You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1352 lines
42 KiB
1352 lines
42 KiB
// © 2017 and later: Unicode, Inc. and others.
|
|
// License & terms of use: http://www.unicode.org/copyright.html
|
|
|
|
#include "unicode/utypes.h"
|
|
|
|
#if !UCONFIG_NO_FORMATTING
|
|
|
|
#include <cstdlib>
|
|
#include <cmath>
|
|
#include <limits>
|
|
#include <stdlib.h>
|
|
|
|
#include "unicode/plurrule.h"
|
|
#include "cmemory.h"
|
|
#include "number_decnum.h"
|
|
#include "putilimp.h"
|
|
#include "number_decimalquantity.h"
|
|
#include "number_roundingutils.h"
|
|
#include "double-conversion.h"
|
|
#include "charstr.h"
|
|
#include "number_utils.h"
|
|
#include "uassert.h"
|
|
#include "util.h"
|
|
|
|
using namespace icu;
|
|
using namespace icu::number;
|
|
using namespace icu::number::impl;
|
|
|
|
using icu::double_conversion::DoubleToStringConverter;
|
|
using icu::double_conversion::StringToDoubleConverter;
|
|
|
|
namespace {
|
|
|
|
int8_t NEGATIVE_FLAG = 1;
|
|
int8_t INFINITY_FLAG = 2;
|
|
int8_t NAN_FLAG = 4;
|
|
|
|
/** Helper function for safe subtraction (no overflow). */
|
|
inline int32_t safeSubtract(int32_t a, int32_t b) {
|
|
// Note: In C++, signed integer subtraction is undefined behavior.
|
|
int32_t diff = static_cast<int32_t>(static_cast<uint32_t>(a) - static_cast<uint32_t>(b));
|
|
if (b < 0 && diff < a) { return INT32_MAX; }
|
|
if (b > 0 && diff > a) { return INT32_MIN; }
|
|
return diff;
|
|
}
|
|
|
|
static double DOUBLE_MULTIPLIERS[] = {
|
|
1e0,
|
|
1e1,
|
|
1e2,
|
|
1e3,
|
|
1e4,
|
|
1e5,
|
|
1e6,
|
|
1e7,
|
|
1e8,
|
|
1e9,
|
|
1e10,
|
|
1e11,
|
|
1e12,
|
|
1e13,
|
|
1e14,
|
|
1e15,
|
|
1e16,
|
|
1e17,
|
|
1e18,
|
|
1e19,
|
|
1e20,
|
|
1e21};
|
|
|
|
} // namespace
|
|
|
|
icu::IFixedDecimal::~IFixedDecimal() = default;
|
|
|
|
DecimalQuantity::DecimalQuantity() {
|
|
setBcdToZero();
|
|
flags = 0;
|
|
}
|
|
|
|
DecimalQuantity::~DecimalQuantity() {
|
|
if (usingBytes) {
|
|
uprv_free(fBCD.bcdBytes.ptr);
|
|
fBCD.bcdBytes.ptr = nullptr;
|
|
usingBytes = false;
|
|
}
|
|
}
|
|
|
|
DecimalQuantity::DecimalQuantity(const DecimalQuantity &other) {
|
|
*this = other;
|
|
}
|
|
|
|
DecimalQuantity::DecimalQuantity(DecimalQuantity&& src) U_NOEXCEPT {
|
|
*this = std::move(src);
|
|
}
|
|
|
|
DecimalQuantity &DecimalQuantity::operator=(const DecimalQuantity &other) {
|
|
if (this == &other) {
|
|
return *this;
|
|
}
|
|
copyBcdFrom(other);
|
|
copyFieldsFrom(other);
|
|
return *this;
|
|
}
|
|
|
|
DecimalQuantity& DecimalQuantity::operator=(DecimalQuantity&& src) U_NOEXCEPT {
|
|
if (this == &src) {
|
|
return *this;
|
|
}
|
|
moveBcdFrom(src);
|
|
copyFieldsFrom(src);
|
|
return *this;
|
|
}
|
|
|
|
void DecimalQuantity::copyFieldsFrom(const DecimalQuantity& other) {
|
|
bogus = other.bogus;
|
|
lReqPos = other.lReqPos;
|
|
rReqPos = other.rReqPos;
|
|
scale = other.scale;
|
|
precision = other.precision;
|
|
flags = other.flags;
|
|
origDouble = other.origDouble;
|
|
origDelta = other.origDelta;
|
|
isApproximate = other.isApproximate;
|
|
exponent = other.exponent;
|
|
}
|
|
|
|
void DecimalQuantity::clear() {
|
|
lReqPos = 0;
|
|
rReqPos = 0;
|
|
flags = 0;
|
|
setBcdToZero(); // sets scale, precision, hasDouble, origDouble, origDelta, and BCD data
|
|
}
|
|
|
|
void DecimalQuantity::setMinInteger(int32_t minInt) {
|
|
// Validation should happen outside of DecimalQuantity, e.g., in the Precision class.
|
|
U_ASSERT(minInt >= 0);
|
|
|
|
// Special behavior: do not set minInt to be less than what is already set.
|
|
// This is so significant digits rounding can set the integer length.
|
|
if (minInt < lReqPos) {
|
|
minInt = lReqPos;
|
|
}
|
|
|
|
// Save values into internal state
|
|
lReqPos = minInt;
|
|
}
|
|
|
|
void DecimalQuantity::setMinFraction(int32_t minFrac) {
|
|
// Validation should happen outside of DecimalQuantity, e.g., in the Precision class.
|
|
U_ASSERT(minFrac >= 0);
|
|
|
|
// Save values into internal state
|
|
// Negation is safe for minFrac/maxFrac because -Integer.MAX_VALUE > Integer.MIN_VALUE
|
|
rReqPos = -minFrac;
|
|
}
|
|
|
|
void DecimalQuantity::applyMaxInteger(int32_t maxInt) {
|
|
// Validation should happen outside of DecimalQuantity, e.g., in the Precision class.
|
|
U_ASSERT(maxInt >= 0);
|
|
|
|
if (precision == 0) {
|
|
return;
|
|
}
|
|
|
|
if (maxInt <= scale) {
|
|
setBcdToZero();
|
|
return;
|
|
}
|
|
|
|
int32_t magnitude = getMagnitude();
|
|
if (maxInt <= magnitude) {
|
|
popFromLeft(magnitude - maxInt + 1);
|
|
compact();
|
|
}
|
|
}
|
|
|
|
uint64_t DecimalQuantity::getPositionFingerprint() const {
|
|
uint64_t fingerprint = 0;
|
|
fingerprint ^= (lReqPos << 16);
|
|
fingerprint ^= (static_cast<uint64_t>(rReqPos) << 32);
|
|
return fingerprint;
|
|
}
|
|
|
|
void DecimalQuantity::roundToIncrement(double roundingIncrement, RoundingMode roundingMode,
|
|
UErrorCode& status) {
|
|
// Do not call this method with an increment having only a 1 or a 5 digit!
|
|
// Use a more efficient call to either roundToMagnitude() or roundToNickel().
|
|
// Check a few popular rounding increments; a more thorough check is in Java.
|
|
U_ASSERT(roundingIncrement != 0.01);
|
|
U_ASSERT(roundingIncrement != 0.05);
|
|
U_ASSERT(roundingIncrement != 0.1);
|
|
U_ASSERT(roundingIncrement != 0.5);
|
|
U_ASSERT(roundingIncrement != 1);
|
|
U_ASSERT(roundingIncrement != 5);
|
|
|
|
DecNum incrementDN;
|
|
incrementDN.setTo(roundingIncrement, status);
|
|
if (U_FAILURE(status)) { return; }
|
|
|
|
// Divide this DecimalQuantity by the increment, round, then multiply back.
|
|
divideBy(incrementDN, status);
|
|
if (U_FAILURE(status)) { return; }
|
|
roundToMagnitude(0, roundingMode, status);
|
|
if (U_FAILURE(status)) { return; }
|
|
multiplyBy(incrementDN, status);
|
|
if (U_FAILURE(status)) { return; }
|
|
}
|
|
|
|
void DecimalQuantity::multiplyBy(const DecNum& multiplicand, UErrorCode& status) {
|
|
if (isZeroish()) {
|
|
return;
|
|
}
|
|
// Convert to DecNum, multiply, and convert back.
|
|
DecNum decnum;
|
|
toDecNum(decnum, status);
|
|
if (U_FAILURE(status)) { return; }
|
|
decnum.multiplyBy(multiplicand, status);
|
|
if (U_FAILURE(status)) { return; }
|
|
setToDecNum(decnum, status);
|
|
}
|
|
|
|
void DecimalQuantity::divideBy(const DecNum& divisor, UErrorCode& status) {
|
|
if (isZeroish()) {
|
|
return;
|
|
}
|
|
// Convert to DecNum, multiply, and convert back.
|
|
DecNum decnum;
|
|
toDecNum(decnum, status);
|
|
if (U_FAILURE(status)) { return; }
|
|
decnum.divideBy(divisor, status);
|
|
if (U_FAILURE(status)) { return; }
|
|
setToDecNum(decnum, status);
|
|
}
|
|
|
|
void DecimalQuantity::negate() {
|
|
flags ^= NEGATIVE_FLAG;
|
|
}
|
|
|
|
int32_t DecimalQuantity::getMagnitude() const {
|
|
U_ASSERT(precision != 0);
|
|
return scale + precision - 1;
|
|
}
|
|
|
|
bool DecimalQuantity::adjustMagnitude(int32_t delta) {
|
|
if (precision != 0) {
|
|
// i.e., scale += delta; origDelta += delta
|
|
bool overflow = uprv_add32_overflow(scale, delta, &scale);
|
|
overflow = uprv_add32_overflow(origDelta, delta, &origDelta) || overflow;
|
|
// Make sure that precision + scale won't overflow, either
|
|
int32_t dummy;
|
|
overflow = overflow || uprv_add32_overflow(scale, precision, &dummy);
|
|
return overflow;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
double DecimalQuantity::getPluralOperand(PluralOperand operand) const {
|
|
// If this assertion fails, you need to call roundToInfinity() or some other rounding method.
|
|
// See the comment at the top of this file explaining the "isApproximate" field.
|
|
U_ASSERT(!isApproximate);
|
|
|
|
switch (operand) {
|
|
case PLURAL_OPERAND_I:
|
|
// Invert the negative sign if necessary
|
|
return static_cast<double>(isNegative() ? -toLong(true) : toLong(true));
|
|
case PLURAL_OPERAND_F:
|
|
return static_cast<double>(toFractionLong(true));
|
|
case PLURAL_OPERAND_T:
|
|
return static_cast<double>(toFractionLong(false));
|
|
case PLURAL_OPERAND_V:
|
|
return fractionCount();
|
|
case PLURAL_OPERAND_W:
|
|
return fractionCountWithoutTrailingZeros();
|
|
case PLURAL_OPERAND_E:
|
|
return static_cast<double>(getExponent());
|
|
default:
|
|
return std::abs(toDouble());
|
|
}
|
|
}
|
|
|
|
int32_t DecimalQuantity::getExponent() const {
|
|
return exponent;
|
|
}
|
|
|
|
void DecimalQuantity::adjustExponent(int delta) {
|
|
exponent = exponent + delta;
|
|
}
|
|
|
|
bool DecimalQuantity::hasIntegerValue() const {
|
|
return scale >= 0;
|
|
}
|
|
|
|
int32_t DecimalQuantity::getUpperDisplayMagnitude() const {
|
|
// If this assertion fails, you need to call roundToInfinity() or some other rounding method.
|
|
// See the comment in the header file explaining the "isApproximate" field.
|
|
U_ASSERT(!isApproximate);
|
|
|
|
int32_t magnitude = scale + precision;
|
|
int32_t result = (lReqPos > magnitude) ? lReqPos : magnitude;
|
|
return result - 1;
|
|
}
|
|
|
|
int32_t DecimalQuantity::getLowerDisplayMagnitude() const {
|
|
// If this assertion fails, you need to call roundToInfinity() or some other rounding method.
|
|
// See the comment in the header file explaining the "isApproximate" field.
|
|
U_ASSERT(!isApproximate);
|
|
|
|
int32_t magnitude = scale;
|
|
int32_t result = (rReqPos < magnitude) ? rReqPos : magnitude;
|
|
return result;
|
|
}
|
|
|
|
int8_t DecimalQuantity::getDigit(int32_t magnitude) const {
|
|
// If this assertion fails, you need to call roundToInfinity() or some other rounding method.
|
|
// See the comment at the top of this file explaining the "isApproximate" field.
|
|
U_ASSERT(!isApproximate);
|
|
|
|
return getDigitPos(magnitude - scale);
|
|
}
|
|
|
|
int32_t DecimalQuantity::fractionCount() const {
|
|
int32_t fractionCountWithExponent = -getLowerDisplayMagnitude() - exponent;
|
|
return fractionCountWithExponent > 0 ? fractionCountWithExponent : 0;
|
|
}
|
|
|
|
int32_t DecimalQuantity::fractionCountWithoutTrailingZeros() const {
|
|
int32_t fractionCountWithExponent = -scale - exponent;
|
|
return fractionCountWithExponent > 0 ? fractionCountWithExponent : 0; // max(-fractionCountWithExponent, 0)
|
|
}
|
|
|
|
bool DecimalQuantity::isNegative() const {
|
|
return (flags & NEGATIVE_FLAG) != 0;
|
|
}
|
|
|
|
Signum DecimalQuantity::signum() const {
|
|
bool isZero = (isZeroish() && !isInfinite());
|
|
bool isNeg = isNegative();
|
|
if (isZero && isNeg) {
|
|
return SIGNUM_NEG_ZERO;
|
|
} else if (isZero) {
|
|
return SIGNUM_POS_ZERO;
|
|
} else if (isNeg) {
|
|
return SIGNUM_NEG;
|
|
} else {
|
|
return SIGNUM_POS;
|
|
}
|
|
}
|
|
|
|
bool DecimalQuantity::isInfinite() const {
|
|
return (flags & INFINITY_FLAG) != 0;
|
|
}
|
|
|
|
bool DecimalQuantity::isNaN() const {
|
|
return (flags & NAN_FLAG) != 0;
|
|
}
|
|
|
|
bool DecimalQuantity::isZeroish() const {
|
|
return precision == 0;
|
|
}
|
|
|
|
DecimalQuantity &DecimalQuantity::setToInt(int32_t n) {
|
|
setBcdToZero();
|
|
flags = 0;
|
|
if (n == INT32_MIN) {
|
|
flags |= NEGATIVE_FLAG;
|
|
// leave as INT32_MIN; handled below in _setToInt()
|
|
} else if (n < 0) {
|
|
flags |= NEGATIVE_FLAG;
|
|
n = -n;
|
|
}
|
|
if (n != 0) {
|
|
_setToInt(n);
|
|
compact();
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
void DecimalQuantity::_setToInt(int32_t n) {
|
|
if (n == INT32_MIN) {
|
|
readLongToBcd(-static_cast<int64_t>(n));
|
|
} else {
|
|
readIntToBcd(n);
|
|
}
|
|
}
|
|
|
|
DecimalQuantity &DecimalQuantity::setToLong(int64_t n) {
|
|
setBcdToZero();
|
|
flags = 0;
|
|
if (n < 0 && n > INT64_MIN) {
|
|
flags |= NEGATIVE_FLAG;
|
|
n = -n;
|
|
}
|
|
if (n != 0) {
|
|
_setToLong(n);
|
|
compact();
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
void DecimalQuantity::_setToLong(int64_t n) {
|
|
if (n == INT64_MIN) {
|
|
DecNum decnum;
|
|
UErrorCode localStatus = U_ZERO_ERROR;
|
|
decnum.setTo("9.223372036854775808E+18", localStatus);
|
|
if (U_FAILURE(localStatus)) { return; } // unexpected
|
|
flags |= NEGATIVE_FLAG;
|
|
readDecNumberToBcd(decnum);
|
|
} else if (n <= INT32_MAX) {
|
|
readIntToBcd(static_cast<int32_t>(n));
|
|
} else {
|
|
readLongToBcd(n);
|
|
}
|
|
}
|
|
|
|
DecimalQuantity &DecimalQuantity::setToDouble(double n) {
|
|
setBcdToZero();
|
|
flags = 0;
|
|
// signbit() from <math.h> handles +0.0 vs -0.0
|
|
if (std::signbit(n)) {
|
|
flags |= NEGATIVE_FLAG;
|
|
n = -n;
|
|
}
|
|
if (std::isnan(n) != 0) {
|
|
flags |= NAN_FLAG;
|
|
} else if (std::isfinite(n) == 0) {
|
|
flags |= INFINITY_FLAG;
|
|
} else if (n != 0) {
|
|
_setToDoubleFast(n);
|
|
compact();
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
void DecimalQuantity::_setToDoubleFast(double n) {
|
|
isApproximate = true;
|
|
origDouble = n;
|
|
origDelta = 0;
|
|
|
|
// Make sure the double is an IEEE 754 double. If not, fall back to the slow path right now.
|
|
// TODO: Make a fast path for other types of doubles.
|
|
if (!std::numeric_limits<double>::is_iec559) {
|
|
convertToAccurateDouble();
|
|
return;
|
|
}
|
|
|
|
// To get the bits from the double, use memcpy, which takes care of endianness.
|
|
uint64_t ieeeBits;
|
|
uprv_memcpy(&ieeeBits, &n, sizeof(n));
|
|
int32_t exponent = static_cast<int32_t>((ieeeBits & 0x7ff0000000000000L) >> 52) - 0x3ff;
|
|
|
|
// Not all integers can be represented exactly for exponent > 52
|
|
if (exponent <= 52 && static_cast<int64_t>(n) == n) {
|
|
_setToLong(static_cast<int64_t>(n));
|
|
return;
|
|
}
|
|
|
|
if (exponent == -1023 || exponent == 1024) {
|
|
// The extreme values of exponent are special; use slow path.
|
|
convertToAccurateDouble();
|
|
return;
|
|
}
|
|
|
|
// 3.3219... is log2(10)
|
|
auto fracLength = static_cast<int32_t> ((52 - exponent) / 3.32192809488736234787031942948939017586);
|
|
if (fracLength >= 0) {
|
|
int32_t i = fracLength;
|
|
// 1e22 is the largest exact double.
|
|
for (; i >= 22; i -= 22) n *= 1e22;
|
|
n *= DOUBLE_MULTIPLIERS[i];
|
|
} else {
|
|
int32_t i = fracLength;
|
|
// 1e22 is the largest exact double.
|
|
for (; i <= -22; i += 22) n /= 1e22;
|
|
n /= DOUBLE_MULTIPLIERS[-i];
|
|
}
|
|
auto result = static_cast<int64_t>(uprv_round(n));
|
|
if (result != 0) {
|
|
_setToLong(result);
|
|
scale -= fracLength;
|
|
}
|
|
}
|
|
|
|
void DecimalQuantity::convertToAccurateDouble() {
|
|
U_ASSERT(origDouble != 0);
|
|
int32_t delta = origDelta;
|
|
|
|
// Call the slow oracle function (Double.toString in Java, DoubleToAscii in C++).
|
|
char buffer[DoubleToStringConverter::kBase10MaximalLength + 1];
|
|
bool sign; // unused; always positive
|
|
int32_t length;
|
|
int32_t point;
|
|
DoubleToStringConverter::DoubleToAscii(
|
|
origDouble,
|
|
DoubleToStringConverter::DtoaMode::SHORTEST,
|
|
0,
|
|
buffer,
|
|
sizeof(buffer),
|
|
&sign,
|
|
&length,
|
|
&point
|
|
);
|
|
|
|
setBcdToZero();
|
|
readDoubleConversionToBcd(buffer, length, point);
|
|
scale += delta;
|
|
explicitExactDouble = true;
|
|
}
|
|
|
|
DecimalQuantity &DecimalQuantity::setToDecNumber(StringPiece n, UErrorCode& status) {
|
|
setBcdToZero();
|
|
flags = 0;
|
|
|
|
// Compute the decNumber representation
|
|
DecNum decnum;
|
|
decnum.setTo(n, status);
|
|
|
|
_setToDecNum(decnum, status);
|
|
return *this;
|
|
}
|
|
|
|
DecimalQuantity& DecimalQuantity::setToDecNum(const DecNum& decnum, UErrorCode& status) {
|
|
setBcdToZero();
|
|
flags = 0;
|
|
|
|
_setToDecNum(decnum, status);
|
|
return *this;
|
|
}
|
|
|
|
void DecimalQuantity::_setToDecNum(const DecNum& decnum, UErrorCode& status) {
|
|
if (U_FAILURE(status)) { return; }
|
|
if (decnum.isNegative()) {
|
|
flags |= NEGATIVE_FLAG;
|
|
}
|
|
if (!decnum.isZero()) {
|
|
readDecNumberToBcd(decnum);
|
|
compact();
|
|
}
|
|
}
|
|
|
|
int64_t DecimalQuantity::toLong(bool truncateIfOverflow) const {
|
|
// NOTE: Call sites should be guarded by fitsInLong(), like this:
|
|
// if (dq.fitsInLong()) { /* use dq.toLong() */ } else { /* use some fallback */ }
|
|
// Fallback behavior upon truncateIfOverflow is to truncate at 17 digits.
|
|
uint64_t result = 0L;
|
|
int32_t upperMagnitude = exponent + scale + precision - 1;
|
|
if (truncateIfOverflow) {
|
|
upperMagnitude = std::min(upperMagnitude, 17);
|
|
}
|
|
for (int32_t magnitude = upperMagnitude; magnitude >= 0; magnitude--) {
|
|
result = result * 10 + getDigitPos(magnitude - scale - exponent);
|
|
}
|
|
if (isNegative()) {
|
|
return static_cast<int64_t>(0LL - result); // i.e., -result
|
|
}
|
|
return static_cast<int64_t>(result);
|
|
}
|
|
|
|
uint64_t DecimalQuantity::toFractionLong(bool includeTrailingZeros) const {
|
|
uint64_t result = 0L;
|
|
int32_t magnitude = -1 - exponent;
|
|
int32_t lowerMagnitude = scale;
|
|
if (includeTrailingZeros) {
|
|
lowerMagnitude = std::min(lowerMagnitude, rReqPos);
|
|
}
|
|
for (; magnitude >= lowerMagnitude && result <= 1e18L; magnitude--) {
|
|
result = result * 10 + getDigitPos(magnitude - scale);
|
|
}
|
|
// Remove trailing zeros; this can happen during integer overflow cases.
|
|
if (!includeTrailingZeros) {
|
|
while (result > 0 && (result % 10) == 0) {
|
|
result /= 10;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
bool DecimalQuantity::fitsInLong(bool ignoreFraction) const {
|
|
if (isInfinite() || isNaN()) {
|
|
return false;
|
|
}
|
|
if (isZeroish()) {
|
|
return true;
|
|
}
|
|
if (exponent + scale < 0 && !ignoreFraction) {
|
|
return false;
|
|
}
|
|
int magnitude = getMagnitude();
|
|
if (magnitude < 18) {
|
|
return true;
|
|
}
|
|
if (magnitude > 18) {
|
|
return false;
|
|
}
|
|
// Hard case: the magnitude is 10^18.
|
|
// The largest int64 is: 9,223,372,036,854,775,807
|
|
for (int p = 0; p < precision; p++) {
|
|
int8_t digit = getDigit(18 - p);
|
|
static int8_t INT64_BCD[] = { 9, 2, 2, 3, 3, 7, 2, 0, 3, 6, 8, 5, 4, 7, 7, 5, 8, 0, 8 };
|
|
if (digit < INT64_BCD[p]) {
|
|
return true;
|
|
} else if (digit > INT64_BCD[p]) {
|
|
return false;
|
|
}
|
|
}
|
|
// Exactly equal to max long plus one.
|
|
return isNegative();
|
|
}
|
|
|
|
double DecimalQuantity::toDouble() const {
|
|
// If this assertion fails, you need to call roundToInfinity() or some other rounding method.
|
|
// See the comment in the header file explaining the "isApproximate" field.
|
|
U_ASSERT(!isApproximate);
|
|
|
|
if (isNaN()) {
|
|
return NAN;
|
|
} else if (isInfinite()) {
|
|
return isNegative() ? -INFINITY : INFINITY;
|
|
}
|
|
|
|
// We are processing well-formed input, so we don't need any special options to StringToDoubleConverter.
|
|
StringToDoubleConverter converter(0, 0, 0, "", "");
|
|
UnicodeString numberString = this->toScientificString();
|
|
int32_t count;
|
|
return converter.StringToDouble(
|
|
reinterpret_cast<const uint16_t*>(numberString.getBuffer()),
|
|
numberString.length(),
|
|
&count);
|
|
}
|
|
|
|
DecNum& DecimalQuantity::toDecNum(DecNum& output, UErrorCode& status) const {
|
|
// Special handling for zero
|
|
if (precision == 0) {
|
|
output.setTo("0", status);
|
|
}
|
|
|
|
// Use the BCD constructor. We need to do a little bit of work to convert, though.
|
|
// The decNumber constructor expects most-significant first, but we store least-significant first.
|
|
MaybeStackArray<uint8_t, 20> ubcd(precision, status);
|
|
if (U_FAILURE(status)) {
|
|
return output;
|
|
}
|
|
for (int32_t m = 0; m < precision; m++) {
|
|
ubcd[precision - m - 1] = static_cast<uint8_t>(getDigitPos(m));
|
|
}
|
|
output.setTo(ubcd.getAlias(), precision, scale, isNegative(), status);
|
|
return output;
|
|
}
|
|
|
|
void DecimalQuantity::truncate() {
|
|
if (scale < 0) {
|
|
shiftRight(-scale);
|
|
scale = 0;
|
|
compact();
|
|
}
|
|
}
|
|
|
|
void DecimalQuantity::roundToNickel(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status) {
|
|
roundToMagnitude(magnitude, roundingMode, true, status);
|
|
}
|
|
|
|
void DecimalQuantity::roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status) {
|
|
roundToMagnitude(magnitude, roundingMode, false, status);
|
|
}
|
|
|
|
void DecimalQuantity::roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, bool nickel, UErrorCode& status) {
|
|
// The position in the BCD at which rounding will be performed; digits to the right of position
|
|
// will be rounded away.
|
|
int position = safeSubtract(magnitude, scale);
|
|
|
|
// "trailing" = least significant digit to the left of rounding
|
|
int8_t trailingDigit = getDigitPos(position);
|
|
|
|
if (position <= 0 && !isApproximate && (!nickel || trailingDigit == 0 || trailingDigit == 5)) {
|
|
// All digits are to the left of the rounding magnitude.
|
|
} else if (precision == 0) {
|
|
// No rounding for zero.
|
|
} else {
|
|
// Perform rounding logic.
|
|
// "leading" = most significant digit to the right of rounding
|
|
int8_t leadingDigit = getDigitPos(safeSubtract(position, 1));
|
|
|
|
// Compute which section of the number we are in.
|
|
// EDGE means we are at the bottom or top edge, like 1.000 or 1.999 (used by doubles)
|
|
// LOWER means we are between the bottom edge and the midpoint, like 1.391
|
|
// MIDPOINT means we are exactly in the middle, like 1.500
|
|
// UPPER means we are between the midpoint and the top edge, like 1.916
|
|
roundingutils::Section section;
|
|
if (!isApproximate) {
|
|
if (nickel && trailingDigit != 2 && trailingDigit != 7) {
|
|
// Nickel rounding, and not at .02x or .07x
|
|
if (trailingDigit < 2) {
|
|
// .00, .01 => down to .00
|
|
section = roundingutils::SECTION_LOWER;
|
|
} else if (trailingDigit < 5) {
|
|
// .03, .04 => up to .05
|
|
section = roundingutils::SECTION_UPPER;
|
|
} else if (trailingDigit < 7) {
|
|
// .05, .06 => down to .05
|
|
section = roundingutils::SECTION_LOWER;
|
|
} else {
|
|
// .08, .09 => up to .10
|
|
section = roundingutils::SECTION_UPPER;
|
|
}
|
|
} else if (leadingDigit < 5) {
|
|
// Includes nickel rounding .020-.024 and .070-.074
|
|
section = roundingutils::SECTION_LOWER;
|
|
} else if (leadingDigit > 5) {
|
|
// Includes nickel rounding .026-.029 and .076-.079
|
|
section = roundingutils::SECTION_UPPER;
|
|
} else {
|
|
// Includes nickel rounding .025 and .075
|
|
section = roundingutils::SECTION_MIDPOINT;
|
|
for (int p = safeSubtract(position, 2); p >= 0; p--) {
|
|
if (getDigitPos(p) != 0) {
|
|
section = roundingutils::SECTION_UPPER;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
int32_t p = safeSubtract(position, 2);
|
|
int32_t minP = uprv_max(0, precision - 14);
|
|
if (leadingDigit == 0 && (!nickel || trailingDigit == 0 || trailingDigit == 5)) {
|
|
section = roundingutils::SECTION_LOWER_EDGE;
|
|
for (; p >= minP; p--) {
|
|
if (getDigitPos(p) != 0) {
|
|
section = roundingutils::SECTION_LOWER;
|
|
break;
|
|
}
|
|
}
|
|
} else if (leadingDigit == 4 && (!nickel || trailingDigit == 2 || trailingDigit == 7)) {
|
|
section = roundingutils::SECTION_MIDPOINT;
|
|
for (; p >= minP; p--) {
|
|
if (getDigitPos(p) != 9) {
|
|
section = roundingutils::SECTION_LOWER;
|
|
break;
|
|
}
|
|
}
|
|
} else if (leadingDigit == 5 && (!nickel || trailingDigit == 2 || trailingDigit == 7)) {
|
|
section = roundingutils::SECTION_MIDPOINT;
|
|
for (; p >= minP; p--) {
|
|
if (getDigitPos(p) != 0) {
|
|
section = roundingutils::SECTION_UPPER;
|
|
break;
|
|
}
|
|
}
|
|
} else if (leadingDigit == 9 && (!nickel || trailingDigit == 4 || trailingDigit == 9)) {
|
|
section = roundingutils::SECTION_UPPER_EDGE;
|
|
for (; p >= minP; p--) {
|
|
if (getDigitPos(p) != 9) {
|
|
section = roundingutils::SECTION_UPPER;
|
|
break;
|
|
}
|
|
}
|
|
} else if (nickel && trailingDigit != 2 && trailingDigit != 7) {
|
|
// Nickel rounding, and not at .02x or .07x
|
|
if (trailingDigit < 2) {
|
|
// .00, .01 => down to .00
|
|
section = roundingutils::SECTION_LOWER;
|
|
} else if (trailingDigit < 5) {
|
|
// .03, .04 => up to .05
|
|
section = roundingutils::SECTION_UPPER;
|
|
} else if (trailingDigit < 7) {
|
|
// .05, .06 => down to .05
|
|
section = roundingutils::SECTION_LOWER;
|
|
} else {
|
|
// .08, .09 => up to .10
|
|
section = roundingutils::SECTION_UPPER;
|
|
}
|
|
} else if (leadingDigit < 5) {
|
|
// Includes nickel rounding .020-.024 and .070-.074
|
|
section = roundingutils::SECTION_LOWER;
|
|
} else {
|
|
// Includes nickel rounding .026-.029 and .076-.079
|
|
section = roundingutils::SECTION_UPPER;
|
|
}
|
|
|
|
bool roundsAtMidpoint = roundingutils::roundsAtMidpoint(roundingMode);
|
|
if (safeSubtract(position, 1) < precision - 14 ||
|
|
(roundsAtMidpoint && section == roundingutils::SECTION_MIDPOINT) ||
|
|
(!roundsAtMidpoint && section < 0 /* i.e. at upper or lower edge */)) {
|
|
// Oops! This means that we have to get the exact representation of the double,
|
|
// because the zone of uncertainty is along the rounding boundary.
|
|
convertToAccurateDouble();
|
|
roundToMagnitude(magnitude, roundingMode, nickel, status); // start over
|
|
return;
|
|
}
|
|
|
|
// Turn off the approximate double flag, since the value is now confirmed to be exact.
|
|
isApproximate = false;
|
|
origDouble = 0.0;
|
|
origDelta = 0;
|
|
|
|
if (position <= 0 && (!nickel || trailingDigit == 0 || trailingDigit == 5)) {
|
|
// All digits are to the left of the rounding magnitude.
|
|
return;
|
|
}
|
|
|
|
// Good to continue rounding.
|
|
if (section == -1) { section = roundingutils::SECTION_LOWER; }
|
|
if (section == -2) { section = roundingutils::SECTION_UPPER; }
|
|
}
|
|
|
|
// Nickel rounding "half even" goes to the nearest whole (away from the 5).
|
|
bool isEven = nickel
|
|
? (trailingDigit < 2 || trailingDigit > 7
|
|
|| (trailingDigit == 2 && section != roundingutils::SECTION_UPPER)
|
|
|| (trailingDigit == 7 && section == roundingutils::SECTION_UPPER))
|
|
: (trailingDigit % 2) == 0;
|
|
|
|
bool roundDown = roundingutils::getRoundingDirection(isEven,
|
|
isNegative(),
|
|
section,
|
|
roundingMode,
|
|
status);
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
|
|
// Perform truncation
|
|
if (position >= precision) {
|
|
setBcdToZero();
|
|
scale = magnitude;
|
|
} else {
|
|
shiftRight(position);
|
|
}
|
|
|
|
if (nickel) {
|
|
if (trailingDigit < 5 && roundDown) {
|
|
setDigitPos(0, 0);
|
|
compact();
|
|
return;
|
|
} else if (trailingDigit >= 5 && !roundDown) {
|
|
setDigitPos(0, 9);
|
|
trailingDigit = 9;
|
|
// do not return: use the bubbling logic below
|
|
} else {
|
|
setDigitPos(0, 5);
|
|
// compact not necessary: digit at position 0 is nonzero
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Bubble the result to the higher digits
|
|
if (!roundDown) {
|
|
if (trailingDigit == 9) {
|
|
int bubblePos = 0;
|
|
// Note: in the long implementation, the most digits BCD can have at this point is
|
|
// 15, so bubblePos <= 15 and getDigitPos(bubblePos) is safe.
|
|
for (; getDigitPos(bubblePos) == 9; bubblePos++) {}
|
|
shiftRight(bubblePos); // shift off the trailing 9s
|
|
}
|
|
int8_t digit0 = getDigitPos(0);
|
|
U_ASSERT(digit0 != 9);
|
|
setDigitPos(0, static_cast<int8_t>(digit0 + 1));
|
|
precision += 1; // in case an extra digit got added
|
|
}
|
|
|
|
compact();
|
|
}
|
|
}
|
|
|
|
void DecimalQuantity::roundToInfinity() {
|
|
if (isApproximate) {
|
|
convertToAccurateDouble();
|
|
}
|
|
}
|
|
|
|
void DecimalQuantity::appendDigit(int8_t value, int32_t leadingZeros, bool appendAsInteger) {
|
|
U_ASSERT(leadingZeros >= 0);
|
|
|
|
// Zero requires special handling to maintain the invariant that the least-significant digit
|
|
// in the BCD is nonzero.
|
|
if (value == 0) {
|
|
if (appendAsInteger && precision != 0) {
|
|
scale += leadingZeros + 1;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Deal with trailing zeros
|
|
if (scale > 0) {
|
|
leadingZeros += scale;
|
|
if (appendAsInteger) {
|
|
scale = 0;
|
|
}
|
|
}
|
|
|
|
// Append digit
|
|
shiftLeft(leadingZeros + 1);
|
|
setDigitPos(0, value);
|
|
|
|
// Fix scale if in integer mode
|
|
if (appendAsInteger) {
|
|
scale += leadingZeros + 1;
|
|
}
|
|
}
|
|
|
|
UnicodeString DecimalQuantity::toPlainString() const {
|
|
U_ASSERT(!isApproximate);
|
|
UnicodeString sb;
|
|
if (isNegative()) {
|
|
sb.append(u'-');
|
|
}
|
|
if (precision == 0) {
|
|
sb.append(u'0');
|
|
return sb;
|
|
}
|
|
int32_t upper = scale + precision + exponent - 1;
|
|
int32_t lower = scale + exponent;
|
|
if (upper < lReqPos - 1) {
|
|
upper = lReqPos - 1;
|
|
}
|
|
if (lower > rReqPos) {
|
|
lower = rReqPos;
|
|
}
|
|
int32_t p = upper;
|
|
if (p < 0) {
|
|
sb.append(u'0');
|
|
}
|
|
for (; p >= 0; p--) {
|
|
sb.append(u'0' + getDigitPos(p - scale - exponent));
|
|
}
|
|
if (lower < 0) {
|
|
sb.append(u'.');
|
|
}
|
|
for(; p >= lower; p--) {
|
|
sb.append(u'0' + getDigitPos(p - scale - exponent));
|
|
}
|
|
return sb;
|
|
}
|
|
|
|
UnicodeString DecimalQuantity::toScientificString() const {
|
|
U_ASSERT(!isApproximate);
|
|
UnicodeString result;
|
|
if (isNegative()) {
|
|
result.append(u'-');
|
|
}
|
|
if (precision == 0) {
|
|
result.append(u"0E+0", -1);
|
|
return result;
|
|
}
|
|
int32_t upperPos = precision - 1;
|
|
int32_t lowerPos = 0;
|
|
int32_t p = upperPos;
|
|
result.append(u'0' + getDigitPos(p));
|
|
if ((--p) >= lowerPos) {
|
|
result.append(u'.');
|
|
for (; p >= lowerPos; p--) {
|
|
result.append(u'0' + getDigitPos(p));
|
|
}
|
|
}
|
|
result.append(u'E');
|
|
int32_t _scale = upperPos + scale + exponent;
|
|
if (_scale == INT32_MIN) {
|
|
result.append({u"-2147483648", -1});
|
|
return result;
|
|
} else if (_scale < 0) {
|
|
_scale *= -1;
|
|
result.append(u'-');
|
|
} else {
|
|
result.append(u'+');
|
|
}
|
|
if (_scale == 0) {
|
|
result.append(u'0');
|
|
}
|
|
int32_t insertIndex = result.length();
|
|
while (_scale > 0) {
|
|
std::div_t res = std::div(_scale, 10);
|
|
result.insert(insertIndex, u'0' + res.rem);
|
|
_scale = res.quot;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
////////////////////////////////////////////////////
|
|
/// End of DecimalQuantity_AbstractBCD.java ///
|
|
/// Start of DecimalQuantity_DualStorageBCD.java ///
|
|
////////////////////////////////////////////////////
|
|
|
|
int8_t DecimalQuantity::getDigitPos(int32_t position) const {
|
|
if (usingBytes) {
|
|
if (position < 0 || position >= precision) { return 0; }
|
|
return fBCD.bcdBytes.ptr[position];
|
|
} else {
|
|
if (position < 0 || position >= 16) { return 0; }
|
|
return (int8_t) ((fBCD.bcdLong >> (position * 4)) & 0xf);
|
|
}
|
|
}
|
|
|
|
void DecimalQuantity::setDigitPos(int32_t position, int8_t value) {
|
|
U_ASSERT(position >= 0);
|
|
if (usingBytes) {
|
|
ensureCapacity(position + 1);
|
|
fBCD.bcdBytes.ptr[position] = value;
|
|
} else if (position >= 16) {
|
|
switchStorage();
|
|
ensureCapacity(position + 1);
|
|
fBCD.bcdBytes.ptr[position] = value;
|
|
} else {
|
|
int shift = position * 4;
|
|
fBCD.bcdLong = (fBCD.bcdLong & ~(0xfL << shift)) | ((long) value << shift);
|
|
}
|
|
}
|
|
|
|
void DecimalQuantity::shiftLeft(int32_t numDigits) {
|
|
if (!usingBytes && precision + numDigits > 16) {
|
|
switchStorage();
|
|
}
|
|
if (usingBytes) {
|
|
ensureCapacity(precision + numDigits);
|
|
uprv_memmove(fBCD.bcdBytes.ptr + numDigits, fBCD.bcdBytes.ptr, precision);
|
|
uprv_memset(fBCD.bcdBytes.ptr, 0, numDigits);
|
|
} else {
|
|
fBCD.bcdLong <<= (numDigits * 4);
|
|
}
|
|
scale -= numDigits;
|
|
precision += numDigits;
|
|
}
|
|
|
|
void DecimalQuantity::shiftRight(int32_t numDigits) {
|
|
if (usingBytes) {
|
|
int i = 0;
|
|
for (; i < precision - numDigits; i++) {
|
|
fBCD.bcdBytes.ptr[i] = fBCD.bcdBytes.ptr[i + numDigits];
|
|
}
|
|
for (; i < precision; i++) {
|
|
fBCD.bcdBytes.ptr[i] = 0;
|
|
}
|
|
} else {
|
|
fBCD.bcdLong >>= (numDigits * 4);
|
|
}
|
|
scale += numDigits;
|
|
precision -= numDigits;
|
|
}
|
|
|
|
void DecimalQuantity::popFromLeft(int32_t numDigits) {
|
|
U_ASSERT(numDigits <= precision);
|
|
if (usingBytes) {
|
|
int i = precision - 1;
|
|
for (; i >= precision - numDigits; i--) {
|
|
fBCD.bcdBytes.ptr[i] = 0;
|
|
}
|
|
} else {
|
|
fBCD.bcdLong &= (static_cast<uint64_t>(1) << ((precision - numDigits) * 4)) - 1;
|
|
}
|
|
precision -= numDigits;
|
|
}
|
|
|
|
void DecimalQuantity::setBcdToZero() {
|
|
if (usingBytes) {
|
|
uprv_free(fBCD.bcdBytes.ptr);
|
|
fBCD.bcdBytes.ptr = nullptr;
|
|
usingBytes = false;
|
|
}
|
|
fBCD.bcdLong = 0L;
|
|
scale = 0;
|
|
precision = 0;
|
|
isApproximate = false;
|
|
origDouble = 0;
|
|
origDelta = 0;
|
|
exponent = 0;
|
|
}
|
|
|
|
void DecimalQuantity::readIntToBcd(int32_t n) {
|
|
U_ASSERT(n != 0);
|
|
// ints always fit inside the long implementation.
|
|
uint64_t result = 0L;
|
|
int i = 16;
|
|
for (; n != 0; n /= 10, i--) {
|
|
result = (result >> 4) + ((static_cast<uint64_t>(n) % 10) << 60);
|
|
}
|
|
U_ASSERT(!usingBytes);
|
|
fBCD.bcdLong = result >> (i * 4);
|
|
scale = 0;
|
|
precision = 16 - i;
|
|
}
|
|
|
|
void DecimalQuantity::readLongToBcd(int64_t n) {
|
|
U_ASSERT(n != 0);
|
|
if (n >= 10000000000000000L) {
|
|
ensureCapacity();
|
|
int i = 0;
|
|
for (; n != 0L; n /= 10L, i++) {
|
|
fBCD.bcdBytes.ptr[i] = static_cast<int8_t>(n % 10);
|
|
}
|
|
U_ASSERT(usingBytes);
|
|
scale = 0;
|
|
precision = i;
|
|
} else {
|
|
uint64_t result = 0L;
|
|
int i = 16;
|
|
for (; n != 0L; n /= 10L, i--) {
|
|
result = (result >> 4) + ((n % 10) << 60);
|
|
}
|
|
U_ASSERT(i >= 0);
|
|
U_ASSERT(!usingBytes);
|
|
fBCD.bcdLong = result >> (i * 4);
|
|
scale = 0;
|
|
precision = 16 - i;
|
|
}
|
|
}
|
|
|
|
void DecimalQuantity::readDecNumberToBcd(const DecNum& decnum) {
|
|
const decNumber* dn = decnum.getRawDecNumber();
|
|
if (dn->digits > 16) {
|
|
ensureCapacity(dn->digits);
|
|
for (int32_t i = 0; i < dn->digits; i++) {
|
|
fBCD.bcdBytes.ptr[i] = dn->lsu[i];
|
|
}
|
|
} else {
|
|
uint64_t result = 0L;
|
|
for (int32_t i = 0; i < dn->digits; i++) {
|
|
result |= static_cast<uint64_t>(dn->lsu[i]) << (4 * i);
|
|
}
|
|
fBCD.bcdLong = result;
|
|
}
|
|
scale = dn->exponent;
|
|
precision = dn->digits;
|
|
}
|
|
|
|
void DecimalQuantity::readDoubleConversionToBcd(
|
|
const char* buffer, int32_t length, int32_t point) {
|
|
// NOTE: Despite the fact that double-conversion's API is called
|
|
// "DoubleToAscii", they actually use '0' (as opposed to u8'0').
|
|
if (length > 16) {
|
|
ensureCapacity(length);
|
|
for (int32_t i = 0; i < length; i++) {
|
|
fBCD.bcdBytes.ptr[i] = buffer[length-i-1] - '0';
|
|
}
|
|
} else {
|
|
uint64_t result = 0L;
|
|
for (int32_t i = 0; i < length; i++) {
|
|
result |= static_cast<uint64_t>(buffer[length-i-1] - '0') << (4 * i);
|
|
}
|
|
fBCD.bcdLong = result;
|
|
}
|
|
scale = point - length;
|
|
precision = length;
|
|
}
|
|
|
|
void DecimalQuantity::compact() {
|
|
if (usingBytes) {
|
|
int32_t delta = 0;
|
|
for (; delta < precision && fBCD.bcdBytes.ptr[delta] == 0; delta++);
|
|
if (delta == precision) {
|
|
// Number is zero
|
|
setBcdToZero();
|
|
return;
|
|
} else {
|
|
// Remove trailing zeros
|
|
shiftRight(delta);
|
|
}
|
|
|
|
// Compute precision
|
|
int32_t leading = precision - 1;
|
|
for (; leading >= 0 && fBCD.bcdBytes.ptr[leading] == 0; leading--);
|
|
precision = leading + 1;
|
|
|
|
// Switch storage mechanism if possible
|
|
if (precision <= 16) {
|
|
switchStorage();
|
|
}
|
|
|
|
} else {
|
|
if (fBCD.bcdLong == 0L) {
|
|
// Number is zero
|
|
setBcdToZero();
|
|
return;
|
|
}
|
|
|
|
// Compact the number (remove trailing zeros)
|
|
// TODO: Use a more efficient algorithm here and below. There is a logarithmic one.
|
|
int32_t delta = 0;
|
|
for (; delta < precision && getDigitPos(delta) == 0; delta++);
|
|
fBCD.bcdLong >>= delta * 4;
|
|
scale += delta;
|
|
|
|
// Compute precision
|
|
int32_t leading = precision - 1;
|
|
for (; leading >= 0 && getDigitPos(leading) == 0; leading--);
|
|
precision = leading + 1;
|
|
}
|
|
}
|
|
|
|
void DecimalQuantity::ensureCapacity() {
|
|
ensureCapacity(40);
|
|
}
|
|
|
|
void DecimalQuantity::ensureCapacity(int32_t capacity) {
|
|
if (capacity == 0) { return; }
|
|
int32_t oldCapacity = usingBytes ? fBCD.bcdBytes.len : 0;
|
|
if (!usingBytes) {
|
|
// TODO: There is nothing being done to check for memory allocation failures.
|
|
// TODO: Consider indexing by nybbles instead of bytes in C++, so that we can
|
|
// make these arrays half the size.
|
|
fBCD.bcdBytes.ptr = static_cast<int8_t*>(uprv_malloc(capacity * sizeof(int8_t)));
|
|
fBCD.bcdBytes.len = capacity;
|
|
// Initialize the byte array to zeros (this is done automatically in Java)
|
|
uprv_memset(fBCD.bcdBytes.ptr, 0, capacity * sizeof(int8_t));
|
|
} else if (oldCapacity < capacity) {
|
|
auto bcd1 = static_cast<int8_t*>(uprv_malloc(capacity * 2 * sizeof(int8_t)));
|
|
uprv_memcpy(bcd1, fBCD.bcdBytes.ptr, oldCapacity * sizeof(int8_t));
|
|
// Initialize the rest of the byte array to zeros (this is done automatically in Java)
|
|
uprv_memset(bcd1 + oldCapacity, 0, (capacity - oldCapacity) * sizeof(int8_t));
|
|
uprv_free(fBCD.bcdBytes.ptr);
|
|
fBCD.bcdBytes.ptr = bcd1;
|
|
fBCD.bcdBytes.len = capacity * 2;
|
|
}
|
|
usingBytes = true;
|
|
}
|
|
|
|
void DecimalQuantity::switchStorage() {
|
|
if (usingBytes) {
|
|
// Change from bytes to long
|
|
uint64_t bcdLong = 0L;
|
|
for (int i = precision - 1; i >= 0; i--) {
|
|
bcdLong <<= 4;
|
|
bcdLong |= fBCD.bcdBytes.ptr[i];
|
|
}
|
|
uprv_free(fBCD.bcdBytes.ptr);
|
|
fBCD.bcdBytes.ptr = nullptr;
|
|
fBCD.bcdLong = bcdLong;
|
|
usingBytes = false;
|
|
} else {
|
|
// Change from long to bytes
|
|
// Copy the long into a local variable since it will get munged when we allocate the bytes
|
|
uint64_t bcdLong = fBCD.bcdLong;
|
|
ensureCapacity();
|
|
for (int i = 0; i < precision; i++) {
|
|
fBCD.bcdBytes.ptr[i] = static_cast<int8_t>(bcdLong & 0xf);
|
|
bcdLong >>= 4;
|
|
}
|
|
U_ASSERT(usingBytes);
|
|
}
|
|
}
|
|
|
|
void DecimalQuantity::copyBcdFrom(const DecimalQuantity &other) {
|
|
setBcdToZero();
|
|
if (other.usingBytes) {
|
|
ensureCapacity(other.precision);
|
|
uprv_memcpy(fBCD.bcdBytes.ptr, other.fBCD.bcdBytes.ptr, other.precision * sizeof(int8_t));
|
|
} else {
|
|
fBCD.bcdLong = other.fBCD.bcdLong;
|
|
}
|
|
}
|
|
|
|
void DecimalQuantity::moveBcdFrom(DecimalQuantity &other) {
|
|
setBcdToZero();
|
|
if (other.usingBytes) {
|
|
usingBytes = true;
|
|
fBCD.bcdBytes.ptr = other.fBCD.bcdBytes.ptr;
|
|
fBCD.bcdBytes.len = other.fBCD.bcdBytes.len;
|
|
// Take ownership away from the old instance:
|
|
other.fBCD.bcdBytes.ptr = nullptr;
|
|
other.usingBytes = false;
|
|
} else {
|
|
fBCD.bcdLong = other.fBCD.bcdLong;
|
|
}
|
|
}
|
|
|
|
const char16_t* DecimalQuantity::checkHealth() const {
|
|
if (usingBytes) {
|
|
if (precision == 0) { return u"Zero precision but we are in byte mode"; }
|
|
int32_t capacity = fBCD.bcdBytes.len;
|
|
if (precision > capacity) { return u"Precision exceeds length of byte array"; }
|
|
if (getDigitPos(precision - 1) == 0) { return u"Most significant digit is zero in byte mode"; }
|
|
if (getDigitPos(0) == 0) { return u"Least significant digit is zero in long mode"; }
|
|
for (int i = 0; i < precision; i++) {
|
|
if (getDigitPos(i) >= 10) { return u"Digit exceeding 10 in byte array"; }
|
|
if (getDigitPos(i) < 0) { return u"Digit below 0 in byte array"; }
|
|
}
|
|
for (int i = precision; i < capacity; i++) {
|
|
if (getDigitPos(i) != 0) { return u"Nonzero digits outside of range in byte array"; }
|
|
}
|
|
} else {
|
|
if (precision == 0 && fBCD.bcdLong != 0) {
|
|
return u"Value in bcdLong even though precision is zero";
|
|
}
|
|
if (precision > 16) { return u"Precision exceeds length of long"; }
|
|
if (precision != 0 && getDigitPos(precision - 1) == 0) {
|
|
return u"Most significant digit is zero in long mode";
|
|
}
|
|
if (precision != 0 && getDigitPos(0) == 0) {
|
|
return u"Least significant digit is zero in long mode";
|
|
}
|
|
for (int i = 0; i < precision; i++) {
|
|
if (getDigitPos(i) >= 10) { return u"Digit exceeding 10 in long"; }
|
|
if (getDigitPos(i) < 0) { return u"Digit below 0 in long (?!)"; }
|
|
}
|
|
for (int i = precision; i < 16; i++) {
|
|
if (getDigitPos(i) != 0) { return u"Nonzero digits outside of range in long"; }
|
|
}
|
|
}
|
|
|
|
// No error
|
|
return nullptr;
|
|
}
|
|
|
|
bool DecimalQuantity::operator==(const DecimalQuantity& other) const {
|
|
bool basicEquals =
|
|
scale == other.scale
|
|
&& precision == other.precision
|
|
&& flags == other.flags
|
|
&& lReqPos == other.lReqPos
|
|
&& rReqPos == other.rReqPos
|
|
&& isApproximate == other.isApproximate;
|
|
if (!basicEquals) {
|
|
return false;
|
|
}
|
|
|
|
if (precision == 0) {
|
|
return true;
|
|
} else if (isApproximate) {
|
|
return origDouble == other.origDouble && origDelta == other.origDelta;
|
|
} else {
|
|
for (int m = getUpperDisplayMagnitude(); m >= getLowerDisplayMagnitude(); m--) {
|
|
if (getDigit(m) != other.getDigit(m)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
UnicodeString DecimalQuantity::toString() const {
|
|
UErrorCode localStatus = U_ZERO_ERROR;
|
|
MaybeStackArray<char, 30> digits(precision + 1, localStatus);
|
|
if (U_FAILURE(localStatus)) {
|
|
return ICU_Utility::makeBogusString();
|
|
}
|
|
for (int32_t i = 0; i < precision; i++) {
|
|
digits[i] = getDigitPos(precision - i - 1) + '0';
|
|
}
|
|
digits[precision] = 0; // terminate buffer
|
|
char buffer8[100];
|
|
snprintf(
|
|
buffer8,
|
|
sizeof(buffer8),
|
|
"<DecimalQuantity %d:%d %s %s%s%s%d>",
|
|
lReqPos,
|
|
rReqPos,
|
|
(usingBytes ? "bytes" : "long"),
|
|
(isNegative() ? "-" : ""),
|
|
(precision == 0 ? "0" : digits.getAlias()),
|
|
"E",
|
|
scale);
|
|
return UnicodeString(buffer8, -1, US_INV);
|
|
}
|
|
|
|
#endif /* #if !UCONFIG_NO_FORMATTING */
|