You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
183 lines
6.6 KiB
183 lines
6.6 KiB
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include <cmath>
|
|
#include <limits>
|
|
|
|
#include "testing/gtest/include/gtest/gtest.h"
|
|
#include "ui/gfx/geometry/matrix3_f.h"
|
|
|
|
namespace gfx {
|
|
namespace {
|
|
|
|
TEST(Matrix3fTest, Constructors) {
|
|
Matrix3F zeros = Matrix3F::Zeros();
|
|
Matrix3F ones = Matrix3F::Ones();
|
|
Matrix3F identity = Matrix3F::Identity();
|
|
|
|
Matrix3F product_ones = Matrix3F::FromOuterProduct(
|
|
Vector3dF(1.0f, 1.0f, 1.0f), Vector3dF(1.0f, 1.0f, 1.0f));
|
|
Matrix3F product_zeros = Matrix3F::FromOuterProduct(
|
|
Vector3dF(1.0f, 1.0f, 1.0f), Vector3dF(0.0f, 0.0f, 0.0f));
|
|
EXPECT_EQ(ones, product_ones);
|
|
EXPECT_EQ(zeros, product_zeros);
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
for (int j = 0; j < 3; ++j)
|
|
EXPECT_EQ(i == j ? 1.0f : 0.0f, identity.get(i, j));
|
|
}
|
|
}
|
|
|
|
TEST(Matrix3fTest, DataAccess) {
|
|
Matrix3F matrix = Matrix3F::Ones();
|
|
Matrix3F identity = Matrix3F::Identity();
|
|
|
|
EXPECT_EQ(Vector3dF(0.0f, 1.0f, 0.0f), identity.get_column(1));
|
|
EXPECT_EQ(Vector3dF(0.0f, 1.0f, 0.0f), identity.get_row(1));
|
|
matrix.set(0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f);
|
|
EXPECT_EQ(Vector3dF(2.0f, 5.0f, 8.0f), matrix.get_column(2));
|
|
EXPECT_EQ(Vector3dF(6.0f, 7.0f, 8.0f), matrix.get_row(2));
|
|
matrix.set_column(0, Vector3dF(0.1f, 0.2f, 0.3f));
|
|
matrix.set_column(0, Vector3dF(0.1f, 0.2f, 0.3f));
|
|
EXPECT_EQ(Vector3dF(0.1f, 0.2f, 0.3f), matrix.get_column(0));
|
|
EXPECT_EQ(Vector3dF(0.1f, 1.0f, 2.0f), matrix.get_row(0));
|
|
|
|
EXPECT_EQ(0.1f, matrix.get(0, 0));
|
|
EXPECT_EQ(5.0f, matrix.get(1, 2));
|
|
}
|
|
|
|
TEST(Matrix3fTest, Determinant) {
|
|
EXPECT_EQ(1.0f, Matrix3F::Identity().Determinant());
|
|
EXPECT_EQ(0.0f, Matrix3F::Zeros().Determinant());
|
|
EXPECT_EQ(0.0f, Matrix3F::Ones().Determinant());
|
|
|
|
// Now for something non-trivial...
|
|
Matrix3F matrix = Matrix3F::Zeros();
|
|
matrix.set(0, 5, 6, 8, 7, 0, 1, 9, 0);
|
|
EXPECT_EQ(390.0f, matrix.Determinant());
|
|
matrix.set(2, 0, 3 * matrix.get(0, 0));
|
|
matrix.set(2, 1, 3 * matrix.get(0, 1));
|
|
matrix.set(2, 2, 3 * matrix.get(0, 2));
|
|
EXPECT_EQ(0, matrix.Determinant());
|
|
|
|
matrix.set(0.57f, 0.205f, 0.942f,
|
|
0.314f, 0.845f, 0.826f,
|
|
0.131f, 0.025f, 0.962f);
|
|
EXPECT_NEAR(0.3149f, matrix.Determinant(), 0.0001f);
|
|
}
|
|
|
|
TEST(Matrix3fTest, Inverse) {
|
|
Matrix3F identity = Matrix3F::Identity();
|
|
Matrix3F inv_identity = identity.Inverse();
|
|
EXPECT_EQ(identity, inv_identity);
|
|
|
|
Matrix3F singular = Matrix3F::Zeros();
|
|
singular.set(1.0f, 3.0f, 4.0f,
|
|
2.0f, 11.0f, 5.0f,
|
|
0.5f, 1.5f, 2.0f);
|
|
EXPECT_EQ(0, singular.Determinant());
|
|
EXPECT_EQ(Matrix3F::Zeros(), singular.Inverse());
|
|
|
|
Matrix3F regular = Matrix3F::Zeros();
|
|
regular.set(0.57f, 0.205f, 0.942f,
|
|
0.314f, 0.845f, 0.826f,
|
|
0.131f, 0.025f, 0.962f);
|
|
Matrix3F inv_regular = regular.Inverse();
|
|
regular.set(2.51540616f, -0.55138018f, -1.98968043f,
|
|
-0.61552266f, 1.34920184f, -0.55573636f,
|
|
-0.32653861f, 0.04002158f, 1.32488726f);
|
|
EXPECT_TRUE(regular.IsNear(inv_regular, 0.00001f));
|
|
}
|
|
|
|
TEST(Matrix3fTest, Transpose) {
|
|
Matrix3F matrix = Matrix3F::Zeros();
|
|
|
|
matrix.set(0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f);
|
|
|
|
Matrix3F transpose = matrix.Transpose();
|
|
EXPECT_EQ(Vector3dF(0.0f, 1.0f, 2.0f), transpose.get_column(0));
|
|
EXPECT_EQ(Vector3dF(3.0f, 4.0f, 5.0f), transpose.get_column(1));
|
|
EXPECT_EQ(Vector3dF(6.0f, 7.0f, 8.0f), transpose.get_column(2));
|
|
|
|
EXPECT_TRUE(matrix.IsEqual(transpose.Transpose()));
|
|
}
|
|
|
|
TEST(Matrix3fTest, EigenvectorsIdentity) {
|
|
// This block tests the trivial case of eigenvalues of the identity matrix.
|
|
Matrix3F identity = Matrix3F::Identity();
|
|
Vector3dF eigenvals = identity.SolveEigenproblem(NULL);
|
|
EXPECT_EQ(Vector3dF(1.0f, 1.0f, 1.0f), eigenvals);
|
|
}
|
|
|
|
TEST(Matrix3fTest, EigenvectorsDiagonal) {
|
|
// This block tests the another trivial case of eigenvalues of a diagonal
|
|
// matrix. Here we expect values to be sorted.
|
|
Matrix3F matrix = Matrix3F::Zeros();
|
|
matrix.set(0, 0, 1.0f);
|
|
matrix.set(1, 1, -2.5f);
|
|
matrix.set(2, 2, 3.14f);
|
|
Matrix3F eigenvectors = Matrix3F::Zeros();
|
|
Vector3dF eigenvals = matrix.SolveEigenproblem(&eigenvectors);
|
|
EXPECT_EQ(Vector3dF(3.14f, 1.0f, -2.5f), eigenvals);
|
|
|
|
EXPECT_EQ(Vector3dF(0.0f, 0.0f, 1.0f), eigenvectors.get_column(0));
|
|
EXPECT_EQ(Vector3dF(1.0f, 0.0f, 0.0f), eigenvectors.get_column(1));
|
|
EXPECT_EQ(Vector3dF(0.0f, 1.0f, 0.0f), eigenvectors.get_column(2));
|
|
}
|
|
|
|
TEST(Matrix3fTest, EigenvectorsNiceNotPositive) {
|
|
// This block tests computation of eigenvectors of a matrix where nice
|
|
// round values are expected.
|
|
Matrix3F matrix = Matrix3F::Zeros();
|
|
// This is not a positive-definite matrix but eigenvalues and the first
|
|
// eigenvector should nonetheless be computed correctly.
|
|
matrix.set(3, 2, 4, 2, 0, 2, 4, 2, 3);
|
|
Matrix3F eigenvectors = Matrix3F::Zeros();
|
|
Vector3dF eigenvals = matrix.SolveEigenproblem(&eigenvectors);
|
|
EXPECT_EQ(Vector3dF(8.0f, -1.0f, -1.0f), eigenvals);
|
|
|
|
Vector3dF expected_principal(0.66666667f, 0.33333333f, 0.66666667f);
|
|
EXPECT_NEAR(0.0f,
|
|
(expected_principal - eigenvectors.get_column(0)).Length(),
|
|
0.000001f);
|
|
}
|
|
|
|
TEST(Matrix3fTest, EigenvectorsPositiveDefinite) {
|
|
// This block tests computation of eigenvectors of a matrix where output
|
|
// is not as nice as above, but it actually meets the definition.
|
|
Matrix3F matrix = Matrix3F::Zeros();
|
|
Matrix3F eigenvectors = Matrix3F::Zeros();
|
|
Matrix3F expected_eigenvectors = Matrix3F::Zeros();
|
|
matrix.set(1, -1, 2, -1, 4, 5, 2, 5, 0);
|
|
Vector3dF eigenvals = matrix.SolveEigenproblem(&eigenvectors);
|
|
Vector3dF expected_eigv(7.3996266f, 1.91197255f, -4.31159915f);
|
|
expected_eigv -= eigenvals;
|
|
EXPECT_NEAR(0, expected_eigv.LengthSquared(), 0.00001f);
|
|
expected_eigenvectors.set(0.04926317f, -0.92135662f, -0.38558414f,
|
|
0.82134249f, 0.25703273f, -0.50924521f,
|
|
0.56830419f, -0.2916096f, 0.76941158f);
|
|
EXPECT_TRUE(expected_eigenvectors.IsNear(eigenvectors, 0.00001f));
|
|
}
|
|
|
|
TEST(Matrix3fTest, Operators) {
|
|
Matrix3F matrix1 = Matrix3F::Zeros();
|
|
matrix1.set(1, 2, 3, 4, 5, 6, 7, 8, 9);
|
|
EXPECT_EQ(matrix1 + Matrix3F::Zeros(), matrix1);
|
|
|
|
Matrix3F matrix2 = Matrix3F::Zeros();
|
|
matrix2.set(-1, -2, -3, -4, -5, -6, -7, -8, -9);
|
|
EXPECT_EQ(matrix1 + matrix2, Matrix3F::Zeros());
|
|
|
|
EXPECT_EQ(Matrix3F::Zeros() - matrix1, matrix2);
|
|
|
|
Matrix3F result = Matrix3F::Zeros();
|
|
result.set(2, 4, 6, 8, 10, 12, 14, 16, 18);
|
|
EXPECT_EQ(matrix1 - matrix2, result);
|
|
result.set(-2, -4, -6, -8, -10, -12, -14, -16, -18);
|
|
EXPECT_EQ(matrix2 - matrix1, result);
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace gfx
|