You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

385 lines
11 KiB

//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// fixedpoint_avx.h: optimized avx specializations of the templates
// in fixedpoint.h.
#ifndef GEMMLOWP_INTERNAL_FIXEDPOINT_AVX_H_
#define GEMMLOWP_INTERNAL_FIXEDPOINT_AVX_H_
#include <immintrin.h>
#include "fixedpoint.h"
#include "fixedpoint_sse.h"
namespace gemmlowp {
struct int16x16_m256i {
__m256i v;
};
// Keep int16x16_m256i trivially constructible/destructible and provide
// easily optimized helper function.
inline int16x16_m256i to_int16x16_m256i(__m256i w) {
int16x16_m256i r;
r.v = w;
return r;
}
template <>
struct FixedPointRawTypeTraits<__m256i> {
typedef std::int32_t ScalarRawType;
// TODO: This can actually support up to 8 lanes, so we should either
// change to 8 or create int32x8_m256i struct to handle that case.
static const int kLanes = 4;
};
template <>
struct FixedPointRawTypeTraits<int16x16_m256i> {
typedef std::int16_t ScalarRawType;
static const int kLanes = 16;
};
template <>
inline __m256i BitAnd(__m256i a, __m256i b) {
return _mm256_and_si256(a, b);
}
template <>
inline int16x16_m256i BitAnd(int16x16_m256i a, int16x16_m256i b) {
return to_int16x16_m256i(_mm256_and_si256(a.v, b.v));
}
template <>
inline __m256i BitOr(__m256i a, __m256i b) {
return _mm256_or_si256(a, b);
}
template <>
inline int16x16_m256i BitOr(int16x16_m256i a, int16x16_m256i b) {
return to_int16x16_m256i(_mm256_or_si256(a.v, b.v));
}
template <>
inline __m256i BitXor(__m256i a, __m256i b) {
return _mm256_xor_si256(a, b);
}
template <>
inline int16x16_m256i BitXor(int16x16_m256i a, int16x16_m256i b) {
return to_int16x16_m256i(_mm256_xor_si256(a.v, b.v));
}
template <>
inline __m256i BitNot(__m256i a) {
return _mm256_andnot_si256(a, _mm256_set1_epi32(-1));
}
template <>
inline int16x16_m256i BitNot(int16x16_m256i a) {
return to_int16x16_m256i(_mm256_andnot_si256(a.v, _mm256_set1_epi16(-1)));
}
template <>
inline __m256i Add(__m256i a, __m256i b) {
return _mm256_add_epi32(a, b);
}
template <>
inline int16x16_m256i Add(int16x16_m256i a, int16x16_m256i b) {
return to_int16x16_m256i(_mm256_add_epi16(a.v, b.v));
}
template <>
inline __m256i Mul(__m256i a, __m256i b) {
return _mm256_mullo_epi32(a, b);
}
template <>
inline int16x16_m256i Mul(int16x16_m256i a, int16x16_m256i b) {
return to_int16x16_m256i(_mm256_mullo_epi16(a.v, b.v));
}
template <>
inline __m256i Sub(__m256i a, __m256i b) {
return _mm256_sub_epi32(a, b);
}
template <>
inline int16x16_m256i Sub(int16x16_m256i a, int16x16_m256i b) {
return to_int16x16_m256i(_mm256_sub_epi16(a.v, b.v));
}
template <>
inline __m256i Neg(__m256i a) {
return _mm256_sign_epi32(a, _mm256_set1_epi32(-1));
}
template <>
inline int16x16_m256i Neg(int16x16_m256i a) {
return to_int16x16_m256i(_mm256_sign_epi16(a.v, _mm256_set1_epi16(-1)));
}
template <>
inline __m256i ShiftLeft(__m256i a, int offset) {
return _mm256_slli_epi32(a, offset);
}
template <>
inline int16x16_m256i ShiftLeft(int16x16_m256i a, int offset) {
return to_int16x16_m256i(_mm256_slli_epi16(a.v, offset));
}
template <>
inline __m256i ShiftRight(__m256i a, int offset) {
return _mm256_srai_epi32(a, offset);
}
template <>
inline int16x16_m256i ShiftRight(int16x16_m256i a, int offset) {
return to_int16x16_m256i(_mm256_srai_epi16(a.v, offset));
}
template <>
inline __m256i SelectUsingMask(__m256i if_mask, __m256i then_val,
__m256i else_val) {
return _mm256_castps_si256(_mm256_blendv_ps(_mm256_castsi256_ps(else_val),
_mm256_castsi256_ps(then_val),
_mm256_castsi256_ps(if_mask)));
}
template <>
inline int16x16_m256i SelectUsingMask(int16x16_m256i if_mask,
int16x16_m256i then_val,
int16x16_m256i else_val) {
// Borrowed from Intel's arm_neon_sse.h header.
return to_int16x16_m256i(
_mm256_or_si256(_mm256_and_si256(if_mask.v, then_val.v),
_mm256_andnot_si256(if_mask.v, else_val.v)));
}
template <>
inline __m256i MaskIfEqual(__m256i a, __m256i b) {
return _mm256_cmpeq_epi32(a, b);
}
template <>
inline int16x16_m256i MaskIfEqual(int16x16_m256i a, int16x16_m256i b) {
return to_int16x16_m256i(_mm256_cmpeq_epi16(a.v, b.v));
}
template <>
inline __m256i MaskIfNotEqual(__m256i a, __m256i b) {
return BitNot(MaskIfEqual(a, b));
}
template <>
inline int16x16_m256i MaskIfNotEqual(int16x16_m256i a, int16x16_m256i b) {
return BitNot(MaskIfEqual(a, b));
}
template <>
inline __m256i MaskIfZero(__m256i a) {
return MaskIfEqual(a, _mm256_set1_epi32(0));
}
template <>
inline int16x16_m256i MaskIfZero(int16x16_m256i a) {
return MaskIfEqual(a, to_int16x16_m256i(_mm256_set1_epi16(0)));
}
template <>
inline __m256i MaskIfNonZero(__m256i a) {
return MaskIfNotEqual(a, _mm256_set1_epi32(0));
}
template <>
inline int16x16_m256i MaskIfNonZero(int16x16_m256i a) {
return MaskIfNotEqual(a, to_int16x16_m256i(_mm256_set1_epi16(0)));
}
template <>
inline __m256i MaskIfGreaterThan(__m256i a, __m256i b) {
return _mm256_cmpgt_epi32(a, b);
}
template <>
inline int16x16_m256i MaskIfGreaterThan(int16x16_m256i a, int16x16_m256i b) {
return to_int16x16_m256i(_mm256_cmpgt_epi16(a.v, b.v));
}
template <>
inline __m256i MaskIfLessThan(__m256i a, __m256i b) {
return _mm256_cmpgt_epi32(b, a);
}
template <>
inline int16x16_m256i MaskIfLessThan(int16x16_m256i a, int16x16_m256i b) {
return to_int16x16_m256i(_mm256_cmpgt_epi16(b.v, a.v));
}
template <>
inline __m256i MaskIfGreaterThanOrEqual(__m256i a, __m256i b) {
return BitNot(MaskIfLessThan(a, b));
}
template <>
inline int16x16_m256i MaskIfGreaterThanOrEqual(int16x16_m256i a,
int16x16_m256i b) {
return BitNot(MaskIfLessThan(a, b));
}
template <>
inline __m256i MaskIfLessThanOrEqual(__m256i a, __m256i b) {
return BitNot(MaskIfGreaterThan(a, b));
}
template <>
inline int16x16_m256i MaskIfLessThanOrEqual(int16x16_m256i a,
int16x16_m256i b) {
return BitNot(MaskIfGreaterThan(a, b));
}
/* Assumptions:
- All and Any are used on masks.
- masks are all_ones for true lanes, all_zeroes otherwise.
Hence, All means all 128bits set, and Any means any bit set.
*/
template <>
inline bool All(__m256i a) {
return _mm256_testc_si256(a, a);
}
template <>
inline bool All(int16x16_m256i a) {
return _mm256_testc_si256(a.v, a.v);
}
template <>
inline bool Any(__m256i a) {
return BitNot(_mm256_testz_si256(a, a));
}
template <>
inline bool Any(int16x16_m256i a) {
return BitNot(_mm256_testz_si256(a.v, a.v));
}
template <>
inline __m256i RoundingHalfSum(__m256i a, __m256i b) {
/* __m256i round_bit_mask, a_over_2, b_over_2, round_bit, sum; */
/* We divide the inputs before the add to avoid the overflow and costly test
*/
/* of checking if an overflow occured on signed add */
/* round_bit_mask = _mm_set1_epi32(1); */
/* a_over_2 = _mm_srai_epi32(a, 1); */
/* b_over_2 = _mm_srai_epi32(b, 1); */
/* sum = Add(a_over_2, b_over_2); */
/* round_bit = _mm_sign_epi32(BitAnd(BitOr(a,b), round_bit_mask), sum); */
/* return Add(sum, round_bit); */
/* Other possibility detecting overflow and xor the sign if an overflow
* happened*/
__m256i one, sign_bit_mask, sum, rounded_half_sum, overflow, result;
one = _mm256_set1_epi32(1);
sign_bit_mask = _mm256_set1_epi32(0x80000000);
sum = Add(a, b);
rounded_half_sum = _mm256_srai_epi32(Add(sum, one), 1);
overflow =
BitAnd(BitAnd(BitXor(a, rounded_half_sum), BitXor(b, rounded_half_sum)),
sign_bit_mask);
result = BitXor(rounded_half_sum, overflow);
return result;
}
template <>
inline int16x16_m256i RoundingHalfSum(int16x16_m256i a, int16x16_m256i b) {
// Borrowed from Intel's arm_neon_sse.h header.
__m256i constant_neg_32768 = _mm256_set1_epi16(-32768);
__m256i a_unsigned = _mm256_sub_epi16(a.v, constant_neg_32768);
__m256i b_unsigned = _mm256_sub_epi16(b.v, constant_neg_32768);
__m256i avg_unsigned = _mm256_avg_epu16(a_unsigned, b_unsigned);
__m256i avg = _mm256_add_epi16(avg_unsigned, constant_neg_32768);
return to_int16x16_m256i(avg);
}
template <>
inline __m256i SaturatingRoundingDoublingHighMul(__m256i a, __m256i b) {
__m256i min, saturation_mask, a0_a2, a1_a3, b0_b2, b1_b3;
__m256i a0b0_a2b2, a1b1_a3b3, a0b0_a2b2_rounded, a1b1_a3b3_rounded;
__m256i a0b0_a2b2_rounded_2x, a1b1_a3b3_rounded_2x, result;
__m256i nudge;
// saturation only happen if a == b == INT_MIN
min = _mm256_set1_epi32(std::numeric_limits<std::int32_t>::min());
saturation_mask = BitAnd(MaskIfEqual(a, b), MaskIfEqual(a, min));
// a = a0 | a1 | a2 | a3
// b = b0 | b1 | b2 | b3
a0_a2 = a;
a1_a3 = _mm256_srli_si256(a, 4);
b0_b2 = b;
b1_b3 = _mm256_srli_si256(b, 4);
a0b0_a2b2 = _mm256_mul_epi32(a0_a2, b0_b2);
a1b1_a3b3 = _mm256_mul_epi32(a1_a3, b1_b3);
// do the rounding and take into account that it will be doubled
nudge = _mm256_set1_epi64x(1 << 30);
a0b0_a2b2_rounded = _mm256_add_epi64(a0b0_a2b2, nudge);
a1b1_a3b3_rounded = _mm256_add_epi64(a1b1_a3b3, nudge);
// do the doubling
a0b0_a2b2_rounded_2x = _mm256_slli_epi64(a0b0_a2b2_rounded, 1);
a1b1_a3b3_rounded_2x = _mm256_slli_epi64(a1b1_a3b3_rounded, 1);
// get the high part of the products
result = _mm256_blend_epi16(_mm256_srli_si256(a0b0_a2b2_rounded_2x, 4),
a1b1_a3b3_rounded_2x, 0xcc);
// saturate those which overflowed
return SelectUsingMask(saturation_mask, min, result);
}
template <>
inline int16x16_m256i SaturatingRoundingDoublingHighMul(int16x16_m256i a,
int16x16_m256i b) {
// Use _mm256_mulhrs_epi16 then saturate with a bit-operation,
// borrowed from Intel's arm_neon_sse.h header.
__m256i result_unsaturated = _mm256_mulhrs_epi16(a.v, b.v);
__m256i saturation_mask =
_mm256_cmpeq_epi16(result_unsaturated, _mm256_set1_epi16(0x8000));
__m256i result = _mm256_xor_si256(result_unsaturated, saturation_mask);
return to_int16x16_m256i(result);
}
template <>
inline __m256i Dup<__m256i>(std::int32_t x) {
return _mm256_set1_epi32(x);
}
template <>
inline int16x16_m256i Dup<int16x16_m256i>(std::int16_t x) {
return to_int16x16_m256i(_mm256_set1_epi16(x));
}
// So far this is only needed for int16.
template <>
inline int16x16_m256i SaturatingAdd(int16x16_m256i a, int16x16_m256i b) {
return to_int16x16_m256i(_mm256_adds_epi16(a.v, b.v));
}
} // end namespace gemmlowp
#endif // GEMMLOWP_INTERNAL_FIXEDPOINT_AVX_H_