You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
222 lines
6.4 KiB
222 lines
6.4 KiB
//
|
|
// Book: OpenGL(R) ES 2.0 Programming Guide
|
|
// Authors: Aaftab Munshi, Dan Ginsburg, Dave Shreiner
|
|
// ISBN-10: 0321502795
|
|
// ISBN-13: 9780321502797
|
|
// Publisher: Addison-Wesley Professional
|
|
// URLs: http://safari.informit.com/9780321563835
|
|
// http://www.opengles-book.com
|
|
//
|
|
|
|
/*
|
|
* (c) 2009 Aaftab Munshi, Dan Ginsburg, Dave Shreiner
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
// ESUtil.c
|
|
//
|
|
// A utility library for OpenGL ES. This library provides a
|
|
// basic common framework for the example applications in the
|
|
// OpenGL ES 2.0 Programming Guide.
|
|
//
|
|
|
|
///
|
|
// Includes
|
|
//
|
|
#include "esTransform.h"
|
|
#include <math.h>
|
|
#include <string.h>
|
|
|
|
#define PI 3.1415926535897932384626433832795f
|
|
|
|
void esScale(ESMatrix* result, GLfloat sx, GLfloat sy, GLfloat sz)
|
|
{
|
|
result->m[0][0] *= sx;
|
|
result->m[0][1] *= sx;
|
|
result->m[0][2] *= sx;
|
|
result->m[0][3] *= sx;
|
|
|
|
result->m[1][0] *= sy;
|
|
result->m[1][1] *= sy;
|
|
result->m[1][2] *= sy;
|
|
result->m[1][3] *= sy;
|
|
|
|
result->m[2][0] *= sz;
|
|
result->m[2][1] *= sz;
|
|
result->m[2][2] *= sz;
|
|
result->m[2][3] *= sz;
|
|
}
|
|
|
|
void esTranslate(ESMatrix* result, GLfloat tx, GLfloat ty, GLfloat tz)
|
|
{
|
|
result->m[3][0] += (result->m[0][0] * tx + result->m[1][0] * ty + result->m[2][0] * tz);
|
|
result->m[3][1] += (result->m[0][1] * tx + result->m[1][1] * ty + result->m[2][1] * tz);
|
|
result->m[3][2] += (result->m[0][2] * tx + result->m[1][2] * ty + result->m[2][2] * tz);
|
|
result->m[3][3] += (result->m[0][3] * tx + result->m[1][3] * ty + result->m[2][3] * tz);
|
|
}
|
|
|
|
void esRotate(ESMatrix* result, GLfloat angle, GLfloat x, GLfloat y, GLfloat z)
|
|
{
|
|
GLfloat sinAngle, cosAngle;
|
|
GLfloat mag = sqrtf(x * x + y * y + z * z);
|
|
|
|
sinAngle = sinf(angle * PI / 180.0f);
|
|
cosAngle = cosf(angle * PI / 180.0f);
|
|
if (mag > 0.0f) {
|
|
GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs;
|
|
GLfloat oneMinusCos;
|
|
ESMatrix rotMat;
|
|
|
|
x /= mag;
|
|
y /= mag;
|
|
z /= mag;
|
|
|
|
xx = x * x;
|
|
yy = y * y;
|
|
zz = z * z;
|
|
xy = x * y;
|
|
yz = y * z;
|
|
zx = z * x;
|
|
xs = x * sinAngle;
|
|
ys = y * sinAngle;
|
|
zs = z * sinAngle;
|
|
oneMinusCos = 1.0f - cosAngle;
|
|
|
|
rotMat.m[0][0] = (oneMinusCos * xx) + cosAngle;
|
|
rotMat.m[0][1] = (oneMinusCos * xy) - zs;
|
|
rotMat.m[0][2] = (oneMinusCos * zx) + ys;
|
|
rotMat.m[0][3] = 0.0F;
|
|
|
|
rotMat.m[1][0] = (oneMinusCos * xy) + zs;
|
|
rotMat.m[1][1] = (oneMinusCos * yy) + cosAngle;
|
|
rotMat.m[1][2] = (oneMinusCos * yz) - xs;
|
|
rotMat.m[1][3] = 0.0F;
|
|
|
|
rotMat.m[2][0] = (oneMinusCos * zx) - ys;
|
|
rotMat.m[2][1] = (oneMinusCos * yz) + xs;
|
|
rotMat.m[2][2] = (oneMinusCos * zz) + cosAngle;
|
|
rotMat.m[2][3] = 0.0F;
|
|
|
|
rotMat.m[3][0] = 0.0F;
|
|
rotMat.m[3][1] = 0.0F;
|
|
rotMat.m[3][2] = 0.0F;
|
|
rotMat.m[3][3] = 1.0F;
|
|
|
|
esMatrixMultiply(result, &rotMat, result);
|
|
}
|
|
}
|
|
|
|
void esFrustum(ESMatrix* result, float left, float right, float bottom, float top, float nearZ, float farZ)
|
|
{
|
|
float deltaX = right - left;
|
|
float deltaY = top - bottom;
|
|
float deltaZ = farZ - nearZ;
|
|
ESMatrix frust;
|
|
|
|
if ((nearZ <= 0.0f) || (farZ <= 0.0f) ||
|
|
(deltaX <= 0.0f) || (deltaY <= 0.0f) || (deltaZ <= 0.0f))
|
|
return;
|
|
|
|
frust.m[0][0] = 2.0f * nearZ / deltaX;
|
|
frust.m[0][1] = frust.m[0][2] = frust.m[0][3] = 0.0f;
|
|
|
|
frust.m[1][1] = 2.0f * nearZ / deltaY;
|
|
frust.m[1][0] = frust.m[1][2] = frust.m[1][3] = 0.0f;
|
|
|
|
frust.m[2][0] = (right + left) / deltaX;
|
|
frust.m[2][1] = (top + bottom) / deltaY;
|
|
frust.m[2][2] = -(nearZ + farZ) / deltaZ;
|
|
frust.m[2][3] = -1.0f;
|
|
|
|
frust.m[3][2] = -2.0f * nearZ * farZ / deltaZ;
|
|
frust.m[3][0] = frust.m[3][1] = frust.m[3][3] = 0.0f;
|
|
|
|
esMatrixMultiply(result, &frust, result);
|
|
}
|
|
|
|
void esPerspective(ESMatrix* result, float fovy, float aspect, float nearZ, float farZ)
|
|
{
|
|
GLfloat frustumW, frustumH;
|
|
|
|
frustumH = tanf(fovy / 360.0f * PI) * nearZ;
|
|
frustumW = frustumH * aspect;
|
|
|
|
esFrustum(result, -frustumW, frustumW, -frustumH, frustumH, nearZ, farZ);
|
|
}
|
|
|
|
void esOrtho(ESMatrix* result, float left, float right, float bottom, float top, float nearZ, float farZ)
|
|
{
|
|
float deltaX = right - left;
|
|
float deltaY = top - bottom;
|
|
float deltaZ = farZ - nearZ;
|
|
ESMatrix ortho;
|
|
|
|
if ((deltaX == 0.0f) || (deltaY == 0.0f) || (deltaZ == 0.0f))
|
|
return;
|
|
|
|
esMatrixLoadIdentity(&ortho);
|
|
ortho.m[0][0] = 2.0f / deltaX;
|
|
ortho.m[3][0] = -(right + left) / deltaX;
|
|
ortho.m[1][1] = 2.0f / deltaY;
|
|
ortho.m[3][1] = -(top + bottom) / deltaY;
|
|
ortho.m[2][2] = -2.0f / deltaZ;
|
|
ortho.m[3][2] = -(nearZ + farZ) / deltaZ;
|
|
|
|
esMatrixMultiply(result, &ortho, result);
|
|
}
|
|
|
|
void esMatrixMultiply(ESMatrix* result, ESMatrix* srcA, ESMatrix* srcB)
|
|
{
|
|
ESMatrix tmp;
|
|
int i;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
tmp.m[i][0] = (srcA->m[i][0] * srcB->m[0][0]) +
|
|
(srcA->m[i][1] * srcB->m[1][0]) +
|
|
(srcA->m[i][2] * srcB->m[2][0]) +
|
|
(srcA->m[i][3] * srcB->m[3][0]);
|
|
|
|
tmp.m[i][1] = (srcA->m[i][0] * srcB->m[0][1]) +
|
|
(srcA->m[i][1] * srcB->m[1][1]) +
|
|
(srcA->m[i][2] * srcB->m[2][1]) +
|
|
(srcA->m[i][3] * srcB->m[3][1]);
|
|
|
|
tmp.m[i][2] = (srcA->m[i][0] * srcB->m[0][2]) +
|
|
(srcA->m[i][1] * srcB->m[1][2]) +
|
|
(srcA->m[i][2] * srcB->m[2][2]) +
|
|
(srcA->m[i][3] * srcB->m[3][2]);
|
|
|
|
tmp.m[i][3] = (srcA->m[i][0] * srcB->m[0][3]) +
|
|
(srcA->m[i][1] * srcB->m[1][3]) +
|
|
(srcA->m[i][2] * srcB->m[2][3]) +
|
|
(srcA->m[i][3] * srcB->m[3][3]);
|
|
}
|
|
memcpy(result, &tmp, sizeof(ESMatrix));
|
|
}
|
|
|
|
void esMatrixLoadIdentity(ESMatrix* result)
|
|
{
|
|
memset(result, 0x0, sizeof(ESMatrix));
|
|
result->m[0][0] = 1.0f;
|
|
result->m[1][1] = 1.0f;
|
|
result->m[2][2] = 1.0f;
|
|
result->m[3][3] = 1.0f;
|
|
}
|