You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
258 lines
8.9 KiB
258 lines
8.9 KiB
/* K=15 r=1/6 Viterbi decoder for PowerPC G4/G5 Altivec vector instructions
|
|
* 8-bit offset-binary soft decision samples
|
|
* Copyright Mar 2004, Phil Karn, KA9Q
|
|
* May be used under the terms of the GNU Lesser General Public License (LGPL)
|
|
*/
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <memory.h>
|
|
#include <limits.h>
|
|
#include "fec.h"
|
|
|
|
typedef union { unsigned char c[128][16]; vector unsigned char v[128]; } decision_t;
|
|
typedef union { unsigned short s[16384]; vector unsigned short v[2048]; } metric_t;
|
|
|
|
static union branchtab615 { unsigned short s[8192]; vector unsigned short v[1024];} Branchtab615[6];
|
|
static int Init = 0;
|
|
|
|
/* State info for instance of Viterbi decoder */
|
|
struct v615 {
|
|
metric_t metrics1; /* path metric buffer 1 */
|
|
metric_t metrics2; /* path metric buffer 2 */
|
|
void *dp; /* Pointer to current decision */
|
|
metric_t *old_metrics,*new_metrics; /* Pointers to path metrics, swapped on every bit */
|
|
void *decisions; /* Beginning of decisions for block */
|
|
};
|
|
|
|
/* Initialize Viterbi decoder for start of new frame */
|
|
int init_viterbi615_av(void *p,int starting_state){
|
|
struct v615 *vp = p;
|
|
int i;
|
|
|
|
if(p == NULL)
|
|
return -1;
|
|
|
|
for(i=0;i<2048;i++)
|
|
vp->metrics1.v[i] = (vector unsigned short)(5000);
|
|
|
|
vp->old_metrics = &vp->metrics1;
|
|
vp->new_metrics = &vp->metrics2;
|
|
vp->dp = vp->decisions;
|
|
vp->old_metrics->s[starting_state & 16383] = 0; /* Bias known start state */
|
|
return 0;
|
|
}
|
|
|
|
/* Create a new instance of a Viterbi decoder */
|
|
void *create_viterbi615_av(int len){
|
|
struct v615 *vp;
|
|
|
|
if(!Init){
|
|
int polys[6] = { V615POLYA,V615POLYB,V615POLYC,V615POLYD,V615POLYE,V615POLYF };
|
|
set_viterbi615_polynomial_av(polys);
|
|
}
|
|
vp = (struct v615 *)malloc(sizeof(struct v615));
|
|
vp->decisions = malloc(sizeof(decision_t)*(len+14));
|
|
init_viterbi615_av(vp,0);
|
|
return vp;
|
|
}
|
|
|
|
void set_viterbi615_polynomial_av(int polys[6]){
|
|
int state;
|
|
int i;
|
|
|
|
for(state=0;state < 8192;state++){
|
|
for(i=0;i<6;i++)
|
|
Branchtab615[i].s[state] = (polys[i] < 0) ^ parity((2*state) & abs(polys[i])) ? 255 : 0;
|
|
}
|
|
Init++;
|
|
}
|
|
|
|
|
|
/* Viterbi chainback */
|
|
int chainback_viterbi615_av(
|
|
void *p,
|
|
unsigned char *data, /* Decoded output data */
|
|
unsigned int nbits, /* Number of data bits */
|
|
unsigned int endstate){ /* Terminal encoder state */
|
|
struct v615 *vp = p;
|
|
decision_t *d = (decision_t *)vp->decisions;
|
|
int path_metric;
|
|
|
|
endstate %= 16384;
|
|
|
|
path_metric = vp->old_metrics->s[endstate];
|
|
|
|
/* The store into data[] only needs to be done every 8 bits.
|
|
* But this avoids a conditional branch, and the writes will
|
|
* combine in the cache anyway
|
|
*/
|
|
d += 14; /* Look past tail */
|
|
while(nbits-- != 0){
|
|
int k;
|
|
|
|
k = (d[nbits].c[endstate >> 7][endstate & 15] & (0x80 >> ((endstate>>4)&7)) ) ? 1 : 0;
|
|
endstate = (k << 13) | (endstate >> 1);
|
|
data[nbits>>3] = endstate >> 6;
|
|
}
|
|
return path_metric;
|
|
}
|
|
|
|
/* Delete instance of a Viterbi decoder */
|
|
void delete_viterbi615_av(void *p){
|
|
struct v615 *vp = p;
|
|
|
|
if(vp != NULL){
|
|
free(vp->decisions);
|
|
free(vp);
|
|
}
|
|
}
|
|
|
|
int update_viterbi615_blk_av(void *p,unsigned char *syms,int nbits){
|
|
struct v615 *vp = p;
|
|
decision_t *d = (decision_t *)vp->dp;
|
|
int path_metric = 0;
|
|
vector unsigned char decisions = (vector unsigned char)(0);
|
|
|
|
while(nbits--){
|
|
vector unsigned short symv,sym0v,sym1v,sym2v,sym3v,sym4v,sym5v;
|
|
vector unsigned char s;
|
|
void *tmp;
|
|
int i;
|
|
|
|
/* Splat the 0th symbol across sym0v, the 1st symbol across sym1v, etc */
|
|
s = (vector unsigned char)vec_perm(vec_ld(0,syms),vec_ld(5,syms),vec_lvsl(0,syms));
|
|
|
|
symv = (vector unsigned short)vec_mergeh((vector unsigned char)(0),s); /* Unsigned byte->word unpack */
|
|
sym0v = vec_splat(symv,0);
|
|
sym1v = vec_splat(symv,1);
|
|
sym2v = vec_splat(symv,2);
|
|
sym3v = vec_splat(symv,3);
|
|
sym4v = vec_splat(symv,4);
|
|
sym5v = vec_splat(symv,5);
|
|
syms += 6;
|
|
|
|
for(i=0;i<1024;i++){
|
|
vector bool short decision0,decision1;
|
|
vector unsigned short metric,m_metric,m0,m1,m2,m3,survivor0,survivor1;
|
|
|
|
/* Form branch metrics
|
|
* Because Branchtab takes on values 0 and 255, and the values of sym?v are offset binary in the range 0-255,
|
|
* the XOR operations constitute conditional negation.
|
|
* metric and m_metric (-metric) are in the range 0-1530
|
|
*/
|
|
m0 = vec_add(vec_xor(Branchtab615[0].v[i],sym0v),vec_xor(Branchtab615[1].v[i],sym1v));
|
|
m1 = vec_add(vec_xor(Branchtab615[2].v[i],sym2v),vec_xor(Branchtab615[3].v[i],sym3v));
|
|
m2 = vec_add(vec_xor(Branchtab615[4].v[i],sym4v),vec_xor(Branchtab615[5].v[i],sym5v));
|
|
metric = vec_add(m0,m1);
|
|
metric = vec_add(metric,m2);
|
|
m_metric = vec_sub((vector unsigned short)(1530),metric);
|
|
|
|
/* Add branch metrics to path metrics */
|
|
m0 = vec_adds(vp->old_metrics->v[i],metric);
|
|
m3 = vec_adds(vp->old_metrics->v[1024+i],metric);
|
|
m1 = vec_adds(vp->old_metrics->v[1024+i],m_metric);
|
|
m2 = vec_adds(vp->old_metrics->v[i],m_metric);
|
|
|
|
/* Compare and select */
|
|
decision0 = vec_cmpgt(m0,m1);
|
|
decision1 = vec_cmpgt(m2,m3);
|
|
survivor0 = vec_min(m0,m1);
|
|
survivor1 = vec_min(m2,m3);
|
|
|
|
/* Store decisions and survivors.
|
|
* To save space without SSE2's handy PMOVMSKB instruction, we pack and store them in
|
|
* a funny interleaved fashion that we undo in the chainback function.
|
|
*/
|
|
decisions = vec_add(decisions,decisions); /* Shift each byte 1 bit to the left */
|
|
|
|
/* Booleans are either 0xff or 0x00. Subtracting 0x00 leaves the lsb zero; subtracting
|
|
* 0xff is equivalent to adding 1, which sets the lsb.
|
|
*/
|
|
decisions = vec_sub(decisions,(vector unsigned char)vec_pack(vec_mergeh(decision0,decision1),vec_mergel(decision0,decision1)));
|
|
|
|
vp->new_metrics->v[2*i] = vec_mergeh(survivor0,survivor1);
|
|
vp->new_metrics->v[2*i+1] = vec_mergel(survivor0,survivor1);
|
|
|
|
if((i % 8) == 7){
|
|
/* We've accumulated a total of 128 decisions, stash and start again */
|
|
d->v[i>>3] = decisions; /* No need to clear, the new bits will replace the old */
|
|
}
|
|
}
|
|
#if 0
|
|
/* Experimentally determine metric spread
|
|
* The results are fixed for a given code and input symbol size
|
|
*/
|
|
{
|
|
int i;
|
|
vector unsigned short min_metric;
|
|
vector unsigned short max_metric;
|
|
union { vector unsigned short v; unsigned short s[8];} t;
|
|
int minimum,maximum;
|
|
static int max_spread = 0;
|
|
|
|
min_metric = max_metric = vp->new_metrics->v[0];
|
|
for(i=1;i<2048;i++){
|
|
min_metric = vec_min(min_metric,vp->new_metrics->v[i]);
|
|
max_metric = vec_max(max_metric,vp->new_metrics->v[i]);
|
|
}
|
|
min_metric = vec_min(min_metric,vec_sld(min_metric,min_metric,8));
|
|
max_metric = vec_max(max_metric,vec_sld(max_metric,max_metric,8));
|
|
min_metric = vec_min(min_metric,vec_sld(min_metric,min_metric,4));
|
|
max_metric = vec_max(max_metric,vec_sld(max_metric,max_metric,4));
|
|
min_metric = vec_min(min_metric,vec_sld(min_metric,min_metric,2));
|
|
max_metric = vec_max(max_metric,vec_sld(max_metric,max_metric,2));
|
|
|
|
t.v = min_metric;
|
|
minimum = t.s[0];
|
|
t.v = max_metric;
|
|
maximum = t.s[0];
|
|
if(maximum-minimum > max_spread){
|
|
max_spread = maximum-minimum;
|
|
printf("metric spread = %d\n",max_spread);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Renormalize if necessary. This deserves some explanation.
|
|
|
|
* The maximum possible spread, found by experiment, for 4-bit symbols is 405; for 8 bit symbols, it's 12750.
|
|
* So by looking at one arbitrary metric we can tell if any of them have possibly saturated.
|
|
* However, this is very conservative. Large spreads occur only at very high Eb/No, where
|
|
* saturating a bad path metric doesn't do much to increase its chances of being erroneously chosen as a survivor.
|
|
|
|
* At more interesting (low) Eb/No ratios, the spreads are much smaller so our chances of saturating a metric
|
|
* by not not normalizing when we should are extremely low. So either way, the risk to performance is small.
|
|
|
|
* All this is borne out by experiment.
|
|
*/
|
|
if(vp->new_metrics->s[0] >= USHRT_MAX-12750){
|
|
vector unsigned short scale;
|
|
union { vector unsigned short v; unsigned short s[8];} t;
|
|
|
|
/* Find smallest metric and splat */
|
|
scale = vp->new_metrics->v[0];
|
|
for(i=1;i<2048;i++)
|
|
scale = vec_min(scale,vp->new_metrics->v[i]);
|
|
|
|
scale = vec_min(scale,vec_sld(scale,scale,8));
|
|
scale = vec_min(scale,vec_sld(scale,scale,4));
|
|
scale = vec_min(scale,vec_sld(scale,scale,2));
|
|
|
|
/* Subtract it from all metrics
|
|
* Work backwards to try to improve the cache hit ratio, assuming LRU
|
|
*/
|
|
for(i=2047;i>=0;i--)
|
|
vp->new_metrics->v[i] = vec_subs(vp->new_metrics->v[i],scale);
|
|
t.v = scale;
|
|
path_metric += t.s[0];
|
|
}
|
|
d++;
|
|
/* Swap pointers to old and new metrics */
|
|
tmp = vp->old_metrics;
|
|
vp->old_metrics = vp->new_metrics;
|
|
vp->new_metrics = tmp;
|
|
}
|
|
vp->dp = d;
|
|
return path_metric;
|
|
}
|