You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

635 lines
22 KiB

/*-------------------------------------------------------------------------
* drawElements Quality Program OpenGL ES 3.1 Module
* -------------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Tessellation and geometry shader interaction stress tests.
*//*--------------------------------------------------------------------*/
#include "es31sTessellationGeometryInteractionTests.hpp"
#include "tcuTestLog.hpp"
#include "tcuRenderTarget.hpp"
#include "tcuSurface.hpp"
#include "tcuTextureUtil.hpp"
#include "gluRenderContext.hpp"
#include "gluShaderProgram.hpp"
#include "gluContextInfo.hpp"
#include "gluObjectWrapper.hpp"
#include "gluPixelTransfer.hpp"
#include "glwFunctions.hpp"
#include "glwEnums.hpp"
#include "deStringUtil.hpp"
#include "deUniquePtr.hpp"
#include <sstream>
namespace deqp
{
namespace gles31
{
namespace Stress
{
namespace
{
class AllowedRenderFailureException : public std::runtime_error
{
public:
AllowedRenderFailureException (const char* message) : std::runtime_error(message) { }
};
class GridRenderCase : public TestCase
{
public:
enum Flags
{
FLAG_TESSELLATION_MAX_SPEC = 0x0001,
FLAG_TESSELLATION_MAX_IMPLEMENTATION = 0x0002,
FLAG_GEOMETRY_MAX_SPEC = 0x0004,
FLAG_GEOMETRY_MAX_IMPLEMENTATION = 0x0008,
FLAG_GEOMETRY_INVOCATIONS_MAX_SPEC = 0x0010,
FLAG_GEOMETRY_INVOCATIONS_MAX_IMPLEMENTATION = 0x0020,
};
GridRenderCase (Context& context, const char* name, const char* description, int flags);
~GridRenderCase (void);
private:
void init (void);
void deinit (void);
IterateResult iterate (void);
void renderTo (std::vector<tcu::Surface>& dst);
bool verifyResultLayer (int layerNdx, const tcu::Surface& dst);
const char* getVertexSource (void);
const char* getFragmentSource (void);
std::string getTessellationControlSource (int tessLevel);
std::string getTessellationEvaluationSource (int tessLevel);
std::string getGeometryShaderSource (int numPrimitives, int numInstances);
enum
{
RENDER_SIZE = 256
};
const int m_flags;
glu::ShaderProgram* m_program;
int m_numLayers;
};
GridRenderCase::GridRenderCase (Context& context, const char* name, const char* description, int flags)
: TestCase (context, name, description)
, m_flags (flags)
, m_program (DE_NULL)
, m_numLayers (1)
{
DE_ASSERT(((m_flags & FLAG_TESSELLATION_MAX_SPEC) == 0) || ((m_flags & FLAG_TESSELLATION_MAX_IMPLEMENTATION) == 0));
DE_ASSERT(((m_flags & FLAG_GEOMETRY_MAX_SPEC) == 0) || ((m_flags & FLAG_GEOMETRY_MAX_IMPLEMENTATION) == 0));
DE_ASSERT(((m_flags & FLAG_GEOMETRY_INVOCATIONS_MAX_SPEC) == 0) || ((m_flags & FLAG_GEOMETRY_INVOCATIONS_MAX_IMPLEMENTATION) == 0));
}
GridRenderCase::~GridRenderCase (void)
{
deinit();
}
void GridRenderCase::init (void)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
// Requirements
if (!m_context.getContextInfo().isExtensionSupported("GL_EXT_tessellation_shader") ||
!m_context.getContextInfo().isExtensionSupported("GL_EXT_geometry_shader"))
throw tcu::NotSupportedError("Test requires GL_EXT_tessellation_shader and GL_EXT_geometry_shader extensions");
if (m_context.getRenderTarget().getWidth() < RENDER_SIZE ||
m_context.getRenderTarget().getHeight() < RENDER_SIZE)
throw tcu::NotSupportedError("Test requires " + de::toString<int>(RENDER_SIZE) + "x" + de::toString<int>(RENDER_SIZE) + " or larger render target.");
// Log
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Testing tessellation and geometry shaders that output a large number of primitives.\n"
<< getDescription()
<< tcu::TestLog::EndMessage;
// Gen program
{
glu::ProgramSources sources;
int tessGenLevel = -1;
sources << glu::VertexSource(getVertexSource())
<< glu::FragmentSource(getFragmentSource());
// Tessellation limits
{
if (m_flags & FLAG_TESSELLATION_MAX_IMPLEMENTATION)
{
gl.getIntegerv(GL_MAX_TESS_GEN_LEVEL, &tessGenLevel);
GLU_EXPECT_NO_ERROR(gl.getError(), "query tessellation limits");
}
else if (m_flags & FLAG_TESSELLATION_MAX_SPEC)
{
tessGenLevel = 64;
}
else
{
tessGenLevel = 5;
}
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Tessellation level: " << tessGenLevel << ", mode = quad.\n"
<< "\tEach input patch produces " << (tessGenLevel*tessGenLevel) << " (" << (tessGenLevel*tessGenLevel*2) << " triangles)\n"
<< tcu::TestLog::EndMessage;
sources << glu::TessellationControlSource(getTessellationControlSource(tessGenLevel))
<< glu::TessellationEvaluationSource(getTessellationEvaluationSource(tessGenLevel));
}
// Geometry limits
{
int geometryOutputComponents = -1;
int geometryOutputVertices = -1;
int geometryTotalOutputComponents = -1;
int geometryShaderInvocations = -1;
bool logGeometryLimits = false;
bool logInvocationLimits = false;
if (m_flags & FLAG_GEOMETRY_MAX_IMPLEMENTATION)
{
m_testCtx.getLog() << tcu::TestLog::Message << "Using implementation maximum geometry shader output limits." << tcu::TestLog::EndMessage;
gl.getIntegerv(GL_MAX_GEOMETRY_OUTPUT_COMPONENTS, &geometryOutputComponents);
gl.getIntegerv(GL_MAX_GEOMETRY_OUTPUT_VERTICES, &geometryOutputVertices);
gl.getIntegerv(GL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS, &geometryTotalOutputComponents);
GLU_EXPECT_NO_ERROR(gl.getError(), "query geometry limits");
logGeometryLimits = true;
}
else if (m_flags & FLAG_GEOMETRY_MAX_SPEC)
{
m_testCtx.getLog() << tcu::TestLog::Message << "Using geometry shader extension minimum maximum output limits." << tcu::TestLog::EndMessage;
geometryOutputComponents = 128;
geometryOutputVertices = 256;
geometryTotalOutputComponents = 1024;
logGeometryLimits = true;
}
else
{
geometryOutputComponents = 128;
geometryOutputVertices = 16;
geometryTotalOutputComponents = 1024;
}
if (m_flags & FLAG_GEOMETRY_INVOCATIONS_MAX_IMPLEMENTATION)
{
gl.getIntegerv(GL_MAX_GEOMETRY_SHADER_INVOCATIONS, &geometryShaderInvocations);
GLU_EXPECT_NO_ERROR(gl.getError(), "query geometry invocation limits");
logInvocationLimits = true;
}
else if (m_flags & FLAG_GEOMETRY_INVOCATIONS_MAX_SPEC)
{
geometryShaderInvocations = 32;
logInvocationLimits = true;
}
else
{
geometryShaderInvocations = 4;
}
if (logGeometryLimits || logInvocationLimits)
{
tcu::MessageBuilder msg(&m_testCtx.getLog());
msg << "Geometry shader, targeting following limits:\n";
if (logGeometryLimits)
msg << "\tGL_MAX_GEOMETRY_OUTPUT_COMPONENTS = " << geometryOutputComponents << "\n"
<< "\tGL_MAX_GEOMETRY_OUTPUT_VERTICES = " << geometryOutputVertices << "\n"
<< "\tGL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS = " << geometryTotalOutputComponents << "\n";
if (logInvocationLimits)
msg << "\tGL_MAX_GEOMETRY_SHADER_INVOCATIONS = " << geometryShaderInvocations;
msg << tcu::TestLog::EndMessage;
}
{
const int numComponentsPerVertex = 8; // vec4 pos, vec4 color
// If FLAG_GEOMETRY_SEPARATE_PRIMITIVES is not set, geometry shader fills a rectangle area in slices.
// Each slice is a triangle strip and is generated by a single shader invocation.
// One slice with 4 segment ends (nodes) and 3 segments:
// .__.__.__.
// |\ |\ |\ |
// |_\|_\|_\|
const int numSliceNodesComponentLimit = geometryTotalOutputComponents / (2 * numComponentsPerVertex); // each node 2 vertices
const int numSliceNodesOutputLimit = geometryOutputVertices / 2; // each node 2 vertices
const int numSliceNodes = de::min(numSliceNodesComponentLimit, numSliceNodesOutputLimit);
const int numVerticesPerInvocation = numSliceNodes * 2;
const int numPrimitivesPerInvocation = (numSliceNodes - 1) * 2;
const int geometryVerticesPerPrimitive = numVerticesPerInvocation * geometryShaderInvocations;
const int geometryPrimitivesOutPerPrimitive = numPrimitivesPerInvocation * geometryShaderInvocations;
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Geometry shader:\n"
<< "\tTotal output vertex count per invocation: " << (numVerticesPerInvocation) << "\n"
<< "\tTotal output primitive count per invocation: " << (numPrimitivesPerInvocation) << "\n"
<< "\tNumber of invocations per primitive: " << geometryShaderInvocations << "\n"
<< "\tTotal output vertex count per input primitive: " << (geometryVerticesPerPrimitive) << "\n"
<< "\tTotal output primitive count per input primitive: " << (geometryPrimitivesOutPerPrimitive) << "\n"
<< tcu::TestLog::EndMessage;
sources << glu::GeometrySource(getGeometryShaderSource(numPrimitivesPerInvocation, geometryShaderInvocations));
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Program:\n"
<< "\tTotal program output vertices count per input patch: " << (tessGenLevel*tessGenLevel*2 * geometryVerticesPerPrimitive) << "\n"
<< "\tTotal program output primitive count per input patch: " << (tessGenLevel*tessGenLevel*2 * geometryPrimitivesOutPerPrimitive) << "\n"
<< tcu::TestLog::EndMessage;
}
}
m_program = new glu::ShaderProgram(m_context.getRenderContext(), sources);
m_testCtx.getLog() << *m_program;
if (!m_program->isOk())
throw tcu::TestError("failed to build program");
}
}
void GridRenderCase::deinit (void)
{
delete m_program;
m_program = DE_NULL;
}
GridRenderCase::IterateResult GridRenderCase::iterate (void)
{
std::vector<tcu::Surface> renderedLayers (m_numLayers);
bool allLayersOk = true;
for (int ndx = 0; ndx < m_numLayers; ++ndx)
renderedLayers[ndx].setSize(RENDER_SIZE, RENDER_SIZE);
m_testCtx.getLog() << tcu::TestLog::Message << "Rendering single point at the origin. Expecting yellow and green colored grid-like image. (High-frequency grid may appear unicolored)." << tcu::TestLog::EndMessage;
try
{
renderTo(renderedLayers);
}
catch (const AllowedRenderFailureException& ex)
{
// Got accepted failure
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Could not render, reason: " << ex.what() << "\n"
<< "Failure is allowed."
<< tcu::TestLog::EndMessage;
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
return STOP;
}
for (int ndx = 0; ndx < m_numLayers; ++ndx)
allLayersOk &= verifyResultLayer(ndx, renderedLayers[ndx]);
if (allLayersOk)
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
else
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image verification failed");
return STOP;
}
void GridRenderCase::renderTo (std::vector<tcu::Surface>& dst)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
const int positionLocation = gl.getAttribLocation(m_program->getProgram(), "a_position");
const glu::VertexArray vao (m_context.getRenderContext());
if (positionLocation == -1)
throw tcu::TestError("Attribute a_position location was -1");
gl.viewport(0, 0, dst.front().getWidth(), dst.front().getHeight());
gl.clearColor(0.0f, 0.0f, 0.0f, 1.0f);
GLU_EXPECT_NO_ERROR(gl.getError(), "viewport");
gl.bindVertexArray(*vao);
GLU_EXPECT_NO_ERROR(gl.getError(), "bind vao");
gl.useProgram(m_program->getProgram());
GLU_EXPECT_NO_ERROR(gl.getError(), "use program");
gl.patchParameteri(GL_PATCH_VERTICES, 1);
GLU_EXPECT_NO_ERROR(gl.getError(), "set patch param");
gl.vertexAttrib4f(positionLocation, 0.0f, 0.0f, 0.0f, 1.0f);
// clear viewport
gl.clear(GL_COLOR_BUFFER_BIT);
// draw
{
glw::GLenum glerror;
gl.drawArrays(GL_PATCHES, 0, 1);
// allow always OOM
glerror = gl.getError();
if (glerror == GL_OUT_OF_MEMORY)
throw AllowedRenderFailureException("got GL_OUT_OF_MEMORY while drawing");
GLU_EXPECT_NO_ERROR(glerror, "draw patches");
}
// Read layers
glu::readPixels(m_context.getRenderContext(), 0, 0, dst.front().getAccess());
GLU_EXPECT_NO_ERROR(gl.getError(), "read pixels");
}
bool GridRenderCase::verifyResultLayer (int layerNdx, const tcu::Surface& image)
{
tcu::Surface errorMask (image.getWidth(), image.getHeight());
bool foundError = false;
tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 1.0f, 0.0f, 1.0f));
m_testCtx.getLog() << tcu::TestLog::Message << "Verifying output layer " << layerNdx << tcu::TestLog::EndMessage;
for (int y = 0; y < image.getHeight(); ++y)
for (int x = 0; x < image.getWidth(); ++x)
{
const int threshold = 8;
const tcu::RGBA color = image.getPixel(x, y);
// Color must be a linear combination of green and yellow
if (color.getGreen() < 255 - threshold || color.getBlue() > threshold)
{
errorMask.setPixel(x, y, tcu::RGBA::red());
foundError = true;
}
}
if (!foundError)
{
m_testCtx.getLog()
<< tcu::TestLog::Message << "Image valid." << tcu::TestLog::EndMessage
<< tcu::TestLog::ImageSet("ImageVerification", "Image verification")
<< tcu::TestLog::Image("Result", "Rendered result", image.getAccess())
<< tcu::TestLog::EndImageSet;
return true;
}
else
{
m_testCtx.getLog()
<< tcu::TestLog::Message << "Image verification failed, found invalid pixels." << tcu::TestLog::EndMessage
<< tcu::TestLog::ImageSet("ImageVerification", "Image verification")
<< tcu::TestLog::Image("Result", "Rendered result", image.getAccess())
<< tcu::TestLog::Image("ErrorMask", "Error mask", errorMask.getAccess())
<< tcu::TestLog::EndImageSet;
return false;
}
}
const char* GridRenderCase::getVertexSource (void)
{
return "#version 310 es\n"
"in highp vec4 a_position;\n"
"void main (void)\n"
"{\n"
" gl_Position = a_position;\n"
"}\n";
}
const char* GridRenderCase::getFragmentSource (void)
{
return "#version 310 es\n"
"flat in mediump vec4 v_color;\n"
"layout(location = 0) out mediump vec4 fragColor;\n"
"void main (void)\n"
"{\n"
" fragColor = v_color;\n"
"}\n";
}
std::string GridRenderCase::getTessellationControlSource (int tessLevel)
{
std::ostringstream buf;
buf << "#version 310 es\n"
"#extension GL_EXT_tessellation_shader : require\n"
"layout(vertices=1) out;\n"
"\n"
"void main()\n"
"{\n"
" gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;\n"
" gl_TessLevelOuter[0] = " << tessLevel << ".0;\n"
" gl_TessLevelOuter[1] = " << tessLevel << ".0;\n"
" gl_TessLevelOuter[2] = " << tessLevel << ".0;\n"
" gl_TessLevelOuter[3] = " << tessLevel << ".0;\n"
" gl_TessLevelInner[0] = " << tessLevel << ".0;\n"
" gl_TessLevelInner[1] = " << tessLevel << ".0;\n"
"}\n";
return buf.str();
}
std::string GridRenderCase::getTessellationEvaluationSource (int tessLevel)
{
std::ostringstream buf;
buf << "#version 310 es\n"
"#extension GL_EXT_tessellation_shader : require\n"
"layout(quads) in;\n"
"\n"
"out mediump ivec2 v_tessellationGridPosition;\n"
"\n"
"// note: No need to use precise gl_Position since position does not depend on order\n"
"void main (void)\n"
"{\n"
" // Fill the whole viewport\n"
" gl_Position = vec4(gl_TessCoord.x * 2.0 - 1.0, gl_TessCoord.y * 2.0 - 1.0, 0.0, 1.0);\n"
" // Calculate position in tessellation grid\n"
" v_tessellationGridPosition = ivec2(round(gl_TessCoord.xy * float(" << tessLevel << ")));\n"
"}\n";
return buf.str();
}
std::string GridRenderCase::getGeometryShaderSource (int numPrimitives, int numInstances)
{
std::ostringstream buf;
buf << "#version 310 es\n"
"#extension GL_EXT_geometry_shader : require\n"
"layout(triangles, invocations=" << numInstances << ") in;\n"
"layout(triangle_strip, max_vertices=" << (numPrimitives + 2) << ") out;\n"
"\n"
"in mediump ivec2 v_tessellationGridPosition[];\n"
"flat out highp vec4 v_color;\n"
"\n"
"void main ()\n"
"{\n"
" const float equalThreshold = 0.001;\n"
" const float gapOffset = 0.0001; // subdivision performed by the geometry shader might produce gaps. Fill potential gaps by enlarging the output slice a little.\n"
"\n"
" // Input triangle is generated from an axis-aligned rectangle by splitting it in half\n"
" // Original rectangle can be found by finding the bounding AABB of the triangle\n"
" vec4 aabb = vec4(min(gl_in[0].gl_Position.x, min(gl_in[1].gl_Position.x, gl_in[2].gl_Position.x)),\n"
" min(gl_in[0].gl_Position.y, min(gl_in[1].gl_Position.y, gl_in[2].gl_Position.y)),\n"
" max(gl_in[0].gl_Position.x, max(gl_in[1].gl_Position.x, gl_in[2].gl_Position.x)),\n"
" max(gl_in[0].gl_Position.y, max(gl_in[1].gl_Position.y, gl_in[2].gl_Position.y)));\n"
"\n"
" // Location in tessellation grid\n"
" ivec2 gridPosition = ivec2(min(v_tessellationGridPosition[0], min(v_tessellationGridPosition[1], v_tessellationGridPosition[2])));\n"
"\n"
" // Which triangle of the two that split the grid cell\n"
" int numVerticesOnBottomEdge = 0;\n"
" for (int ndx = 0; ndx < 3; ++ndx)\n"
" if (abs(gl_in[ndx].gl_Position.y - aabb.w) < equalThreshold)\n"
" ++numVerticesOnBottomEdge;\n"
" bool isBottomTriangle = numVerticesOnBottomEdge == 2;\n"
"\n"
" // Fill the input area with slices\n"
" // Upper triangle produces slices only to the upper half of the quad and vice-versa\n"
" float triangleOffset = (isBottomTriangle) ? ((aabb.w + aabb.y) / 2.0) : (aabb.y);\n"
" // Each slice is a invocation\n"
" float sliceHeight = (aabb.w - aabb.y) / float(2 * " << numInstances << ");\n"
" float invocationOffset = float(gl_InvocationID) * sliceHeight;\n"
"\n"
" vec4 outputSliceArea;\n"
" outputSliceArea.x = aabb.x - gapOffset;\n"
" outputSliceArea.y = triangleOffset + invocationOffset - gapOffset;\n"
" outputSliceArea.z = aabb.z + gapOffset;\n"
" outputSliceArea.w = triangleOffset + invocationOffset + sliceHeight + gapOffset;\n""\n"
" // Draw slice\n"
" for (int ndx = 0; ndx < " << ((numPrimitives+2)/2) << "; ++ndx)\n"
" {\n"
" vec4 green = vec4(0.0, 1.0, 0.0, 1.0);\n"
" vec4 yellow = vec4(1.0, 1.0, 0.0, 1.0);\n"
" vec4 outputColor = (((gl_InvocationID + ndx) % 2) == 0) ? (green) : (yellow);\n"
" float xpos = mix(outputSliceArea.x, outputSliceArea.z, float(ndx) / float(" << (numPrimitives/2) << "));\n"
"\n"
" gl_Position = vec4(xpos, outputSliceArea.y, 0.0, 1.0);\n"
" v_color = outputColor;\n"
" EmitVertex();\n"
"\n"
" gl_Position = vec4(xpos, outputSliceArea.w, 0.0, 1.0);\n"
" v_color = outputColor;\n"
" EmitVertex();\n"
" }\n"
"}\n";
return buf.str();
}
} // anonymous
TessellationGeometryInteractionTests::TessellationGeometryInteractionTests (Context& context)
: TestCaseGroup(context, "tessellation_geometry_interaction", "Tessellation and geometry shader interaction stress tests")
{
}
TessellationGeometryInteractionTests::~TessellationGeometryInteractionTests (void)
{
}
void TessellationGeometryInteractionTests::init (void)
{
tcu::TestCaseGroup* const multilimitGroup = new tcu::TestCaseGroup(m_testCtx, "render_multiple_limits", "Various render tests");
addChild(multilimitGroup);
// .render_multiple_limits
{
static const struct LimitCaseDef
{
const char* name;
const char* desc;
int flags;
} cases[] =
{
// Test multiple limits at the same time
{
"output_required_max_tessellation_max_geometry",
"Minimum maximum tessellation level and geometry shader output vertices",
GridRenderCase::FLAG_TESSELLATION_MAX_SPEC | GridRenderCase::FLAG_GEOMETRY_MAX_SPEC
},
{
"output_implementation_max_tessellation_max_geometry",
"Maximum tessellation level and geometry shader output vertices supported by the implementation",
GridRenderCase::FLAG_TESSELLATION_MAX_IMPLEMENTATION | GridRenderCase::FLAG_GEOMETRY_MAX_IMPLEMENTATION
},
{
"output_required_max_tessellation_max_invocations",
"Minimum maximum tessellation level and geometry shader invocations",
GridRenderCase::FLAG_TESSELLATION_MAX_SPEC | GridRenderCase::FLAG_GEOMETRY_INVOCATIONS_MAX_SPEC
},
{
"output_implementation_max_tessellation_max_invocations",
"Maximum tessellation level and geometry shader invocations supported by the implementation",
GridRenderCase::FLAG_TESSELLATION_MAX_IMPLEMENTATION | GridRenderCase::FLAG_GEOMETRY_INVOCATIONS_MAX_IMPLEMENTATION
},
{
"output_required_max_geometry_max_invocations",
"Minimum maximum geometry shader output vertices and invocations",
GridRenderCase::FLAG_GEOMETRY_MAX_SPEC | GridRenderCase::FLAG_GEOMETRY_INVOCATIONS_MAX_SPEC
},
{
"output_implementation_max_geometry_max_invocations",
"Maximum geometry shader output vertices and invocations invocations supported by the implementation",
GridRenderCase::FLAG_GEOMETRY_MAX_IMPLEMENTATION | GridRenderCase::FLAG_GEOMETRY_INVOCATIONS_MAX_IMPLEMENTATION
},
// Test all limits simultaneously
{
"output_max_required",
"Output minimum maximum number of vertices",
GridRenderCase::FLAG_TESSELLATION_MAX_SPEC | GridRenderCase::FLAG_GEOMETRY_MAX_SPEC | GridRenderCase::FLAG_GEOMETRY_INVOCATIONS_MAX_SPEC
},
{
"output_max_implementation",
"Output maximum number of vertices supported by the implementation",
GridRenderCase::FLAG_TESSELLATION_MAX_IMPLEMENTATION | GridRenderCase::FLAG_GEOMETRY_MAX_IMPLEMENTATION | GridRenderCase::FLAG_GEOMETRY_INVOCATIONS_MAX_IMPLEMENTATION
},
};
for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(cases); ++ndx)
multilimitGroup->addChild(new GridRenderCase(m_context, cases[ndx].name, cases[ndx].desc, cases[ndx].flags));
}
}
} // Stress
} // gles31
} // deqp