You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

509 lines
12 KiB

/*-------------------------------------------------------------------------
* drawElements Quality Program Test Executor
* ------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Test case.
*//*--------------------------------------------------------------------*/
#include "xeTestCase.hpp"
using std::vector;
namespace xe
{
const char* getTestCaseTypeName (TestCaseType caseType)
{
switch (caseType)
{
case TESTCASETYPE_SELF_VALIDATE: return "SelfValidate";
case TESTCASETYPE_CAPABILITY: return "Capability";
case TESTCASETYPE_ACCURACY: return "Accuracy";
case TESTCASETYPE_PERFORMANCE: return "Performance";
default:
DE_ASSERT(false);
return DE_NULL;
}
}
static inline int getFirstComponentLength (const char* path)
{
int compLen = 0;
while (path[compLen] != 0 && path[compLen] != '.')
compLen++;
return compLen;
}
static bool compareNameToPathComponent (const char* name, const char* path, int compLen)
{
for (int pos = 0; pos < compLen; pos++)
{
if (name[pos] != path[pos])
return false;
}
if (name[compLen] != 0)
return false;
return true;
}
static void splitPath (const char* path, std::vector<std::string>& components)
{
std::string pathStr (path);
int compStart = 0;
for (int pos = 0; pos < (int)pathStr.length(); pos++)
{
if (pathStr[pos] == '.')
{
components.push_back(pathStr.substr(compStart, pos-compStart));
compStart = pos+1;
}
}
DE_ASSERT(compStart < (int)pathStr.length());
components.push_back(pathStr.substr(compStart));
}
// TestNode
TestNode::TestNode (TestGroup* parent, TestNodeType nodeType, const char* name, const char* desc)
: m_parent (parent)
, m_nodeType (nodeType)
, m_name (name)
, m_description (desc)
{
if (m_parent)
{
// Verify that the name is unique.
if (parent->m_childNames.find(name) != parent->m_childNames.end())
throw Error(std::string("Duplicate node '") + name + "' in '" + parent->getFullPath());
m_parent->m_children.push_back(this);
m_parent->m_childNames.insert(name);
}
}
void TestNode::getFullPath (std::string& dst) const
{
dst.clear();
int nameLen = 0;
const TestNode* curNode = this;
for (;;)
{
nameLen += (int)curNode->m_name.length();
DE_ASSERT(curNode->m_parent);
if (curNode->m_parent->getNodeType() != TESTNODETYPE_ROOT)
{
nameLen += 1;
curNode = curNode->m_parent;
}
else
break;
}
dst.resize(nameLen);
curNode = this;
int pos = nameLen;
for (;;)
{
std::copy(curNode->m_name.begin(), curNode->m_name.end(), dst.begin()+(pos-curNode->m_name.length()));
pos -= (int)curNode->m_name.length();
DE_ASSERT(curNode->m_parent);
if (curNode->m_parent->getNodeType() != TESTNODETYPE_ROOT)
{
dst[--pos] = '.';
curNode = curNode->m_parent;
}
else
break;
}
}
const TestNode* TestNode::find (const char* path) const
{
if (m_nodeType == TESTNODETYPE_ROOT)
{
// Don't need to consider current node.
return static_cast<const TestGroup*>(this)->findChildNode(path);
}
else
{
// Check if first component matches this node.
int compLen = getFirstComponentLength(path);
XE_CHECK(compLen > 0);
if (compareNameToPathComponent(getName(), path, compLen))
{
if (path[compLen] == 0)
return this;
else if (getNodeType() == TESTNODETYPE_GROUP)
return static_cast<const TestGroup*>(this)->findChildNode(path + compLen + 1);
else
return DE_NULL;
}
else
return DE_NULL;
}
}
TestNode* TestNode::find (const char* path)
{
return const_cast<TestNode*>(const_cast<const TestNode*>(this)->find(path));
}
// TestGroup
TestGroup::TestGroup (TestGroup* parent, TestNodeType nodeType, const char* name, const char* description)
: TestNode(parent, nodeType, name, description)
{
DE_ASSERT(nodeType == TESTNODETYPE_GROUP || nodeType == TESTNODETYPE_ROOT);
DE_ASSERT(!parent == (nodeType == TESTNODETYPE_ROOT));
}
TestGroup::~TestGroup (void)
{
for (std::vector<TestNode*>::iterator i = m_children.begin(); i != m_children.end(); i++)
delete *i;
}
TestGroup* TestGroup::createGroup (const char* name, const char* description)
{
return new TestGroup(this, TESTNODETYPE_GROUP, name, description);
}
TestCase* TestGroup::createCase (TestCaseType caseType, const char* name, const char* description)
{
return TestCase::createAsChild(this, caseType, name, description);
}
const TestNode* TestGroup::findChildNode (const char* path) const
{
int compLen = getFirstComponentLength(path);
XE_CHECK(compLen > 0);
// Try to find matching children.
const TestNode* matchingNode = DE_NULL;
for (vector<TestNode*>::const_iterator iter = m_children.begin(); iter != m_children.end(); iter++)
{
if (compareNameToPathComponent((*iter)->getName(), path, compLen))
{
matchingNode = *iter;
break;
}
}
if (matchingNode)
{
if (path[compLen] == 0)
return matchingNode; // Last element in path, return matching node.
else if (matchingNode->getNodeType() == TESTNODETYPE_GROUP)
return static_cast<const TestGroup*>(matchingNode)->findChildNode(path + compLen + 1);
else
return DE_NULL;
}
else
return DE_NULL;
}
// TestRoot
TestRoot::TestRoot (void)
: TestGroup(DE_NULL, TESTNODETYPE_ROOT, "", "")
{
}
// TestCase
TestCase* TestCase::createAsChild(TestGroup* parent, TestCaseType caseType, const char *name, const char *description)
{
return new TestCase(parent, caseType, name, description);
}
TestCase::TestCase (TestGroup* parent, TestCaseType caseType, const char* name, const char* description)
: TestNode (parent, TESTNODETYPE_TEST_CASE, name, description)
, m_caseType (caseType)
{
}
TestCase::~TestCase (void)
{
}
// TestHierarchyBuilder helpers
void addChildGroupsToMap (std::map<std::string, TestGroup*>& groupMap, TestGroup* group)
{
for (int ndx = 0; ndx < group->getNumChildren(); ndx++)
{
TestNode* node = group->getChild(ndx);
if (node->getNodeType() == TESTNODETYPE_GROUP)
{
TestGroup* childGroup = static_cast<TestGroup*>(node);
std::string fullPath;
childGroup->getFullPath(fullPath);
groupMap.insert(std::make_pair(fullPath, childGroup));
addChildGroupsToMap(groupMap, childGroup);
}
}
}
// TestHierarchyBuilder
TestHierarchyBuilder::TestHierarchyBuilder (TestRoot* root)
: m_root(root)
{
addChildGroupsToMap(m_groupMap, root);
}
TestHierarchyBuilder::~TestHierarchyBuilder (void)
{
}
TestCase* TestHierarchyBuilder::createCase (const char* path, TestCaseType caseType)
{
// \todo [2012-09-05 pyry] This can be done with less string manipulations.
std::vector<std::string> components;
splitPath(path, components);
DE_ASSERT(!components.empty());
// Create all parents if necessary.
TestGroup* curGroup = m_root;
std::string curGroupPath;
for (int ndx = 0; ndx < (int)components.size()-1; ndx++)
{
if (!curGroupPath.empty())
curGroupPath += ".";
curGroupPath += components[ndx];
std::map<std::string, TestGroup*>::const_iterator groupPos = m_groupMap.find(curGroupPath);
if (groupPos == m_groupMap.end())
{
TestGroup* newGroup = curGroup->createGroup(components[ndx].c_str(), "" /* description */);
m_groupMap.insert(std::make_pair(curGroupPath, newGroup));
curGroup = newGroup;
}
else
curGroup = groupPos->second;
}
return curGroup->createCase(caseType, components.back().c_str(), "" /* description */);
}
// TestSet helpers
static void addNodeAndParents (std::set<const TestNode*>& nodeSet, const TestNode* node)
{
while (node != DE_NULL)
{
nodeSet.insert(node);
node = node->getParent();
}
}
static void addChildren (std::set<const TestNode*>& nodeSet, const TestGroup* group)
{
for (int ndx = 0; ndx < group->getNumChildren(); ndx++)
{
const TestNode* child = group->getChild(ndx);
nodeSet.insert(child);
if (child->getNodeType() == TESTNODETYPE_GROUP)
addChildren(nodeSet, static_cast<const TestGroup*>(child));
}
}
static void removeChildren (std::set<const TestNode*>& nodeSet, const TestGroup* group)
{
for (int ndx = 0; ndx < group->getNumChildren(); ndx++)
{
const TestNode* child = group->getChild(ndx);
nodeSet.erase(child);
if (child->getNodeType() == TESTNODETYPE_GROUP)
removeChildren(nodeSet, static_cast<const TestGroup*>(child));
}
}
static bool hasChildrenInSet (const std::set<const TestNode*>& nodeSet, const TestGroup* group)
{
for (int ndx = 0; ndx < group->getNumChildren(); ndx++)
{
if (nodeSet.find(group->getChild(ndx)) != nodeSet.end())
return true;
}
return false;
}
static void removeEmptyGroups (std::set<const TestNode*>& nodeSet, const TestGroup* group)
{
if (!hasChildrenInSet(nodeSet, group))
{
nodeSet.erase(group);
if (group->getParent() != DE_NULL)
removeEmptyGroups(nodeSet, group->getParent());
}
}
// TestSet
void TestSet::add (const TestNode* node)
{
if (node->getNodeType() == TESTNODETYPE_TEST_CASE)
addCase(static_cast<const TestCase*>(node));
else
{
XE_CHECK(node->getNodeType() == TESTNODETYPE_GROUP ||
node->getNodeType() == TESTNODETYPE_ROOT);
addGroup(static_cast<const TestGroup*>(node));
}
}
void TestSet::addCase (const TestCase* testCase)
{
addNodeAndParents(m_set, testCase);
}
void TestSet::addGroup (const TestGroup* testGroup)
{
addNodeAndParents(m_set, testGroup);
addChildren(m_set, testGroup);
}
void TestSet::remove (const TestNode* node)
{
if (node->getNodeType() == TESTNODETYPE_TEST_CASE)
removeCase(static_cast<const TestCase*>(node));
else
{
XE_CHECK(node->getNodeType() == TESTNODETYPE_GROUP ||
node->getNodeType() == TESTNODETYPE_ROOT);
removeGroup(static_cast<const TestGroup*>(node));
}
}
void TestSet::removeCase (const TestCase* testCase)
{
if (m_set.find(testCase) != m_set.end())
{
m_set.erase(testCase);
removeEmptyGroups(m_set, testCase->getParent());
}
}
void TestSet::removeGroup (const TestGroup* testGroup)
{
if (m_set.find(testGroup) != m_set.end())
{
m_set.erase(testGroup);
removeChildren(m_set, testGroup);
if (testGroup->getParent() != DE_NULL)
removeEmptyGroups(m_set, testGroup->getParent());
}
}
// ConstTestNodeIterator
ConstTestNodeIterator::ConstTestNodeIterator (const TestNode* root)
: m_root(root)
{
}
ConstTestNodeIterator ConstTestNodeIterator::begin (const TestNode* root)
{
ConstTestNodeIterator iter(root);
iter.m_iterStack.push_back(GroupState(DE_NULL));
return iter;
}
ConstTestNodeIterator ConstTestNodeIterator::end (const TestNode* root)
{
DE_UNREF(root);
return ConstTestNodeIterator(root);
}
ConstTestNodeIterator& ConstTestNodeIterator::operator++ (void)
{
DE_ASSERT(!m_iterStack.empty());
const TestNode* curNode = **this;
TestNodeType curNodeType = curNode->getNodeType();
if ((curNodeType == TESTNODETYPE_GROUP || curNodeType == TESTNODETYPE_ROOT) &&
static_cast<const TestGroup*>(curNode)->getNumChildren() > 0)
{
m_iterStack.push_back(GroupState(static_cast<const TestGroup*>(curNode)));
}
else
{
for (;;)
{
const TestGroup* group = m_iterStack.back().group;
int& childNdx = m_iterStack.back().childNdx;
int numChildren = group ? group->getNumChildren() : 1;
childNdx += 1;
if (childNdx == numChildren)
{
m_iterStack.pop_back();
if (m_iterStack.empty())
break;
}
else
break;
}
}
return *this;
}
ConstTestNodeIterator ConstTestNodeIterator::operator++ (int)
{
ConstTestNodeIterator copy(*this);
++(*this);
return copy;
}
const TestNode* ConstTestNodeIterator::operator* (void) const
{
DE_ASSERT(!m_iterStack.empty());
if (m_iterStack.size() == 1)
{
DE_ASSERT(m_iterStack[0].group == DE_NULL && m_iterStack[0].childNdx == 0);
return m_root;
}
else
return m_iterStack.back().group->getChild(m_iterStack.back().childNdx);
}
bool ConstTestNodeIterator::operator!= (const ConstTestNodeIterator& other) const
{
return m_root != other.m_root || m_iterStack != other.m_iterStack;
}
} // xe