You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

214 lines
5.9 KiB

// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gfx/geometry/cubic_bezier.h"
#include <algorithm>
#include <cmath>
#include "base/logging.h"
namespace gfx {
static const double kBezierEpsilon = 1e-7;
CubicBezier::CubicBezier(double p1x, double p1y, double p2x, double p2y) {
InitCoefficients(p1x, p1y, p2x, p2y);
InitGradients(p1x, p1y, p2x, p2y);
InitRange(p1y, p2y);
}
CubicBezier::CubicBezier(const CubicBezier& other) = default;
void CubicBezier::InitCoefficients(double p1x,
double p1y,
double p2x,
double p2y) {
// Calculate the polynomial coefficients, implicit first and last control
// points are (0,0) and (1,1).
cx_ = 3.0 * p1x;
bx_ = 3.0 * (p2x - p1x) - cx_;
ax_ = 1.0 - cx_ - bx_;
cy_ = 3.0 * p1y;
by_ = 3.0 * (p2y - p1y) - cy_;
ay_ = 1.0 - cy_ - by_;
}
void CubicBezier::InitGradients(double p1x,
double p1y,
double p2x,
double p2y) {
// End-point gradients are used to calculate timing function results
// outside the range [0, 1].
//
// There are three possibilities for the gradient at each end:
// (1) the closest control point is not horizontally coincident with regard to
// (0, 0) or (1, 1). In this case the line between the end point and
// the control point is tangent to the bezier at the end point.
// (2) the closest control point is coincident with the end point. In
// this case the line between the end point and the far control
// point is tangent to the bezier at the end point.
// (3) the closest control point is horizontally coincident with the end
// point, but vertically distinct. In this case the gradient at the
// end point is Infinite. However, this causes issues when
// interpolating. As a result, we break down to a simple case of
// 0 gradient under these conditions.
if (p1x > 0)
start_gradient_ = p1y / p1x;
else if (!p1y && p2x > 0)
start_gradient_ = p2y / p2x;
else
start_gradient_ = 0;
if (p2x < 1)
end_gradient_ = (p2y - 1) / (p2x - 1);
else if (p2x == 1 && p1x < 1)
end_gradient_ = (p1y - 1) / (p1x - 1);
else
end_gradient_ = 0;
}
// This works by taking taking the derivative of the cubic bezier, on the y
// axis. We can then solve for where the derivative is zero to find the min
// and max distance along the line. We the have to solve those in terms of time
// rather than distance on the x-axis
void CubicBezier::InitRange(double p1y, double p2y) {
range_min_ = 0;
range_max_ = 1;
if (0 <= p1y && p1y < 1 && 0 <= p2y && p2y <= 1)
return;
const double epsilon = kBezierEpsilon;
// Represent the function's derivative in the form at^2 + bt + c
// as in sampleCurveDerivativeY.
// (Technically this is (dy/dt)*(1/3), which is suitable for finding zeros
// but does not actually give the slope of the curve.)
const double a = 3.0 * ay_;
const double b = 2.0 * by_;
const double c = cy_;
// Check if the derivative is constant.
if (std::abs(a) < epsilon && std::abs(b) < epsilon)
return;
// Zeros of the function's derivative.
double t1 = 0;
double t2 = 0;
if (std::abs(a) < epsilon) {
// The function's derivative is linear.
t1 = -c / b;
} else {
// The function's derivative is a quadratic. We find the zeros of this
// quadratic using the quadratic formula.
double discriminant = b * b - 4 * a * c;
if (discriminant < 0)
return;
double discriminant_sqrt = sqrt(discriminant);
t1 = (-b + discriminant_sqrt) / (2 * a);
t2 = (-b - discriminant_sqrt) / (2 * a);
}
double sol1 = 0;
double sol2 = 0;
// If the solution is in the range [0,1] then we include it, otherwise we
// ignore it.
// An interesting fact about these beziers is that they are only
// actually evaluated in [0,1]. After that we take the tangent at that point
// and linearly project it out.
if (0 < t1 && t1 < 1)
sol1 = SampleCurveY(t1);
if (0 < t2 && t2 < 1)
sol2 = SampleCurveY(t2);
range_min_ = std::min(std::min(range_min_, sol1), sol2);
range_max_ = std::max(std::max(range_max_, sol1), sol2);
}
double CubicBezier::GetDefaultEpsilon() {
return kBezierEpsilon;
}
double CubicBezier::SolveCurveX(double x, double epsilon) const {
DCHECK_GE(x, 0.0);
DCHECK_LE(x, 1.0);
double t0;
double t1;
double t2;
double x2;
double d2;
int i;
// First try a few iterations of Newton's method -- normally very fast.
for (t2 = x, i = 0; i < 8; i++) {
x2 = SampleCurveX(t2) - x;
if (fabs(x2) < epsilon)
return t2;
d2 = SampleCurveDerivativeX(t2);
if (fabs(d2) < 1e-6)
break;
t2 = t2 - x2 / d2;
}
// Fall back to the bisection method for reliability.
t0 = 0.0;
t1 = 1.0;
t2 = x;
while (t0 < t1) {
x2 = SampleCurveX(t2);
if (fabs(x2 - x) < epsilon)
return t2;
if (x > x2)
t0 = t2;
else
t1 = t2;
t2 = (t1 - t0) * .5 + t0;
}
// Failure.
return t2;
}
double CubicBezier::Solve(double x) const {
return SolveWithEpsilon(x, kBezierEpsilon);
}
double CubicBezier::SlopeWithEpsilon(double x, double epsilon) const {
x = std::min(std::max(x, 0.0), 1.0);
double t = SolveCurveX(x, epsilon);
double dx = SampleCurveDerivativeX(t);
double dy = SampleCurveDerivativeY(t);
return dy / dx;
}
double CubicBezier::Slope(double x) const {
return SlopeWithEpsilon(x, kBezierEpsilon);
}
double CubicBezier::GetX1() const {
return cx_ / 3.0;
}
double CubicBezier::GetY1() const {
return cy_ / 3.0;
}
double CubicBezier::GetX2() const {
return (bx_ + cx_) / 3.0 + GetX1();
}
double CubicBezier::GetY2() const {
return (by_ + cy_) / 3.0 + GetY1();
}
} // namespace gfx