You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1091 lines
29 KiB
1091 lines
29 KiB
/*
|
|
* pass1b.c --- Pass #1b of e2fsck
|
|
*
|
|
* This file contains pass1B, pass1C, and pass1D of e2fsck. They are
|
|
* only invoked if pass 1 discovered blocks which are in use by more
|
|
* than one inode.
|
|
*
|
|
* Pass1B scans the data blocks of all the inodes again, generating a
|
|
* complete list of duplicate blocks and which inodes have claimed
|
|
* them.
|
|
*
|
|
* Pass1C does a tree-traversal of the filesystem, to determine the
|
|
* parent directories of these inodes. This step is necessary so that
|
|
* e2fsck can print out the pathnames of affected inodes.
|
|
*
|
|
* Pass1D is a reconciliation pass. For each inode with duplicate
|
|
* blocks, the user is prompted if s/he would like to clone the file
|
|
* (so that the file gets a fresh copy of the duplicated blocks) or
|
|
* simply to delete the file.
|
|
*
|
|
* Copyright (C) 1993, 1994, 1995, 1996, 1997 Theodore Ts'o.
|
|
*
|
|
* %Begin-Header%
|
|
* This file may be redistributed under the terms of the GNU Public
|
|
* License.
|
|
* %End-Header%
|
|
*
|
|
*/
|
|
|
|
#include "config.h"
|
|
#include <time.h>
|
|
#ifdef HAVE_ERRNO_H
|
|
#include <errno.h>
|
|
#endif
|
|
|
|
#ifdef HAVE_INTTYPES_H
|
|
#include <inttypes.h>
|
|
#endif
|
|
|
|
#ifndef HAVE_INTPTR_T
|
|
typedef long intptr_t;
|
|
#endif
|
|
|
|
/* Needed for architectures where sizeof(int) != sizeof(void *) */
|
|
#define INT_TO_VOIDPTR(val) ((void *)(intptr_t)(val))
|
|
#define VOIDPTR_TO_INT(ptr) ((int)(intptr_t)(ptr))
|
|
|
|
#include <et/com_err.h>
|
|
#include "e2fsck.h"
|
|
|
|
#include "problem.h"
|
|
#include "support/dict.h"
|
|
|
|
/* Define an extension to the ext2 library's block count information */
|
|
#define BLOCK_COUNT_EXTATTR (-5)
|
|
|
|
struct cluster_el {
|
|
blk64_t cluster;
|
|
struct cluster_el *next;
|
|
};
|
|
|
|
struct inode_el {
|
|
ext2_ino_t inode;
|
|
struct inode_el *next;
|
|
};
|
|
|
|
struct dup_cluster {
|
|
int num_bad;
|
|
struct inode_el *inode_list;
|
|
};
|
|
|
|
/*
|
|
* This structure stores information about a particular inode which
|
|
* is sharing blocks with other inodes. This information is collected
|
|
* to display to the user, so that the user knows what files he or she
|
|
* is dealing with, when trying to decide how to resolve the conflict
|
|
* of multiply-claimed blocks.
|
|
*/
|
|
struct dup_inode {
|
|
ext2_ino_t dir;
|
|
int num_dupblocks;
|
|
struct ext2_inode_large inode;
|
|
struct cluster_el *cluster_list;
|
|
};
|
|
|
|
static int process_pass1b_block(ext2_filsys fs, blk64_t *blocknr,
|
|
e2_blkcnt_t blockcnt, blk64_t ref_blk,
|
|
int ref_offset, void *priv_data);
|
|
static void delete_file(e2fsck_t ctx, ext2_ino_t ino,
|
|
struct dup_inode *dp, char *block_buf);
|
|
static errcode_t clone_file(e2fsck_t ctx, ext2_ino_t ino,
|
|
struct dup_inode *dp, char* block_buf);
|
|
static int check_if_fs_block(e2fsck_t ctx, blk64_t test_block);
|
|
static int check_if_fs_cluster(e2fsck_t ctx, blk64_t cluster);
|
|
|
|
static void pass1b(e2fsck_t ctx, char *block_buf);
|
|
static void pass1c(e2fsck_t ctx, char *block_buf);
|
|
static void pass1d(e2fsck_t ctx, char *block_buf);
|
|
|
|
static int dup_inode_count = 0;
|
|
static int dup_inode_founddir = 0;
|
|
|
|
static dict_t clstr_dict, ino_dict;
|
|
|
|
static ext2fs_inode_bitmap inode_dup_map;
|
|
|
|
static int dict_int_cmp(const void *a, const void *b)
|
|
{
|
|
intptr_t ia, ib;
|
|
|
|
ia = (intptr_t)a;
|
|
ib = (intptr_t)b;
|
|
|
|
return (ia-ib);
|
|
}
|
|
|
|
/*
|
|
* Add a duplicate block record
|
|
*/
|
|
static void add_dupe(e2fsck_t ctx, ext2_ino_t ino, blk64_t cluster,
|
|
struct ext2_inode_large *inode)
|
|
{
|
|
dnode_t *n;
|
|
struct dup_cluster *db;
|
|
struct dup_inode *di;
|
|
struct cluster_el *cluster_el;
|
|
struct inode_el *ino_el;
|
|
|
|
n = dict_lookup(&clstr_dict, INT_TO_VOIDPTR(cluster));
|
|
if (n)
|
|
db = (struct dup_cluster *) dnode_get(n);
|
|
else {
|
|
db = (struct dup_cluster *) e2fsck_allocate_memory(ctx,
|
|
sizeof(struct dup_cluster), "duplicate cluster header");
|
|
db->num_bad = 0;
|
|
db->inode_list = 0;
|
|
dict_alloc_insert(&clstr_dict, INT_TO_VOIDPTR(cluster), db);
|
|
}
|
|
ino_el = (struct inode_el *) e2fsck_allocate_memory(ctx,
|
|
sizeof(struct inode_el), "inode element");
|
|
ino_el->inode = ino;
|
|
ino_el->next = db->inode_list;
|
|
db->inode_list = ino_el;
|
|
db->num_bad++;
|
|
|
|
n = dict_lookup(&ino_dict, INT_TO_VOIDPTR(ino));
|
|
if (n)
|
|
di = (struct dup_inode *) dnode_get(n);
|
|
else {
|
|
di = (struct dup_inode *) e2fsck_allocate_memory(ctx,
|
|
sizeof(struct dup_inode), "duplicate inode header");
|
|
if (ino == EXT2_ROOT_INO) {
|
|
di->dir = EXT2_ROOT_INO;
|
|
dup_inode_founddir++;
|
|
} else
|
|
di->dir = 0;
|
|
|
|
di->num_dupblocks = 0;
|
|
di->cluster_list = 0;
|
|
di->inode = *inode;
|
|
dict_alloc_insert(&ino_dict, INT_TO_VOIDPTR(ino), di);
|
|
}
|
|
cluster_el = (struct cluster_el *) e2fsck_allocate_memory(ctx,
|
|
sizeof(struct cluster_el), "cluster element");
|
|
cluster_el->cluster = cluster;
|
|
cluster_el->next = di->cluster_list;
|
|
di->cluster_list = cluster_el;
|
|
di->num_dupblocks++;
|
|
}
|
|
|
|
/*
|
|
* Free a duplicate inode record
|
|
*/
|
|
static void inode_dnode_free(dnode_t *node,
|
|
void *context EXT2FS_ATTR((unused)))
|
|
{
|
|
struct dup_inode *di;
|
|
struct cluster_el *p, *next;
|
|
|
|
di = (struct dup_inode *) dnode_get(node);
|
|
for (p = di->cluster_list; p; p = next) {
|
|
next = p->next;
|
|
free(p);
|
|
}
|
|
free(di);
|
|
free(node);
|
|
}
|
|
|
|
/*
|
|
* Free a duplicate cluster record
|
|
*/
|
|
static void cluster_dnode_free(dnode_t *node,
|
|
void *context EXT2FS_ATTR((unused)))
|
|
{
|
|
struct dup_cluster *dc;
|
|
struct inode_el *p, *next;
|
|
|
|
dc = (struct dup_cluster *) dnode_get(node);
|
|
for (p = dc->inode_list; p; p = next) {
|
|
next = p->next;
|
|
free(p);
|
|
}
|
|
free(dc);
|
|
free(node);
|
|
}
|
|
|
|
|
|
/*
|
|
* Main procedure for handling duplicate blocks
|
|
*/
|
|
void e2fsck_pass1_dupblocks(e2fsck_t ctx, char *block_buf)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
struct problem_context pctx;
|
|
#ifdef RESOURCE_TRACK
|
|
struct resource_track rtrack;
|
|
#endif
|
|
|
|
clear_problem_context(&pctx);
|
|
|
|
pctx.errcode = e2fsck_allocate_inode_bitmap(fs,
|
|
_("multiply claimed inode map"),
|
|
EXT2FS_BMAP64_RBTREE, "inode_dup_map",
|
|
&inode_dup_map);
|
|
if (pctx.errcode) {
|
|
fix_problem(ctx, PR_1B_ALLOCATE_IBITMAP_ERROR, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
|
|
dict_init(&ino_dict, DICTCOUNT_T_MAX, dict_int_cmp);
|
|
dict_init(&clstr_dict, DICTCOUNT_T_MAX, dict_int_cmp);
|
|
dict_set_allocator(&ino_dict, NULL, inode_dnode_free, NULL);
|
|
dict_set_allocator(&clstr_dict, NULL, cluster_dnode_free, NULL);
|
|
|
|
init_resource_track(&rtrack, ctx->fs->io);
|
|
pass1b(ctx, block_buf);
|
|
print_resource_track(ctx, "Pass 1b", &rtrack, ctx->fs->io);
|
|
|
|
init_resource_track(&rtrack, ctx->fs->io);
|
|
pass1c(ctx, block_buf);
|
|
print_resource_track(ctx, "Pass 1c", &rtrack, ctx->fs->io);
|
|
|
|
init_resource_track(&rtrack, ctx->fs->io);
|
|
pass1d(ctx, block_buf);
|
|
print_resource_track(ctx, "Pass 1d", &rtrack, ctx->fs->io);
|
|
|
|
if (ext2fs_has_feature_shared_blocks(ctx->fs->super) &&
|
|
(ctx->options & E2F_OPT_UNSHARE_BLOCKS)) {
|
|
/*
|
|
* If we successfully managed to unshare all blocks, unset the
|
|
* shared block feature.
|
|
*/
|
|
blk64_t next;
|
|
int result = ext2fs_find_first_set_block_bitmap2(
|
|
ctx->block_dup_map,
|
|
ctx->fs->super->s_first_data_block,
|
|
ext2fs_blocks_count(ctx->fs->super) - 1,
|
|
&next);
|
|
if (result == ENOENT && !(ctx->options & E2F_OPT_NO)) {
|
|
ext2fs_clear_feature_shared_blocks(ctx->fs->super);
|
|
ext2fs_mark_super_dirty(ctx->fs);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Time to free all of the accumulated data structures that we
|
|
* don't need anymore.
|
|
*/
|
|
dict_free_nodes(&ino_dict);
|
|
dict_free_nodes(&clstr_dict);
|
|
ext2fs_free_inode_bitmap(inode_dup_map);
|
|
}
|
|
|
|
/*
|
|
* Scan the inodes looking for inodes that contain duplicate blocks.
|
|
*/
|
|
struct process_block_struct {
|
|
e2fsck_t ctx;
|
|
ext2_ino_t ino;
|
|
int dup_blocks;
|
|
blk64_t cur_cluster, phys_cluster;
|
|
blk64_t last_blk;
|
|
struct ext2_inode_large *inode;
|
|
struct problem_context *pctx;
|
|
};
|
|
|
|
static void pass1b(e2fsck_t ctx, char *block_buf)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
ext2_ino_t ino = 0;
|
|
struct ext2_inode_large inode;
|
|
ext2_inode_scan scan;
|
|
struct process_block_struct pb;
|
|
struct problem_context pctx;
|
|
problem_t op;
|
|
|
|
clear_problem_context(&pctx);
|
|
|
|
if (!(ctx->options & E2F_OPT_PREEN))
|
|
fix_problem(ctx, PR_1B_PASS_HEADER, &pctx);
|
|
pctx.errcode = ext2fs_open_inode_scan(fs, ctx->inode_buffer_blocks,
|
|
&scan);
|
|
if (pctx.errcode) {
|
|
fix_problem(ctx, PR_1B_ISCAN_ERROR, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
ctx->stashed_inode = EXT2_INODE(&inode);
|
|
pb.ctx = ctx;
|
|
pb.pctx = &pctx;
|
|
pctx.str = "pass1b";
|
|
while (1) {
|
|
if (ino % (fs->super->s_inodes_per_group * 4) == 1) {
|
|
if (e2fsck_mmp_update(fs))
|
|
fatal_error(ctx, 0);
|
|
}
|
|
pctx.errcode = ext2fs_get_next_inode_full(scan, &ino,
|
|
EXT2_INODE(&inode), sizeof(inode));
|
|
if (pctx.errcode == EXT2_ET_BAD_BLOCK_IN_INODE_TABLE)
|
|
continue;
|
|
if (pctx.errcode) {
|
|
pctx.ino = ino;
|
|
fix_problem(ctx, PR_1B_ISCAN_ERROR, &pctx);
|
|
ctx->flags |= E2F_FLAG_ABORT;
|
|
return;
|
|
}
|
|
if (!ino)
|
|
break;
|
|
pctx.ino = ctx->stashed_ino = ino;
|
|
if ((ino != EXT2_BAD_INO) &&
|
|
!ext2fs_test_inode_bitmap2(ctx->inode_used_map, ino))
|
|
continue;
|
|
|
|
pb.ino = ino;
|
|
pb.dup_blocks = 0;
|
|
pb.inode = &inode;
|
|
pb.cur_cluster = ~0;
|
|
pb.phys_cluster = ~0;
|
|
pb.last_blk = 0;
|
|
pb.pctx->blk = pb.pctx->blk2 = 0;
|
|
|
|
if (ext2fs_inode_has_valid_blocks2(fs, EXT2_INODE(&inode)) ||
|
|
(ino == EXT2_BAD_INO))
|
|
pctx.errcode = ext2fs_block_iterate3(fs, ino,
|
|
BLOCK_FLAG_READ_ONLY, block_buf,
|
|
process_pass1b_block, &pb);
|
|
/* If the feature is not set, attrs will be cleared later anyway */
|
|
if (ext2fs_has_feature_xattr(fs->super) &&
|
|
ext2fs_file_acl_block(fs, EXT2_INODE(&inode))) {
|
|
blk64_t blk = ext2fs_file_acl_block(fs, EXT2_INODE(&inode));
|
|
process_pass1b_block(fs, &blk,
|
|
BLOCK_COUNT_EXTATTR, 0, 0, &pb);
|
|
ext2fs_file_acl_block_set(fs, EXT2_INODE(&inode), blk);
|
|
}
|
|
if (pb.dup_blocks) {
|
|
if (ino != EXT2_BAD_INO) {
|
|
op = pctx.blk == pctx.blk2 ?
|
|
PR_1B_DUP_BLOCK : PR_1B_DUP_RANGE;
|
|
fix_problem(ctx, op, pb.pctx);
|
|
}
|
|
end_problem_latch(ctx, PR_LATCH_DBLOCK);
|
|
if (ino >= EXT2_FIRST_INODE(fs->super) ||
|
|
ino == EXT2_ROOT_INO)
|
|
dup_inode_count++;
|
|
}
|
|
if (pctx.errcode)
|
|
fix_problem(ctx, PR_1B_BLOCK_ITERATE, &pctx);
|
|
}
|
|
ext2fs_close_inode_scan(scan);
|
|
e2fsck_use_inode_shortcuts(ctx, 0);
|
|
}
|
|
|
|
static int process_pass1b_block(ext2_filsys fs EXT2FS_ATTR((unused)),
|
|
blk64_t *block_nr,
|
|
e2_blkcnt_t blockcnt,
|
|
blk64_t ref_blk EXT2FS_ATTR((unused)),
|
|
int ref_offset EXT2FS_ATTR((unused)),
|
|
void *priv_data)
|
|
{
|
|
struct process_block_struct *p;
|
|
e2fsck_t ctx;
|
|
blk64_t lc, pc;
|
|
problem_t op;
|
|
|
|
if (*block_nr == 0)
|
|
return 0;
|
|
p = (struct process_block_struct *) priv_data;
|
|
ctx = p->ctx;
|
|
lc = EXT2FS_B2C(fs, blockcnt);
|
|
pc = EXT2FS_B2C(fs, *block_nr);
|
|
|
|
if (!ext2fs_test_block_bitmap2(ctx->block_dup_map, *block_nr))
|
|
goto finish;
|
|
|
|
/* OK, this is a duplicate block */
|
|
if (p->ino != EXT2_BAD_INO) {
|
|
if (p->last_blk + 1 != *block_nr) {
|
|
if (p->last_blk) {
|
|
op = p->pctx->blk == p->pctx->blk2 ?
|
|
PR_1B_DUP_BLOCK :
|
|
PR_1B_DUP_RANGE;
|
|
fix_problem(ctx, op, p->pctx);
|
|
}
|
|
p->pctx->blk = *block_nr;
|
|
}
|
|
p->pctx->blk2 = *block_nr;
|
|
p->last_blk = *block_nr;
|
|
}
|
|
p->dup_blocks++;
|
|
ext2fs_mark_inode_bitmap2(inode_dup_map, p->ino);
|
|
|
|
/*
|
|
* Qualifications for submitting a block for duplicate processing:
|
|
* It's an extent/indirect block (and has a negative logical offset);
|
|
* we've crossed a logical cluster boundary; or the physical cluster
|
|
* suddenly changed, which indicates that blocks in a logical cluster
|
|
* are mapped to multiple physical clusters.
|
|
*/
|
|
if (blockcnt < 0 || lc != p->cur_cluster || pc != p->phys_cluster)
|
|
add_dupe(ctx, p->ino, EXT2FS_B2C(fs, *block_nr), p->inode);
|
|
|
|
finish:
|
|
p->cur_cluster = lc;
|
|
p->phys_cluster = pc;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Pass 1c: Scan directories for inodes with duplicate blocks. This
|
|
* is used so that we can print pathnames when prompting the user for
|
|
* what to do.
|
|
*/
|
|
struct search_dir_struct {
|
|
int count;
|
|
ext2_ino_t first_inode;
|
|
ext2_ino_t max_inode;
|
|
};
|
|
|
|
static int search_dirent_proc(ext2_ino_t dir, int entry,
|
|
struct ext2_dir_entry *dirent,
|
|
int offset EXT2FS_ATTR((unused)),
|
|
int blocksize EXT2FS_ATTR((unused)),
|
|
char *buf EXT2FS_ATTR((unused)),
|
|
void *priv_data)
|
|
{
|
|
struct search_dir_struct *sd;
|
|
struct dup_inode *p;
|
|
dnode_t *n;
|
|
|
|
sd = (struct search_dir_struct *) priv_data;
|
|
|
|
if (dirent->inode > sd->max_inode)
|
|
/* Should abort this inode, but not everything */
|
|
return 0;
|
|
|
|
if ((dirent->inode < sd->first_inode) || (entry < DIRENT_OTHER_FILE) ||
|
|
!ext2fs_test_inode_bitmap2(inode_dup_map, dirent->inode))
|
|
return 0;
|
|
|
|
n = dict_lookup(&ino_dict, INT_TO_VOIDPTR(dirent->inode));
|
|
if (!n)
|
|
return 0;
|
|
p = (struct dup_inode *) dnode_get(n);
|
|
if (!p->dir) {
|
|
p->dir = dir;
|
|
sd->count--;
|
|
}
|
|
|
|
return(sd->count ? 0 : DIRENT_ABORT);
|
|
}
|
|
|
|
|
|
static void pass1c(e2fsck_t ctx, char *block_buf)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
struct search_dir_struct sd;
|
|
struct problem_context pctx;
|
|
|
|
clear_problem_context(&pctx);
|
|
|
|
if (!(ctx->options & E2F_OPT_PREEN))
|
|
fix_problem(ctx, PR_1C_PASS_HEADER, &pctx);
|
|
|
|
/*
|
|
* Search through all directories to translate inodes to names
|
|
* (by searching for the containing directory for that inode.)
|
|
*/
|
|
sd.count = dup_inode_count - dup_inode_founddir;
|
|
sd.first_inode = EXT2_FIRST_INODE(fs->super);
|
|
sd.max_inode = fs->super->s_inodes_count;
|
|
ext2fs_dblist_dir_iterate(fs->dblist, 0, block_buf,
|
|
search_dirent_proc, &sd);
|
|
}
|
|
|
|
static void pass1d(e2fsck_t ctx, char *block_buf)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
struct dup_inode *p, *t;
|
|
struct dup_cluster *q;
|
|
ext2_ino_t *shared, ino;
|
|
int shared_len;
|
|
int i;
|
|
int file_ok;
|
|
int meta_data = 0;
|
|
struct problem_context pctx;
|
|
dnode_t *n, *m;
|
|
struct cluster_el *s;
|
|
struct inode_el *r;
|
|
|
|
clear_problem_context(&pctx);
|
|
|
|
if (!(ctx->options & E2F_OPT_PREEN))
|
|
fix_problem(ctx, PR_1D_PASS_HEADER, &pctx);
|
|
e2fsck_read_bitmaps(ctx);
|
|
|
|
pctx.num = dup_inode_count; /* dict_count(&ino_dict); */
|
|
fix_problem(ctx, PR_1D_NUM_DUP_INODES, &pctx);
|
|
shared = (ext2_ino_t *) e2fsck_allocate_memory(ctx,
|
|
sizeof(ext2_ino_t) * dict_count(&ino_dict),
|
|
"Shared inode list");
|
|
for (n = dict_first(&ino_dict); n; n = dict_next(&ino_dict, n)) {
|
|
p = (struct dup_inode *) dnode_get(n);
|
|
shared_len = 0;
|
|
file_ok = 1;
|
|
ino = (ext2_ino_t)VOIDPTR_TO_INT(dnode_getkey(n));
|
|
if (ino == EXT2_BAD_INO || ino == EXT2_RESIZE_INO)
|
|
continue;
|
|
|
|
/*
|
|
* Find all of the inodes which share blocks with this
|
|
* one. First we find all of the duplicate blocks
|
|
* belonging to this inode, and then search each block
|
|
* get the list of inodes, and merge them together.
|
|
*/
|
|
for (s = p->cluster_list; s; s = s->next) {
|
|
m = dict_lookup(&clstr_dict,
|
|
INT_TO_VOIDPTR(s->cluster));
|
|
if (!m)
|
|
continue; /* Should never happen... */
|
|
q = (struct dup_cluster *) dnode_get(m);
|
|
if (q->num_bad > 1)
|
|
file_ok = 0;
|
|
if (check_if_fs_cluster(ctx, s->cluster)) {
|
|
file_ok = 0;
|
|
meta_data = 1;
|
|
}
|
|
|
|
/*
|
|
* Add all inodes used by this block to the
|
|
* shared[] --- which is a unique list, so
|
|
* if an inode is already in shared[], don't
|
|
* add it again.
|
|
*/
|
|
for (r = q->inode_list; r; r = r->next) {
|
|
if (r->inode == ino)
|
|
continue;
|
|
for (i = 0; i < shared_len; i++)
|
|
if (shared[i] == r->inode)
|
|
break;
|
|
if (i == shared_len) {
|
|
shared[shared_len++] = r->inode;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Report the inode that we are working on
|
|
*/
|
|
pctx.inode = EXT2_INODE(&p->inode);
|
|
pctx.ino = ino;
|
|
pctx.dir = p->dir;
|
|
pctx.blkcount = p->num_dupblocks;
|
|
pctx.num = meta_data ? shared_len+1 : shared_len;
|
|
fix_problem(ctx, PR_1D_DUP_FILE, &pctx);
|
|
pctx.blkcount = 0;
|
|
pctx.num = 0;
|
|
|
|
if (meta_data)
|
|
fix_problem(ctx, PR_1D_SHARE_METADATA, &pctx);
|
|
|
|
for (i = 0; i < shared_len; i++) {
|
|
m = dict_lookup(&ino_dict, INT_TO_VOIDPTR(shared[i]));
|
|
if (!m)
|
|
continue; /* should never happen */
|
|
t = (struct dup_inode *) dnode_get(m);
|
|
/*
|
|
* Report the inode that we are sharing with
|
|
*/
|
|
pctx.inode = EXT2_INODE(&t->inode);
|
|
pctx.ino = shared[i];
|
|
pctx.dir = t->dir;
|
|
fix_problem(ctx, PR_1D_DUP_FILE_LIST, &pctx);
|
|
}
|
|
/*
|
|
* Even if the file shares blocks with itself, we still need to
|
|
* clone the blocks.
|
|
*/
|
|
if (file_ok && (meta_data ? shared_len+1 : shared_len) != 0) {
|
|
fix_problem(ctx, PR_1D_DUP_BLOCKS_DEALT, &pctx);
|
|
continue;
|
|
}
|
|
if ((ctx->options & E2F_OPT_UNSHARE_BLOCKS) ||
|
|
fix_problem(ctx, PR_1D_CLONE_QUESTION, &pctx)) {
|
|
pctx.errcode = clone_file(ctx, ino, p, block_buf);
|
|
if (pctx.errcode)
|
|
fix_problem(ctx, PR_1D_CLONE_ERROR, &pctx);
|
|
else
|
|
continue;
|
|
}
|
|
/*
|
|
* Note: When unsharing blocks, we don't prompt to delete
|
|
* files. If the clone operation fails than the unshare
|
|
* operation should fail too.
|
|
*/
|
|
if (!(ctx->options & E2F_OPT_UNSHARE_BLOCKS) &&
|
|
fix_problem(ctx, PR_1D_DELETE_QUESTION, &pctx))
|
|
delete_file(ctx, ino, p, block_buf);
|
|
else
|
|
ext2fs_unmark_valid(fs);
|
|
}
|
|
ext2fs_free_mem(&shared);
|
|
}
|
|
|
|
/*
|
|
* Drop the refcount on the dup_block structure, and clear the entry
|
|
* in the block_dup_map if appropriate.
|
|
*/
|
|
static void decrement_badcount(e2fsck_t ctx, blk64_t block,
|
|
struct dup_cluster *p)
|
|
{
|
|
p->num_bad--;
|
|
if (p->num_bad <= 0 ||
|
|
(p->num_bad == 1 && !check_if_fs_block(ctx, block))) {
|
|
if (check_if_fs_cluster(ctx, EXT2FS_B2C(ctx->fs, block)))
|
|
return;
|
|
ext2fs_unmark_block_bitmap2(ctx->block_dup_map, block);
|
|
}
|
|
}
|
|
|
|
static int delete_file_block(ext2_filsys fs,
|
|
blk64_t *block_nr,
|
|
e2_blkcnt_t blockcnt,
|
|
blk64_t ref_block EXT2FS_ATTR((unused)),
|
|
int ref_offset EXT2FS_ATTR((unused)),
|
|
void *priv_data)
|
|
{
|
|
struct process_block_struct *pb;
|
|
struct dup_cluster *p;
|
|
dnode_t *n;
|
|
e2fsck_t ctx;
|
|
blk64_t c, lc;
|
|
|
|
pb = (struct process_block_struct *) priv_data;
|
|
ctx = pb->ctx;
|
|
|
|
if (*block_nr == 0)
|
|
return 0;
|
|
|
|
c = EXT2FS_B2C(fs, *block_nr);
|
|
lc = EXT2FS_B2C(fs, blockcnt);
|
|
if (ext2fs_test_block_bitmap2(ctx->block_dup_map, *block_nr)) {
|
|
n = dict_lookup(&clstr_dict, INT_TO_VOIDPTR(c));
|
|
if (n) {
|
|
if (lc != pb->cur_cluster) {
|
|
p = (struct dup_cluster *) dnode_get(n);
|
|
decrement_badcount(ctx, *block_nr, p);
|
|
pb->dup_blocks++;
|
|
}
|
|
} else
|
|
com_err("delete_file_block", 0,
|
|
_("internal error: can't find dup_blk for %llu\n"),
|
|
*block_nr);
|
|
} else {
|
|
if ((*block_nr % EXT2FS_CLUSTER_RATIO(ctx->fs)) == 0)
|
|
ext2fs_block_alloc_stats2(fs, *block_nr, -1);
|
|
pb->dup_blocks++;
|
|
}
|
|
pb->cur_cluster = lc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void delete_file(e2fsck_t ctx, ext2_ino_t ino,
|
|
struct dup_inode *dp, char* block_buf)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
struct process_block_struct pb;
|
|
struct problem_context pctx;
|
|
unsigned int count;
|
|
|
|
clear_problem_context(&pctx);
|
|
pctx.ino = pb.ino = ino;
|
|
pb.dup_blocks = 0;
|
|
pb.ctx = ctx;
|
|
pctx.str = "delete_file";
|
|
pb.cur_cluster = ~0;
|
|
|
|
if (ext2fs_inode_has_valid_blocks2(fs, EXT2_INODE(&dp->inode)))
|
|
pctx.errcode = ext2fs_block_iterate3(fs, ino,
|
|
BLOCK_FLAG_READ_ONLY,
|
|
block_buf,
|
|
delete_file_block, &pb);
|
|
if (pctx.errcode)
|
|
fix_problem(ctx, PR_1B_BLOCK_ITERATE, &pctx);
|
|
if (ctx->inode_bad_map)
|
|
ext2fs_unmark_inode_bitmap2(ctx->inode_bad_map, ino);
|
|
ext2fs_inode_alloc_stats2(fs, ino, -1, LINUX_S_ISDIR(dp->inode.i_mode));
|
|
quota_data_sub(ctx->qctx, &dp->inode, ino,
|
|
pb.dup_blocks * fs->blocksize);
|
|
quota_data_inodes(ctx->qctx, &dp->inode, ino, -1);
|
|
|
|
/* Inode may have changed by block_iterate, so reread it */
|
|
e2fsck_read_inode_full(ctx, ino, EXT2_INODE(&dp->inode),
|
|
sizeof(dp->inode), "delete_file");
|
|
e2fsck_clear_inode(ctx, ino, EXT2_INODE(&dp->inode), 0, "delete_file");
|
|
if (ext2fs_file_acl_block(fs, EXT2_INODE(&dp->inode)) &&
|
|
ext2fs_has_feature_xattr(fs->super)) {
|
|
blk64_t file_acl_block = ext2fs_file_acl_block(fs,
|
|
EXT2_INODE(&dp->inode));
|
|
|
|
count = 1;
|
|
pctx.errcode = ext2fs_adjust_ea_refcount3(fs, file_acl_block,
|
|
block_buf, -1, &count, ino);
|
|
if (pctx.errcode == EXT2_ET_BAD_EA_BLOCK_NUM) {
|
|
pctx.errcode = 0;
|
|
count = 1;
|
|
}
|
|
if (pctx.errcode) {
|
|
pctx.blk = file_acl_block;
|
|
fix_problem(ctx, PR_1B_ADJ_EA_REFCOUNT, &pctx);
|
|
}
|
|
/*
|
|
* If the count is zero, then arrange to have the
|
|
* block deleted. If the block is in the block_dup_map,
|
|
* also call delete_file_block since it will take care
|
|
* of keeping the accounting straight.
|
|
*/
|
|
if ((count == 0) ||
|
|
ext2fs_test_block_bitmap2(ctx->block_dup_map,
|
|
file_acl_block)) {
|
|
delete_file_block(fs, &file_acl_block,
|
|
BLOCK_COUNT_EXTATTR, 0, 0, &pb);
|
|
ext2fs_file_acl_block_set(fs, EXT2_INODE(&dp->inode),
|
|
file_acl_block);
|
|
quota_data_sub(ctx->qctx, &dp->inode, ino,
|
|
fs->blocksize);
|
|
}
|
|
}
|
|
}
|
|
|
|
struct clone_struct {
|
|
errcode_t errcode;
|
|
blk64_t dup_cluster;
|
|
blk64_t alloc_block;
|
|
ext2_ino_t dir, ino;
|
|
char *buf;
|
|
e2fsck_t ctx;
|
|
struct ext2_inode_large *inode;
|
|
|
|
struct dup_cluster *save_dup_cluster;
|
|
blk64_t save_blocknr;
|
|
};
|
|
|
|
/*
|
|
* Decrement the bad count *after* we've shown that (a) we can allocate a
|
|
* replacement block and (b) remap the file blocks. Unfortunately, there's no
|
|
* way to find out if the remap succeeded until either the next
|
|
* clone_file_block() call (an error when remapping the block after returning
|
|
* BLOCK_CHANGED will halt the iteration) or after block_iterate() returns.
|
|
* Otherwise, it's possible that we decrease the badcount once in preparation
|
|
* to remap, then the remap fails (either we can't find a replacement block or
|
|
* we have to split the extent tree and can't find a new extent block), so we
|
|
* delete the file, which decreases the badcount again.
|
|
*/
|
|
static void deferred_dec_badcount(struct clone_struct *cs)
|
|
{
|
|
if (!cs->save_dup_cluster)
|
|
return;
|
|
decrement_badcount(cs->ctx, cs->save_blocknr, cs->save_dup_cluster);
|
|
cs->save_dup_cluster = NULL;
|
|
}
|
|
|
|
static int clone_file_block(ext2_filsys fs,
|
|
blk64_t *block_nr,
|
|
e2_blkcnt_t blockcnt,
|
|
blk64_t ref_block EXT2FS_ATTR((unused)),
|
|
int ref_offset EXT2FS_ATTR((unused)),
|
|
void *priv_data)
|
|
{
|
|
struct dup_cluster *p = NULL;
|
|
blk64_t new_block;
|
|
errcode_t retval;
|
|
struct clone_struct *cs = (struct clone_struct *) priv_data;
|
|
dnode_t *n;
|
|
e2fsck_t ctx;
|
|
blk64_t c;
|
|
int is_meta = 0;
|
|
int should_write = 1;
|
|
|
|
ctx = cs->ctx;
|
|
deferred_dec_badcount(cs);
|
|
|
|
if (*block_nr == 0)
|
|
return 0;
|
|
|
|
if (ext2fs_has_feature_shared_blocks(ctx->fs->super) &&
|
|
(ctx->options & E2F_OPT_UNSHARE_BLOCKS) &&
|
|
(ctx->options & E2F_OPT_NO))
|
|
should_write = 0;
|
|
|
|
c = EXT2FS_B2C(fs, blockcnt);
|
|
if (check_if_fs_cluster(ctx, EXT2FS_B2C(fs, *block_nr)))
|
|
is_meta = 1;
|
|
|
|
if (c == cs->dup_cluster && cs->alloc_block) {
|
|
new_block = cs->alloc_block;
|
|
goto got_block;
|
|
}
|
|
|
|
if (ext2fs_test_block_bitmap2(ctx->block_dup_map, *block_nr)) {
|
|
n = dict_lookup(&clstr_dict,
|
|
INT_TO_VOIDPTR(EXT2FS_B2C(fs, *block_nr)));
|
|
if (!n) {
|
|
com_err("clone_file_block", 0,
|
|
_("internal error: can't find dup_blk for %llu\n"),
|
|
*block_nr);
|
|
return 0;
|
|
}
|
|
|
|
p = (struct dup_cluster *) dnode_get(n);
|
|
|
|
cs->dup_cluster = c;
|
|
/*
|
|
* Let's try an implied cluster allocation. If we get the same
|
|
* cluster back, then we need to find a new block; otherwise,
|
|
* we're merely fixing the problem of one logical cluster being
|
|
* mapped to multiple physical clusters.
|
|
*/
|
|
new_block = 0;
|
|
retval = ext2fs_map_cluster_block(fs, cs->ino,
|
|
EXT2_INODE(cs->inode),
|
|
blockcnt, &new_block);
|
|
if (retval == 0 && new_block != 0 &&
|
|
EXT2FS_B2C(ctx->fs, new_block) !=
|
|
EXT2FS_B2C(ctx->fs, *block_nr))
|
|
goto cluster_alloc_ok;
|
|
retval = ext2fs_new_block2(fs, 0, ctx->block_found_map,
|
|
&new_block);
|
|
if (retval) {
|
|
cs->errcode = retval;
|
|
return BLOCK_ABORT;
|
|
}
|
|
if (ext2fs_has_feature_shared_blocks(fs->super)) {
|
|
/*
|
|
* Update the block stats so we don't get a prompt to fix block
|
|
* counts in the final pass.
|
|
*/
|
|
ext2fs_block_alloc_stats2(fs, new_block, +1);
|
|
}
|
|
cluster_alloc_ok:
|
|
cs->alloc_block = new_block;
|
|
|
|
got_block:
|
|
new_block &= ~EXT2FS_CLUSTER_MASK(fs);
|
|
new_block += EXT2FS_CLUSTER_MASK(fs) & blockcnt;
|
|
if (cs->dir && (blockcnt >= 0)) {
|
|
retval = ext2fs_set_dir_block2(fs->dblist,
|
|
cs->dir, new_block, blockcnt);
|
|
if (retval) {
|
|
cs->errcode = retval;
|
|
return BLOCK_ABORT;
|
|
}
|
|
}
|
|
#if 0
|
|
printf("Cloning block #%lld from %llu to %llu\n",
|
|
blockcnt, *block_nr, new_block);
|
|
#endif
|
|
retval = io_channel_read_blk64(fs->io, *block_nr, 1, cs->buf);
|
|
if (retval) {
|
|
cs->errcode = retval;
|
|
return BLOCK_ABORT;
|
|
}
|
|
if (should_write) {
|
|
retval = io_channel_write_blk64(fs->io, new_block, 1, cs->buf);
|
|
if (retval) {
|
|
cs->errcode = retval;
|
|
return BLOCK_ABORT;
|
|
}
|
|
}
|
|
cs->save_dup_cluster = (is_meta ? NULL : p);
|
|
cs->save_blocknr = *block_nr;
|
|
*block_nr = new_block;
|
|
ext2fs_mark_block_bitmap2(ctx->block_found_map, new_block);
|
|
ext2fs_mark_block_bitmap2(fs->block_map, new_block);
|
|
|
|
if (!should_write) {
|
|
/* Don't try to change extent information; we want e2fsck to
|
|
* return success.
|
|
*/
|
|
return 0;
|
|
}
|
|
return BLOCK_CHANGED;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static errcode_t clone_file(e2fsck_t ctx, ext2_ino_t ino,
|
|
struct dup_inode *dp, char* block_buf)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
errcode_t retval;
|
|
struct clone_struct cs;
|
|
struct problem_context pctx;
|
|
blk64_t blk, new_blk;
|
|
dnode_t *n;
|
|
struct inode_el *ino_el;
|
|
struct dup_cluster *dc;
|
|
struct dup_inode *di;
|
|
|
|
clear_problem_context(&pctx);
|
|
cs.errcode = 0;
|
|
cs.dir = 0;
|
|
cs.dup_cluster = ~0;
|
|
cs.alloc_block = 0;
|
|
cs.ctx = ctx;
|
|
cs.ino = ino;
|
|
cs.inode = &dp->inode;
|
|
cs.save_dup_cluster = NULL;
|
|
cs.save_blocknr = 0;
|
|
retval = ext2fs_get_mem(fs->blocksize, &cs.buf);
|
|
if (retval)
|
|
return retval;
|
|
|
|
if (ext2fs_test_inode_bitmap2(ctx->inode_dir_map, ino))
|
|
cs.dir = ino;
|
|
|
|
pctx.ino = ino;
|
|
pctx.str = "clone_file";
|
|
if (ext2fs_inode_has_valid_blocks2(fs, EXT2_INODE(&dp->inode)))
|
|
pctx.errcode = ext2fs_block_iterate3(fs, ino, 0, block_buf,
|
|
clone_file_block, &cs);
|
|
deferred_dec_badcount(&cs);
|
|
ext2fs_mark_bb_dirty(fs);
|
|
if (pctx.errcode) {
|
|
fix_problem(ctx, PR_1B_BLOCK_ITERATE, &pctx);
|
|
retval = pctx.errcode;
|
|
goto errout;
|
|
}
|
|
if (cs.errcode) {
|
|
com_err("clone_file", cs.errcode, "%s",
|
|
_("returned from clone_file_block"));
|
|
retval = cs.errcode;
|
|
goto errout;
|
|
}
|
|
/* The inode may have changed on disk, so we have to re-read it */
|
|
e2fsck_read_inode_full(ctx, ino, EXT2_INODE(&dp->inode),
|
|
sizeof(dp->inode), "clone file EA");
|
|
blk = ext2fs_file_acl_block(fs, EXT2_INODE(&dp->inode));
|
|
new_blk = blk;
|
|
if (blk && (clone_file_block(fs, &new_blk,
|
|
BLOCK_COUNT_EXTATTR, 0, 0, &cs) ==
|
|
BLOCK_CHANGED)) {
|
|
ext2fs_file_acl_block_set(fs, EXT2_INODE(&dp->inode), new_blk);
|
|
e2fsck_write_inode_full(ctx, ino, EXT2_INODE(&dp->inode),
|
|
sizeof(dp->inode), "clone file EA");
|
|
/*
|
|
* If we cloned the EA block, find all other inodes
|
|
* which referred to that EA block, and modify
|
|
* them to point to the new EA block.
|
|
*/
|
|
n = dict_lookup(&clstr_dict,
|
|
INT_TO_VOIDPTR(EXT2FS_B2C(fs, blk)));
|
|
if (!n) {
|
|
com_err("clone_file", 0,
|
|
_("internal error: couldn't lookup EA "
|
|
"block record for %llu"), blk);
|
|
retval = 0; /* OK to stumble on... */
|
|
goto errout;
|
|
}
|
|
dc = (struct dup_cluster *) dnode_get(n);
|
|
for (ino_el = dc->inode_list; ino_el; ino_el = ino_el->next) {
|
|
if (ino_el->inode == ino)
|
|
continue;
|
|
n = dict_lookup(&ino_dict, INT_TO_VOIDPTR(ino_el->inode));
|
|
if (!n) {
|
|
com_err("clone_file", 0,
|
|
_("internal error: couldn't lookup EA "
|
|
"inode record for %u"),
|
|
ino_el->inode);
|
|
retval = 0; /* OK to stumble on... */
|
|
goto errout;
|
|
}
|
|
di = (struct dup_inode *) dnode_get(n);
|
|
if (ext2fs_file_acl_block(fs,
|
|
EXT2_INODE(&di->inode)) == blk) {
|
|
ext2fs_file_acl_block_set(fs,
|
|
EXT2_INODE(&di->inode),
|
|
ext2fs_file_acl_block(fs, EXT2_INODE(&dp->inode)));
|
|
e2fsck_write_inode_full(ctx, ino_el->inode,
|
|
EXT2_INODE(&di->inode),
|
|
sizeof(di->inode), "clone file EA");
|
|
decrement_badcount(ctx, blk, dc);
|
|
}
|
|
}
|
|
}
|
|
retval = 0;
|
|
errout:
|
|
ext2fs_free_mem(&cs.buf);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* This routine returns 1 if a block overlaps with one of the superblocks,
|
|
* group descriptors, inode bitmaps, or block bitmaps.
|
|
*/
|
|
static int check_if_fs_block(e2fsck_t ctx, blk64_t test_block)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
blk64_t first_block;
|
|
dgrp_t i;
|
|
|
|
first_block = fs->super->s_first_data_block;
|
|
for (i = 0; i < fs->group_desc_count; i++) {
|
|
|
|
/* Check superblocks/block group descriptors */
|
|
if (ext2fs_bg_has_super(fs, i)) {
|
|
if (test_block >= first_block &&
|
|
(test_block <= first_block + fs->desc_blocks))
|
|
return 1;
|
|
}
|
|
|
|
/* Check the inode table */
|
|
if ((ext2fs_inode_table_loc(fs, i)) &&
|
|
(test_block >= ext2fs_inode_table_loc(fs, i)) &&
|
|
(test_block < (ext2fs_inode_table_loc(fs, i) +
|
|
fs->inode_blocks_per_group)))
|
|
return 1;
|
|
|
|
/* Check the bitmap blocks */
|
|
if ((test_block == ext2fs_block_bitmap_loc(fs, i)) ||
|
|
(test_block == ext2fs_inode_bitmap_loc(fs, i)))
|
|
return 1;
|
|
|
|
first_block += fs->super->s_blocks_per_group;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This routine returns 1 if a cluster overlaps with one of the superblocks,
|
|
* group descriptors, inode bitmaps, or block bitmaps.
|
|
*/
|
|
static int check_if_fs_cluster(e2fsck_t ctx, blk64_t cluster)
|
|
{
|
|
ext2_filsys fs = ctx->fs;
|
|
blk64_t first_block;
|
|
dgrp_t i;
|
|
|
|
first_block = fs->super->s_first_data_block;
|
|
for (i = 0; i < fs->group_desc_count; i++) {
|
|
|
|
/* Check superblocks/block group descriptors */
|
|
if (ext2fs_bg_has_super(fs, i)) {
|
|
if (cluster >= EXT2FS_B2C(fs, first_block) &&
|
|
(cluster <= EXT2FS_B2C(fs, first_block +
|
|
fs->desc_blocks)))
|
|
return 1;
|
|
}
|
|
|
|
/* Check the inode table */
|
|
if ((ext2fs_inode_table_loc(fs, i)) &&
|
|
(cluster >= EXT2FS_B2C(fs,
|
|
ext2fs_inode_table_loc(fs, i))) &&
|
|
(cluster <= EXT2FS_B2C(fs,
|
|
ext2fs_inode_table_loc(fs, i) +
|
|
fs->inode_blocks_per_group - 1)))
|
|
return 1;
|
|
|
|
/* Check the bitmap blocks */
|
|
if ((cluster == EXT2FS_B2C(fs,
|
|
ext2fs_block_bitmap_loc(fs, i))) ||
|
|
(cluster == EXT2FS_B2C(fs,
|
|
ext2fs_inode_bitmap_loc(fs, i))))
|
|
return 1;
|
|
|
|
first_block += fs->super->s_blocks_per_group;
|
|
}
|
|
return 0;
|
|
}
|