
|
int64_t FoldToSingleValue() const { return literal_value_; }
|
|
|
|
SEConstantNode* AsSEConstantNode() override { return this; }
|
|
const SEConstantNode* AsSEConstantNode() const override { return this; }
|
|
|
|
inline void AddChild(SENode*) final {
|
|
assert(false && "Attempting to add a child to a constant node!");
|
|
}
|
|
|
|
protected:
|
|
int64_t literal_value_;
|
|
};
|
|
|
|
// A node representing a recurrent expression in the code. A recurrent
|
|
// expression is an expression whose value can be expressed as a linear
|
|
// expression of the loop iterations. Such as an induction variable. The actual
|
|
// value of a recurrent expression is coefficent_ * iteration + offset_, hence
|
|
// an induction variable i=0, i++ becomes a recurrent expression with an offset
|
|
// of zero and a coefficient of one.
|
|
class SERecurrentNode : public SENode {
|
|
public:
|
|
SERecurrentNode(ScalarEvolutionAnalysis* parent_analysis, const Loop* loop)
|
|
: SENode(parent_analysis), loop_(loop) {}
|
|
|
|
SENodeType GetType() const final { return RecurrentAddExpr; }
|
|
|
|
inline void AddCoefficient(SENode* child) {
|
|
coefficient_ = child;
|
|
SENode::AddChild(child);
|
|
}
|
|
|
|
inline void AddOffset(SENode* child) {
|
|
offset_ = child;
|
|
SENode::AddChild(child);
|
|
}
|
|
|
|
inline const SENode* GetCoefficient() const { return coefficient_; }
|
|
inline SENode* GetCoefficient() { return coefficient_; }
|
|
|
|
inline const SENode* GetOffset() const { return offset_; }
|
|
inline SENode* GetOffset() { return offset_; }
|
|
|
|
// Return the loop which this recurrent expression is recurring within.
|
|
const Loop* GetLoop() const { return loop_; }
|
|
|
|
SERecurrentNode* AsSERecurrentNode() override { return this; }
|
|
const SERecurrentNode* AsSERecurrentNode() const override { return this; }
|
|
|
|
private:
|
|
SENode* coefficient_;
|
|
SENode* offset_;
|
|
const Loop* loop_;
|
|
};
|
|
|
|
// A node representing an addition operation between child nodes.
|
|
class SEAddNode : public SENode {
|
|
public:
|
|
explicit SEAddNode(ScalarEvolutionAnalysis* parent_analysis)
|
|
: SENode(parent_analysis) {}
|
|
|
|
SENodeType GetType() const final { return Add; }
|
|
|
|
SEAddNode* AsSEAddNode() override { return this; }
|
|
const SEAddNode* AsSEAddNode() const override { return this; }
|
|
};
|
|
|
|
// A node representing a multiply operation between child nodes.
|
|
class SEMultiplyNode : public SENode {
|
|
public:
|
|
explicit SEMultiplyNode(ScalarEvolutionAnalysis* parent_analysis)
|
|
: SENode(parent_analysis) {}
|
|
|
|
SENodeType GetType() const final { return Multiply; }
|
|
|
|
SEMultiplyNode* AsSEMultiplyNode() override { return this; }
|
|
const SEMultiplyNode* AsSEMultiplyNode() const override { return this; }
|
|
};
|
|
|
|
// A node representing a unary negative operation.
|
|
class SENegative : public SENode {
|
|
public:
|
|
explicit SENegative(ScalarEvolutionAnalysis* parent_analysis)
|
|
: SENode(parent_analysis) {}
|
|
|
|
SENodeType GetType() const final { return Negative; }
|
|
|
|
SENegative* AsSENegative() override { return this; }
|
|
const SENegative* AsSENegative() const override { return this; }
|
|
};
|
|
|
|
// A node representing a value which we do not know the value of, such as a load
|
|
// instruction.
|
|
class SEValueUnknown : public SENode {
|
|
public:
|
|
// SEValueUnknowns must come from an instruction |unique_id| is the unique id
|
|
// of that instruction. This is so we cancompare value unknowns and have a
|
|
// unique value unknown for each instruction.
|
|
SEValueUnknown(ScalarEvolutionAnalysis* parent_analysis, uint32_t result_id)
|
|
: SENode(parent_analysis), result_id_(result_id) {}
|
|
|
|
SENodeType GetType() const final { return ValueUnknown; }
|
|
|
|
SEValueUnknown* AsSEValueUnknown() override { return this; }
|
|
const SEValueUnknown* AsSEValueUnknown() const override { return this; }
|
|
|
|
inline uint32_t ResultId() const { return result_id_; }
|
|
|
|
private:
|
|
uint32_t result_id_;
|
|
};
|
|
|
|
// A node which we cannot reason about at all.
|
|
class SECantCompute : public SENode {
|
|
public:
|
|
explicit SECantCompute(ScalarEvolutionAnalysis* parent_analysis)
|
|
: SENode(parent_analysis) {}
|
|
|
|
SENodeType GetType() const final { return CanNotCompute; }
|
|
|
|
SECantCompute* AsSECantCompute() override { return this; }
|
|
const SECantCompute* AsSECantCompute() const override { return this; }
|
|
};
|
|
|
|
} // namespace opt
|
|
} // namespace spvtools
|
|
#endif // SOURCE_OPT_SCALAR_ANALYSIS_NODES_H_
|