You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1147 lines
40 KiB

/*-------------------------------------------------------------------------
* drawElements Quality Program OpenGL ES 3.1 Module
* -------------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Integer built-in function tests.
*//*--------------------------------------------------------------------*/
#include "es31fShaderIntegerFunctionTests.hpp"
#include "glsShaderExecUtil.hpp"
#include "tcuTestLog.hpp"
#include "tcuFormatUtil.hpp"
#include "tcuFloat.hpp"
#include "deRandom.hpp"
#include "deMath.h"
#include "deString.h"
#include "deInt32.h"
namespace deqp
{
namespace gles31
{
namespace Functional
{
using std::vector;
using std::string;
using tcu::TestLog;
using namespace gls::ShaderExecUtil;
using tcu::IVec2;
using tcu::IVec3;
using tcu::IVec4;
using tcu::UVec2;
using tcu::UVec3;
using tcu::UVec4;
// Utilities
namespace
{
struct HexFloat
{
const float value;
HexFloat (const float value_) : value(value_) {}
};
std::ostream& operator<< (std::ostream& str, const HexFloat& v)
{
return str << v.value << " / " << tcu::toHex(tcu::Float32(v.value).bits());
}
struct VarValue
{
const glu::VarType& type;
const void* value;
VarValue (const glu::VarType& type_, const void* value_) : type(type_), value(value_) {}
};
std::ostream& operator<< (std::ostream& str, const VarValue& varValue)
{
DE_ASSERT(varValue.type.isBasicType());
const glu::DataType basicType = varValue.type.getBasicType();
const glu::DataType scalarType = glu::getDataTypeScalarType(basicType);
const int numComponents = glu::getDataTypeScalarSize(basicType);
if (numComponents > 1)
str << glu::getDataTypeName(basicType) << "(";
for (int compNdx = 0; compNdx < numComponents; compNdx++)
{
if (compNdx != 0)
str << ", ";
switch (scalarType)
{
case glu::TYPE_FLOAT: str << HexFloat(((const float*)varValue.value)[compNdx]); break;
case glu::TYPE_INT: str << ((const deInt32*)varValue.value)[compNdx]; break;
case glu::TYPE_UINT: str << tcu::toHex(((const deUint32*)varValue.value)[compNdx]); break;
case glu::TYPE_BOOL: str << (((const deUint32*)varValue.value)[compNdx] != 0 ? "true" : "false"); break;
default:
DE_ASSERT(false);
}
}
if (numComponents > 1)
str << ")";
return str;
}
inline int getShaderUintBitCount (glu::ShaderType shaderType, glu::Precision precision)
{
// \todo [2013-10-31 pyry] Query from GL for vertex and fragment shaders.
DE_UNREF(shaderType);
const int bitCounts[] = { 9, 16, 32 };
DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(bitCounts) == glu::PRECISION_LAST);
return bitCounts[precision];
}
static inline deUint32 extendSignTo32 (deUint32 integer, deUint32 integerLength)
{
DE_ASSERT(integerLength > 0 && integerLength <= 32);
return deUint32(0 - deInt32((integer & (1 << (integerLength - 1))) << 1)) | integer;
}
static inline deUint32 getLowBitMask (int integerLength)
{
DE_ASSERT(integerLength >= 0 && integerLength <= 32);
// \note: shifting more or equal to 32 => undefined behavior. Avoid it by shifting in two parts (1 << (num-1) << 1)
if (integerLength == 0u)
return 0u;
return ((1u << ((deUint32)integerLength - 1u)) << 1u) - 1u;
}
static void generateRandomInputData (de::Random& rnd, glu::ShaderType shaderType, glu::DataType dataType, glu::Precision precision, deUint32* dst, int numValues)
{
const int scalarSize = glu::getDataTypeScalarSize(dataType);
const deUint32 integerLength = (deUint32)getShaderUintBitCount(shaderType, precision);
const deUint32 integerMask = getLowBitMask(integerLength);
const bool isUnsigned = glu::isDataTypeUintOrUVec(dataType);
if (isUnsigned)
{
for (int valueNdx = 0; valueNdx < numValues; ++valueNdx)
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
dst[valueNdx*scalarSize + compNdx] = rnd.getUint32() & integerMask;
}
else
{
for (int valueNdx = 0; valueNdx < numValues; ++valueNdx)
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
dst[valueNdx*scalarSize + compNdx] = extendSignTo32(rnd.getUint32() & integerMask, integerLength);
}
}
} // anonymous
// IntegerFunctionCase
class IntegerFunctionCase : public TestCase
{
public:
IntegerFunctionCase (Context& context, const char* name, const char* description, glu::ShaderType shaderType);
~IntegerFunctionCase (void);
void init (void);
void deinit (void);
IterateResult iterate (void);
protected:
IntegerFunctionCase (const IntegerFunctionCase& other);
IntegerFunctionCase& operator= (const IntegerFunctionCase& other);
virtual void getInputValues (int numValues, void* const* values) const = 0;
virtual bool compare (const void* const* inputs, const void* const* outputs) = 0;
glu::ShaderType m_shaderType;
ShaderSpec m_spec;
int m_numValues;
std::ostringstream m_failMsg; //!< Comparison failure help message.
private:
ShaderExecutor* m_executor;
};
IntegerFunctionCase::IntegerFunctionCase (Context& context, const char* name, const char* description, glu::ShaderType shaderType)
: TestCase (context, name, description)
, m_shaderType (shaderType)
, m_numValues (100)
, m_executor (DE_NULL)
{
m_spec.version = glu::getContextTypeGLSLVersion(context.getRenderContext().getType());
}
IntegerFunctionCase::~IntegerFunctionCase (void)
{
IntegerFunctionCase::deinit();
}
void IntegerFunctionCase::init (void)
{
DE_ASSERT(!m_executor);
m_executor = createExecutor(m_context.getRenderContext(), m_shaderType, m_spec);
m_testCtx.getLog() << m_executor;
if (!m_executor->isOk())
throw tcu::TestError("Compile failed");
}
void IntegerFunctionCase::deinit (void)
{
delete m_executor;
m_executor = DE_NULL;
}
static vector<int> getScalarSizes (const vector<Symbol>& symbols)
{
vector<int> sizes(symbols.size());
for (int ndx = 0; ndx < (int)symbols.size(); ++ndx)
sizes[ndx] = symbols[ndx].varType.getScalarSize();
return sizes;
}
static int computeTotalScalarSize (const vector<Symbol>& symbols)
{
int totalSize = 0;
for (vector<Symbol>::const_iterator sym = symbols.begin(); sym != symbols.end(); ++sym)
totalSize += sym->varType.getScalarSize();
return totalSize;
}
static vector<void*> getInputOutputPointers (const vector<Symbol>& symbols, vector<deUint32>& data, const int numValues)
{
vector<void*> pointers (symbols.size());
int curScalarOffset = 0;
for (int varNdx = 0; varNdx < (int)symbols.size(); ++varNdx)
{
const Symbol& var = symbols[varNdx];
const int scalarSize = var.varType.getScalarSize();
// Uses planar layout as input/output specs do not support strides.
pointers[varNdx] = &data[curScalarOffset];
curScalarOffset += scalarSize*numValues;
}
DE_ASSERT(curScalarOffset == (int)data.size());
return pointers;
}
IntegerFunctionCase::IterateResult IntegerFunctionCase::iterate (void)
{
const int numInputScalars = computeTotalScalarSize(m_spec.inputs);
const int numOutputScalars = computeTotalScalarSize(m_spec.outputs);
vector<deUint32> inputData (numInputScalars * m_numValues);
vector<deUint32> outputData (numOutputScalars * m_numValues);
const vector<void*> inputPointers = getInputOutputPointers(m_spec.inputs, inputData, m_numValues);
const vector<void*> outputPointers = getInputOutputPointers(m_spec.outputs, outputData, m_numValues);
// Initialize input data.
getInputValues(m_numValues, &inputPointers[0]);
// Execute shader.
m_executor->useProgram();
m_executor->execute(m_numValues, &inputPointers[0], &outputPointers[0]);
// Compare results.
{
const vector<int> inScalarSizes = getScalarSizes(m_spec.inputs);
const vector<int> outScalarSizes = getScalarSizes(m_spec.outputs);
vector<void*> curInputPtr (inputPointers.size());
vector<void*> curOutputPtr (outputPointers.size());
int numFailed = 0;
for (int valNdx = 0; valNdx < m_numValues; valNdx++)
{
// Set up pointers for comparison.
for (int inNdx = 0; inNdx < (int)curInputPtr.size(); ++inNdx)
curInputPtr[inNdx] = (deUint32*)inputPointers[inNdx] + inScalarSizes[inNdx]*valNdx;
for (int outNdx = 0; outNdx < (int)curOutputPtr.size(); ++outNdx)
curOutputPtr[outNdx] = (deUint32*)outputPointers[outNdx] + outScalarSizes[outNdx]*valNdx;
if (!compare(&curInputPtr[0], &curOutputPtr[0]))
{
// \todo [2013-08-08 pyry] We probably want to log reference value as well?
m_testCtx.getLog() << TestLog::Message << "ERROR: comparison failed for value " << valNdx << ":\n " << m_failMsg.str() << TestLog::EndMessage;
m_testCtx.getLog() << TestLog::Message << " inputs:" << TestLog::EndMessage;
for (int inNdx = 0; inNdx < (int)curInputPtr.size(); inNdx++)
m_testCtx.getLog() << TestLog::Message << " " << m_spec.inputs[inNdx].name << " = "
<< VarValue(m_spec.inputs[inNdx].varType, curInputPtr[inNdx])
<< TestLog::EndMessage;
m_testCtx.getLog() << TestLog::Message << " outputs:" << TestLog::EndMessage;
for (int outNdx = 0; outNdx < (int)curOutputPtr.size(); outNdx++)
m_testCtx.getLog() << TestLog::Message << " " << m_spec.outputs[outNdx].name << " = "
<< VarValue(m_spec.outputs[outNdx].varType, curOutputPtr[outNdx])
<< TestLog::EndMessage;
m_failMsg.str("");
m_failMsg.clear();
numFailed += 1;
}
}
m_testCtx.getLog() << TestLog::Message << (m_numValues - numFailed) << " / " << m_numValues << " values passed" << TestLog::EndMessage;
m_testCtx.setTestResult(numFailed == 0 ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL,
numFailed == 0 ? "Pass" : "Result comparison failed");
}
return STOP;
}
static std::string getIntegerFuncCaseName (glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
{
return string(glu::getDataTypeName(baseType)) + getPrecisionPostfix(precision) + getShaderTypePostfix(shaderType);
}
class UaddCarryCase : public IntegerFunctionCase
{
public:
UaddCarryCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
: IntegerFunctionCase(context, getIntegerFuncCaseName(baseType, precision, shaderType).c_str(), "uaddCarry", shaderType)
{
m_spec.inputs.push_back(Symbol("x", glu::VarType(baseType, precision)));
m_spec.inputs.push_back(Symbol("y", glu::VarType(baseType, precision)));
m_spec.outputs.push_back(Symbol("sum", glu::VarType(baseType, precision)));
m_spec.outputs.push_back(Symbol("carry", glu::VarType(baseType, glu::PRECISION_LOWP)));
m_spec.source = "sum = uaddCarry(x, y, carry);";
}
void getInputValues (int numValues, void* const* values) const
{
de::Random rnd (deStringHash(getName()) ^ 0x235facu);
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
const int integerLength = getShaderUintBitCount(m_shaderType, precision);
const deUint32 integerMask = getLowBitMask(integerLength);
const bool isSigned = glu::isDataTypeIntOrIVec(type);
deUint32* in0 = (deUint32*)values[0];
deUint32* in1 = (deUint32*)values[1];
const struct
{
deUint32 x;
deUint32 y;
} easyCases[] =
{
{ 0x00000000u, 0x00000000u },
{ 0xfffffffeu, 0x00000001u },
{ 0x00000001u, 0xfffffffeu },
{ 0xffffffffu, 0x00000001u },
{ 0x00000001u, 0xffffffffu },
{ 0xfffffffeu, 0x00000002u },
{ 0x00000002u, 0xfffffffeu },
{ 0xffffffffu, 0xffffffffu }
};
// generate integers with proper bit count
for (int easyCaseNdx = 0; easyCaseNdx < DE_LENGTH_OF_ARRAY(easyCases); easyCaseNdx++)
{
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
in0[easyCaseNdx*scalarSize + compNdx] = easyCases[easyCaseNdx].x & integerMask;
in1[easyCaseNdx*scalarSize + compNdx] = easyCases[easyCaseNdx].y & integerMask;
}
}
// convert to signed
if (isSigned)
{
for (int easyCaseNdx = 0; easyCaseNdx < DE_LENGTH_OF_ARRAY(easyCases); easyCaseNdx++)
{
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
in0[easyCaseNdx*scalarSize + compNdx] = extendSignTo32(in0[easyCaseNdx*scalarSize + compNdx], integerLength);
in1[easyCaseNdx*scalarSize + compNdx] = extendSignTo32(in1[easyCaseNdx*scalarSize + compNdx], integerLength);
}
}
}
generateRandomInputData(rnd, m_shaderType, type, precision, in0, numValues - DE_LENGTH_OF_ARRAY(easyCases));
generateRandomInputData(rnd, m_shaderType, type, precision, in1, numValues - DE_LENGTH_OF_ARRAY(easyCases));
}
bool compare (const void* const* inputs, const void* const* outputs)
{
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
const int integerLength = getShaderUintBitCount(m_shaderType, precision);
const deUint32 mask0 = getLowBitMask(integerLength);
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const deUint32 in0 = ((const deUint32*)inputs[0])[compNdx];
const deUint32 in1 = ((const deUint32*)inputs[1])[compNdx];
const deUint32 out0 = ((const deUint32*)outputs[0])[compNdx];
const deUint32 out1 = ((const deUint32*)outputs[1])[compNdx];
const deUint32 ref0 = in0+in1;
const deUint32 ref1 = (deUint64(in0)+deUint64(in1)) > 0xffffffffu ? 1u : 0u;
if (((out0&mask0) != (ref0&mask0)) || out1 != ref1)
{
m_failMsg << "Expected [" << compNdx << "] = " << tcu::toHex(ref0) << ", " << tcu::toHex(ref1);
return false;
}
}
return true;
}
};
class UsubBorrowCase : public IntegerFunctionCase
{
public:
UsubBorrowCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
: IntegerFunctionCase(context, getIntegerFuncCaseName(baseType, precision, shaderType).c_str(), "usubBorrow", shaderType)
{
m_spec.inputs.push_back(Symbol("x", glu::VarType(baseType, precision)));
m_spec.inputs.push_back(Symbol("y", glu::VarType(baseType, precision)));
m_spec.outputs.push_back(Symbol("diff", glu::VarType(baseType, precision)));
m_spec.outputs.push_back(Symbol("carry", glu::VarType(baseType, glu::PRECISION_LOWP)));
m_spec.source = "diff = usubBorrow(x, y, carry);";
}
void getInputValues (int numValues, void* const* values) const
{
de::Random rnd (deStringHash(getName()) ^ 0x235facu);
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
const int integerLength = getShaderUintBitCount(m_shaderType, precision);
const deUint32 integerMask = getLowBitMask(integerLength);
const bool isSigned = glu::isDataTypeIntOrIVec(type);
deUint32* in0 = (deUint32*)values[0];
deUint32* in1 = (deUint32*)values[1];
const struct
{
deUint32 x;
deUint32 y;
} easyCases[] =
{
{ 0x00000000u, 0x00000000u },
{ 0x00000001u, 0x00000001u },
{ 0x00000001u, 0x00000002u },
{ 0x00000001u, 0xffffffffu },
{ 0xfffffffeu, 0xffffffffu },
{ 0xffffffffu, 0xffffffffu },
};
// generate integers with proper bit count
for (int easyCaseNdx = 0; easyCaseNdx < DE_LENGTH_OF_ARRAY(easyCases); easyCaseNdx++)
{
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
in0[easyCaseNdx*scalarSize + compNdx] = easyCases[easyCaseNdx].x & integerMask;
in1[easyCaseNdx*scalarSize + compNdx] = easyCases[easyCaseNdx].y & integerMask;
}
}
// convert to signed
if (isSigned)
{
for (int easyCaseNdx = 0; easyCaseNdx < DE_LENGTH_OF_ARRAY(easyCases); easyCaseNdx++)
{
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
in0[easyCaseNdx*scalarSize + compNdx] = extendSignTo32(in0[easyCaseNdx*scalarSize + compNdx], integerLength);
in1[easyCaseNdx*scalarSize + compNdx] = extendSignTo32(in1[easyCaseNdx*scalarSize + compNdx], integerLength);
}
}
}
generateRandomInputData(rnd, m_shaderType, type, precision, in0, numValues - DE_LENGTH_OF_ARRAY(easyCases));
generateRandomInputData(rnd, m_shaderType, type, precision, in1, numValues - DE_LENGTH_OF_ARRAY(easyCases));
}
bool compare (const void* const* inputs, const void* const* outputs)
{
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
const int integerLength = getShaderUintBitCount(m_shaderType, precision);
const deUint32 mask0 = getLowBitMask(integerLength);
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const deUint32 in0 = ((const deUint32*)inputs[0])[compNdx];
const deUint32 in1 = ((const deUint32*)inputs[1])[compNdx];
const deUint32 out0 = ((const deUint32*)outputs[0])[compNdx];
const deUint32 out1 = ((const deUint32*)outputs[1])[compNdx];
const deUint32 ref0 = in0-in1;
const deUint32 ref1 = in0 >= in1 ? 0u : 1u;
if (((out0&mask0) != (ref0&mask0)) || out1 != ref1)
{
m_failMsg << "Expected [" << compNdx << "] = " << tcu::toHex(ref0) << ", " << tcu::toHex(ref1);
return false;
}
}
return true;
}
};
class UmulExtendedCase : public IntegerFunctionCase
{
public:
UmulExtendedCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
: IntegerFunctionCase(context, getIntegerFuncCaseName(baseType, precision, shaderType).c_str(), "umulExtended", shaderType)
{
m_spec.inputs.push_back(Symbol("x", glu::VarType(baseType, precision)));
m_spec.inputs.push_back(Symbol("y", glu::VarType(baseType, precision)));
m_spec.outputs.push_back(Symbol("msb", glu::VarType(baseType, precision)));
m_spec.outputs.push_back(Symbol("lsb", glu::VarType(baseType, precision)));
m_spec.source = "umulExtended(x, y, msb, lsb);";
}
void getInputValues (int numValues, void* const* values) const
{
de::Random rnd (deStringHash(getName()) ^ 0x235facu);
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
// const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
deUint32* in0 = (deUint32*)values[0];
deUint32* in1 = (deUint32*)values[1];
int valueNdx = 0;
const struct
{
deUint32 x;
deUint32 y;
} easyCases[] =
{
{ 0x00000000u, 0x00000000u },
{ 0xffffffffu, 0x00000001u },
{ 0xffffffffu, 0x00000002u },
{ 0x00000001u, 0xffffffffu },
{ 0x00000002u, 0xffffffffu },
{ 0xffffffffu, 0xffffffffu },
};
for (int easyCaseNdx = 0; easyCaseNdx < DE_LENGTH_OF_ARRAY(easyCases); easyCaseNdx++)
{
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
in0[valueNdx*scalarSize + compNdx] = easyCases[easyCaseNdx].x;
in1[valueNdx*scalarSize + compNdx] = easyCases[easyCaseNdx].y;
}
valueNdx += 1;
}
while (valueNdx < numValues)
{
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const deUint32 base0 = rnd.getUint32();
const deUint32 base1 = rnd.getUint32();
const int adj0 = rnd.getInt(0, 20);
const int adj1 = rnd.getInt(0, 20);
in0[valueNdx*scalarSize + compNdx] = base0 >> adj0;
in1[valueNdx*scalarSize + compNdx] = base1 >> adj1;
}
valueNdx += 1;
}
}
bool compare (const void* const* inputs, const void* const* outputs)
{
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const int scalarSize = glu::getDataTypeScalarSize(type);
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const deUint32 in0 = ((const deUint32*)inputs[0])[compNdx];
const deUint32 in1 = ((const deUint32*)inputs[1])[compNdx];
const deUint32 out0 = ((const deUint32*)outputs[0])[compNdx];
const deUint32 out1 = ((const deUint32*)outputs[1])[compNdx];
const deUint64 mul64 = deUint64(in0)*deUint64(in1);
const deUint32 ref0 = deUint32(mul64 >> 32);
const deUint32 ref1 = deUint32(mul64 & 0xffffffffu);
if (out0 != ref0 || out1 != ref1)
{
m_failMsg << "Expected [" << compNdx << "] = " << tcu::toHex(ref0) << ", " << tcu::toHex(ref1);
return false;
}
}
return true;
}
};
class ImulExtendedCase : public IntegerFunctionCase
{
public:
ImulExtendedCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
: IntegerFunctionCase(context, getIntegerFuncCaseName(baseType, precision, shaderType).c_str(), "imulExtended", shaderType)
{
m_spec.inputs.push_back(Symbol("x", glu::VarType(baseType, precision)));
m_spec.inputs.push_back(Symbol("y", glu::VarType(baseType, precision)));
m_spec.outputs.push_back(Symbol("msb", glu::VarType(baseType, precision)));
m_spec.outputs.push_back(Symbol("lsb", glu::VarType(baseType, precision)));
m_spec.source = "imulExtended(x, y, msb, lsb);";
}
void getInputValues (int numValues, void* const* values) const
{
de::Random rnd (deStringHash(getName()) ^ 0x224fa1u);
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
// const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
deUint32* in0 = (deUint32*)values[0];
deUint32* in1 = (deUint32*)values[1];
int valueNdx = 0;
const struct
{
deUint32 x;
deUint32 y;
} easyCases[] =
{
{ 0x00000000u, 0x00000000u },
{ 0xffffffffu, 0x00000002u },
{ 0x7fffffffu, 0x00000001u },
{ 0x7fffffffu, 0x00000002u },
{ 0x7fffffffu, 0x7fffffffu },
{ 0xffffffffu, 0xffffffffu },
{ 0x7fffffffu, 0xfffffffeu },
};
for (int easyCaseNdx = 0; easyCaseNdx < DE_LENGTH_OF_ARRAY(easyCases); easyCaseNdx++)
{
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
in0[valueNdx*scalarSize + compNdx] = (deInt32)easyCases[easyCaseNdx].x;
in1[valueNdx*scalarSize + compNdx] = (deInt32)easyCases[easyCaseNdx].y;
}
valueNdx += 1;
}
while (valueNdx < numValues)
{
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const deInt32 base0 = (deInt32)rnd.getUint32();
const deInt32 base1 = (deInt32)rnd.getUint32();
const int adj0 = rnd.getInt(0, 20);
const int adj1 = rnd.getInt(0, 20);
in0[valueNdx*scalarSize + compNdx] = base0 >> adj0;
in1[valueNdx*scalarSize + compNdx] = base1 >> adj1;
}
valueNdx += 1;
}
}
bool compare (const void* const* inputs, const void* const* outputs)
{
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const int scalarSize = glu::getDataTypeScalarSize(type);
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const deInt32 in0 = ((const deInt32*)inputs[0])[compNdx];
const deInt32 in1 = ((const deInt32*)inputs[1])[compNdx];
const deInt32 out0 = ((const deInt32*)outputs[0])[compNdx];
const deInt32 out1 = ((const deInt32*)outputs[1])[compNdx];
const deInt64 mul64 = deInt64(in0)*deInt64(in1);
const deInt32 ref0 = deInt32(mul64 >> 32);
const deInt32 ref1 = deInt32(mul64 & 0xffffffffu);
if (out0 != ref0 || out1 != ref1)
{
m_failMsg << "Expected [" << compNdx << "] = " << tcu::toHex(ref0) << ", " << tcu::toHex(ref1);
return false;
}
}
return true;
}
};
class BitfieldExtractCase : public IntegerFunctionCase
{
public:
BitfieldExtractCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
: IntegerFunctionCase(context, getIntegerFuncCaseName(baseType, precision, shaderType).c_str(), "bitfieldExtract", shaderType)
{
m_spec.inputs.push_back(Symbol("value", glu::VarType(baseType, precision)));
m_spec.inputs.push_back(Symbol("offset", glu::VarType(glu::TYPE_INT, precision)));
m_spec.inputs.push_back(Symbol("bits", glu::VarType(glu::TYPE_INT, precision)));
m_spec.outputs.push_back(Symbol("extracted", glu::VarType(baseType, precision)));
m_spec.source = "extracted = bitfieldExtract(value, offset, bits);";
}
void getInputValues (int numValues, void* const* values) const
{
de::Random rnd (deStringHash(getName()) ^ 0xa113fca2u);
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const bool ignoreSign = precision != glu::PRECISION_HIGHP && glu::isDataTypeIntOrIVec(type);
const int numBits = getShaderUintBitCount(m_shaderType, precision) - (ignoreSign ? 1 : 0);
deUint32* inValue = (deUint32*)values[0];
int* inOffset = (int*)values[1];
int* inBits = (int*)values[2];
for (int valueNdx = 0; valueNdx < numValues; ++valueNdx)
{
const int bits = rnd.getInt(0, numBits);
const int offset = rnd.getInt(0, numBits-bits);
inOffset[valueNdx] = offset;
inBits[valueNdx] = bits;
}
generateRandomInputData(rnd, m_shaderType, type, precision, inValue, numValues);
}
bool compare (const void* const* inputs, const void* const* outputs)
{
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const bool isSigned = glu::isDataTypeIntOrIVec(type);
const int scalarSize = glu::getDataTypeScalarSize(type);
const int offset = *((const int*)inputs[1]);
const int bits = *((const int*)inputs[2]);
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const deUint32 value = ((const deUint32*)inputs[0])[compNdx];
const deUint32 out = ((const deUint32*)outputs[0])[compNdx];
const deUint32 valMask = (bits == 32 ? ~0u : ((1u<<bits)-1u));
const deUint32 baseVal = (offset == 32) ? (0) : ((value >> offset) & valMask);
const deUint32 ref = baseVal | ((isSigned && (baseVal & (1<<(bits-1)))) ? ~valMask : 0u);
if (out != ref)
{
m_failMsg << "Expected [" << compNdx << "] = " << tcu::toHex(ref);
return false;
}
}
return true;
}
};
class BitfieldInsertCase : public IntegerFunctionCase
{
public:
BitfieldInsertCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
: IntegerFunctionCase(context, getIntegerFuncCaseName(baseType, precision, shaderType).c_str(), "bitfieldInsert", shaderType)
{
m_spec.inputs.push_back(Symbol("base", glu::VarType(baseType, precision)));
m_spec.inputs.push_back(Symbol("insert", glu::VarType(baseType, precision)));
m_spec.inputs.push_back(Symbol("offset", glu::VarType(glu::TYPE_INT, precision)));
m_spec.inputs.push_back(Symbol("bits", glu::VarType(glu::TYPE_INT, precision)));
m_spec.outputs.push_back(Symbol("result", glu::VarType(baseType, precision)));
m_spec.source = "result = bitfieldInsert(base, insert, offset, bits);";
}
void getInputValues (int numValues, void* const* values) const
{
de::Random rnd (deStringHash(getName()) ^ 0x12c2acff);
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int numBits = getShaderUintBitCount(m_shaderType, precision);
deUint32* inBase = (deUint32*)values[0];
deUint32* inInsert = (deUint32*)values[1];
int* inOffset = (int*)values[2];
int* inBits = (int*)values[3];
for (int valueNdx = 0; valueNdx < numValues; ++valueNdx)
{
const int bits = rnd.getInt(0, numBits);
const int offset = rnd.getInt(0, numBits-bits);
inOffset[valueNdx] = offset;
inBits[valueNdx] = bits;
}
generateRandomInputData(rnd, m_shaderType, type, precision, inBase, numValues);
generateRandomInputData(rnd, m_shaderType, type, precision, inInsert, numValues);
}
bool compare (const void* const* inputs, const void* const* outputs)
{
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
const int integerLength = getShaderUintBitCount(m_shaderType, precision);
const deUint32 cmpMask = getLowBitMask(integerLength);
const int offset = *((const int*)inputs[2]);
const int bits = *((const int*)inputs[3]);
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const deUint32 base = ((const deUint32*)inputs[0])[compNdx];
const deUint32 insert = ((const deUint32*)inputs[1])[compNdx];
const deInt32 out = ((const deUint32*)outputs[0])[compNdx];
const deUint32 mask = bits == 32 ? ~0u : (1u<<bits)-1;
const deUint32 ref = (base & ~(mask<<offset)) | ((insert & mask)<<offset);
if ((out&cmpMask) != (ref&cmpMask))
{
m_failMsg << "Expected [" << compNdx << "] = " << tcu::toHex(ref);
return false;
}
}
return true;
}
};
static inline deUint32 reverseBits (deUint32 v)
{
v = (((v & 0xaaaaaaaa) >> 1) | ((v & 0x55555555) << 1));
v = (((v & 0xcccccccc) >> 2) | ((v & 0x33333333) << 2));
v = (((v & 0xf0f0f0f0) >> 4) | ((v & 0x0f0f0f0f) << 4));
v = (((v & 0xff00ff00) >> 8) | ((v & 0x00ff00ff) << 8));
return((v >> 16) | (v << 16));
}
class BitfieldReverseCase : public IntegerFunctionCase
{
public:
BitfieldReverseCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
: IntegerFunctionCase(context, getIntegerFuncCaseName(baseType, precision, shaderType).c_str(), "bitfieldReverse", shaderType)
{
m_spec.inputs.push_back(Symbol("value", glu::VarType(baseType, precision)));
m_spec.outputs.push_back(Symbol("result", glu::VarType(baseType, glu::PRECISION_HIGHP)));
m_spec.source = "result = bitfieldReverse(value);";
}
void getInputValues (int numValues, void* const* values) const
{
de::Random rnd (deStringHash(getName()) ^ 0xff23a4);
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
deUint32* inValue = (deUint32*)values[0];
generateRandomInputData(rnd, m_shaderType, type, precision, inValue, numValues);
}
bool compare (const void* const* inputs, const void* const* outputs)
{
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int integerLength = getShaderUintBitCount(m_shaderType, precision);
const int scalarSize = glu::getDataTypeScalarSize(type);
const deUint32 cmpMask = reverseBits(getLowBitMask(integerLength));
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const deUint32 value = ((const deUint32*)inputs[0])[compNdx];
const deInt32 out = ((const deUint32*)outputs[0])[compNdx];
const deUint32 ref = reverseBits(value);
if ((out&cmpMask) != (ref&cmpMask))
{
m_failMsg << "Expected [" << compNdx << "] = " << tcu::toHex(ref);
return false;
}
}
return true;
}
};
class BitCountCase : public IntegerFunctionCase
{
public:
BitCountCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
: IntegerFunctionCase(context, getIntegerFuncCaseName(baseType, precision, shaderType).c_str(), "bitCount", shaderType)
{
const int vecSize = glu::getDataTypeScalarSize(baseType);
const glu::DataType intType = vecSize == 1 ? glu::TYPE_INT : glu::getDataTypeIntVec(vecSize);
m_spec.inputs.push_back(Symbol("value", glu::VarType(baseType, precision)));
m_spec.outputs.push_back(Symbol("count", glu::VarType(intType, glu::PRECISION_LOWP)));
m_spec.source = "count = bitCount(value);";
}
void getInputValues (int numValues, void* const* values) const
{
de::Random rnd (deStringHash(getName()) ^ 0xab2cca4);
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
deUint32* inValue = (deUint32*)values[0];
generateRandomInputData(rnd, m_shaderType, type, precision, inValue, numValues);
}
bool compare (const void* const* inputs, const void* const* outputs)
{
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int integerLength = getShaderUintBitCount(m_shaderType, precision);
const int scalarSize = glu::getDataTypeScalarSize(type);
const deUint32 countMask = getLowBitMask(integerLength);
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const deUint32 value = ((const deUint32*)inputs[0])[compNdx];
const int out = ((const int*)outputs[0])[compNdx];
const int minRef = dePop32(value&countMask);
const int maxRef = dePop32(value);
if (!de::inRange(out, minRef, maxRef))
{
m_failMsg << "Expected [" << compNdx << "] in range [" << minRef << ", " << maxRef << "]";
return false;
}
}
return true;
}
};
static int findLSB (deUint32 value)
{
for (int i = 0; i < 32; i++)
{
if (value & (1u<<i))
return i;
}
return -1;
}
class FindLSBCase : public IntegerFunctionCase
{
public:
FindLSBCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
: IntegerFunctionCase(context, getIntegerFuncCaseName(baseType, precision, shaderType).c_str(), "findLSB", shaderType)
{
const int vecSize = glu::getDataTypeScalarSize(baseType);
const glu::DataType intType = vecSize == 1 ? glu::TYPE_INT : glu::getDataTypeIntVec(vecSize);
m_spec.inputs.push_back(Symbol("value", glu::VarType(baseType, precision)));
m_spec.outputs.push_back(Symbol("lsb", glu::VarType(intType, glu::PRECISION_LOWP)));
m_spec.source = "lsb = findLSB(value);";
}
void getInputValues (int numValues, void* const* values) const
{
de::Random rnd (deStringHash(getName()) ^ 0x9923c2af);
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
deUint32* inValue = (deUint32*)values[0];
generateRandomInputData(rnd, m_shaderType, type, precision, inValue, numValues);
}
bool compare (const void* const* inputs, const void* const* outputs)
{
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const int scalarSize = glu::getDataTypeScalarSize(type);
const int integerLength = getShaderUintBitCount(m_shaderType, precision);
const deUint32 mask = getLowBitMask(integerLength);
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const deUint32 value = ((const deUint32*)inputs[0])[compNdx];
const int out = ((const int*)outputs[0])[compNdx];
const int minRef = findLSB(value&mask);
const int maxRef = findLSB(value);
if (!de::inRange(out, minRef, maxRef))
{
m_failMsg << "Expected [" << compNdx << "] in range [" << minRef << ", " << maxRef << "]";
return false;
}
}
return true;
}
};
static int findMSB (deInt32 value)
{
if (value > 0)
return 31 - deClz32((deUint32)value);
else if (value < 0)
return 31 - deClz32(~(deUint32)value);
else
return -1;
}
static int findMSB (deUint32 value)
{
if (value > 0)
return 31 - deClz32(value);
else
return -1;
}
static deUint32 toPrecision (deUint32 value, int numIntegerBits)
{
return value & getLowBitMask(numIntegerBits);
}
static deInt32 toPrecision (deInt32 value, int numIntegerBits)
{
return (deInt32)extendSignTo32((deUint32)value & getLowBitMask(numIntegerBits), numIntegerBits);
}
class FindMSBCase : public IntegerFunctionCase
{
public:
FindMSBCase (Context& context, glu::DataType baseType, glu::Precision precision, glu::ShaderType shaderType)
: IntegerFunctionCase(context, getIntegerFuncCaseName(baseType, precision, shaderType).c_str(), "findMSB", shaderType)
{
const int vecSize = glu::getDataTypeScalarSize(baseType);
const glu::DataType intType = vecSize == 1 ? glu::TYPE_INT : glu::getDataTypeIntVec(vecSize);
m_spec.inputs.push_back(Symbol("value", glu::VarType(baseType, precision)));
m_spec.outputs.push_back(Symbol("msb", glu::VarType(intType, glu::PRECISION_LOWP)));
m_spec.source = "msb = findMSB(value);";
}
void getInputValues (int numValues, void* const* values) const
{
de::Random rnd (deStringHash(getName()) ^ 0x742ac4e);
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
deUint32* inValue = (deUint32*)values[0];
generateRandomInputData(rnd, m_shaderType, type, precision, inValue, numValues);
}
bool compare (const void* const* inputs, const void* const* outputs)
{
const glu::DataType type = m_spec.inputs[0].varType.getBasicType();
const glu::Precision precision = m_spec.inputs[0].varType.getPrecision();
const bool isSigned = glu::isDataTypeIntOrIVec(type);
const int scalarSize = glu::getDataTypeScalarSize(type);
const int integerLength = getShaderUintBitCount(m_shaderType, precision);
for (int compNdx = 0; compNdx < scalarSize; compNdx++)
{
const deUint32 value = ((const deUint32*)inputs[0])[compNdx];
const int out = ((const deInt32*)outputs[0])[compNdx];
const int minRef = isSigned ? findMSB(toPrecision(deInt32(value), integerLength)) : findMSB(toPrecision(value, integerLength));
const int maxRef = isSigned ? findMSB(deInt32(value)) : findMSB(value);
if (!de::inRange(out, minRef, maxRef))
{
m_failMsg << "Expected [" << compNdx << "] in range [" << minRef << ", " << maxRef << "]";
return false;
}
}
return true;
}
};
ShaderIntegerFunctionTests::ShaderIntegerFunctionTests (Context& context)
: TestCaseGroup(context, "integer", "Integer function tests")
{
}
ShaderIntegerFunctionTests::~ShaderIntegerFunctionTests (void)
{
}
template<class TestClass>
static void addFunctionCases (TestCaseGroup* parent, const char* functionName, bool intTypes, bool uintTypes, bool allPrec, deUint32 shaderBits)
{
tcu::TestCaseGroup* group = new tcu::TestCaseGroup(parent->getTestContext(), functionName, functionName);
parent->addChild(group);
const glu::DataType scalarTypes[] =
{
glu::TYPE_INT,
glu::TYPE_UINT
};
for (int scalarTypeNdx = 0; scalarTypeNdx < DE_LENGTH_OF_ARRAY(scalarTypes); scalarTypeNdx++)
{
const glu::DataType scalarType = scalarTypes[scalarTypeNdx];
if ((!intTypes && scalarType == glu::TYPE_INT) || (!uintTypes && scalarType == glu::TYPE_UINT))
continue;
for (int vecSize = 1; vecSize <= 4; vecSize++)
{
for (int prec = glu::PRECISION_LOWP; prec <= glu::PRECISION_HIGHP; prec++)
{
if (prec != glu::PRECISION_HIGHP && !allPrec)
continue;
for (int shaderTypeNdx = 0; shaderTypeNdx < glu::SHADERTYPE_LAST; shaderTypeNdx++)
{
if (shaderBits & (1<<shaderTypeNdx))
group->addChild(new TestClass(parent->getContext(), glu::DataType(scalarType + vecSize - 1), glu::Precision(prec), glu::ShaderType(shaderTypeNdx)));
}
}
}
}
}
void ShaderIntegerFunctionTests::init (void)
{
enum
{
VS = (1<<glu::SHADERTYPE_VERTEX),
FS = (1<<glu::SHADERTYPE_FRAGMENT),
CS = (1<<glu::SHADERTYPE_COMPUTE),
GS = (1<<glu::SHADERTYPE_GEOMETRY),
TC = (1<<glu::SHADERTYPE_TESSELLATION_CONTROL),
TE = (1<<glu::SHADERTYPE_TESSELLATION_EVALUATION),
ALL_SHADERS = VS|TC|TE|GS|FS|CS
};
// Int? Uint? AllPrec? Shaders
addFunctionCases<UaddCarryCase> (this, "uaddcarry", false, true, true, ALL_SHADERS);
addFunctionCases<UsubBorrowCase> (this, "usubborrow", false, true, true, ALL_SHADERS);
addFunctionCases<UmulExtendedCase> (this, "umulextended", false, true, false, ALL_SHADERS);
addFunctionCases<ImulExtendedCase> (this, "imulextended", true, false, false, ALL_SHADERS);
addFunctionCases<BitfieldExtractCase> (this, "bitfieldextract", true, true, true, ALL_SHADERS);
addFunctionCases<BitfieldInsertCase> (this, "bitfieldinsert", true, true, true, ALL_SHADERS);
addFunctionCases<BitfieldReverseCase> (this, "bitfieldreverse", true, true, true, ALL_SHADERS);
addFunctionCases<BitCountCase> (this, "bitcount", true, true, true, ALL_SHADERS);
addFunctionCases<FindLSBCase> (this, "findlsb", true, true, true, ALL_SHADERS);
addFunctionCases<FindMSBCase> (this, "findmsb", true, true, true, ALL_SHADERS);
}
} // Functional
} // gles31
} // deqp