You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2234 lines
67 KiB
2234 lines
67 KiB
/* SPDX-License-Identifier: LGPL-2.1-only */
|
|
/*
|
|
* Copyright (C) 2012 Texas Instruments Incorporated - http://www.ti.com/
|
|
*
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* Neither the name of Texas Instruments Incorporated nor the names of
|
|
* its contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* @ingroup xfrmnl
|
|
* @defgroup sa Security Association
|
|
* @brief
|
|
*/
|
|
|
|
#include <netlink-private/netlink.h>
|
|
#include <netlink/netlink.h>
|
|
#include <netlink/cache.h>
|
|
#include <netlink/object.h>
|
|
#include <netlink/xfrm/sa.h>
|
|
#include <netlink/xfrm/selector.h>
|
|
#include <netlink/xfrm/lifetime.h>
|
|
#include <time.h>
|
|
|
|
#include "netlink-private/utils.h"
|
|
|
|
/** @cond SKIP */
|
|
#define XFRM_SA_ATTR_SEL 0x01
|
|
#define XFRM_SA_ATTR_DADDR 0x02
|
|
#define XFRM_SA_ATTR_SPI 0x04
|
|
#define XFRM_SA_ATTR_PROTO 0x08
|
|
#define XFRM_SA_ATTR_SADDR 0x10
|
|
#define XFRM_SA_ATTR_LTIME_CFG 0x20
|
|
#define XFRM_SA_ATTR_LTIME_CUR 0x40
|
|
#define XFRM_SA_ATTR_STATS 0x80
|
|
#define XFRM_SA_ATTR_SEQ 0x100
|
|
#define XFRM_SA_ATTR_REQID 0x200
|
|
#define XFRM_SA_ATTR_FAMILY 0x400
|
|
#define XFRM_SA_ATTR_MODE 0x800
|
|
#define XFRM_SA_ATTR_REPLAY_WIN 0x1000
|
|
#define XFRM_SA_ATTR_FLAGS 0x2000
|
|
#define XFRM_SA_ATTR_ALG_AEAD 0x4000
|
|
#define XFRM_SA_ATTR_ALG_AUTH 0x8000
|
|
#define XFRM_SA_ATTR_ALG_CRYPT 0x10000
|
|
#define XFRM_SA_ATTR_ALG_COMP 0x20000
|
|
#define XFRM_SA_ATTR_ENCAP 0x40000
|
|
#define XFRM_SA_ATTR_TFCPAD 0x80000
|
|
#define XFRM_SA_ATTR_COADDR 0x100000
|
|
#define XFRM_SA_ATTR_MARK 0x200000
|
|
#define XFRM_SA_ATTR_SECCTX 0x400000
|
|
#define XFRM_SA_ATTR_REPLAY_MAXAGE 0x800000
|
|
#define XFRM_SA_ATTR_REPLAY_MAXDIFF 0x1000000
|
|
#define XFRM_SA_ATTR_REPLAY_STATE 0x2000000
|
|
#define XFRM_SA_ATTR_EXPIRE 0x4000000
|
|
|
|
static struct nl_cache_ops xfrmnl_sa_ops;
|
|
static struct nl_object_ops xfrm_sa_obj_ops;
|
|
/** @endcond */
|
|
|
|
static void xfrm_sa_alloc_data(struct nl_object *c)
|
|
{
|
|
struct xfrmnl_sa* sa = nl_object_priv (c);
|
|
|
|
if ((sa->sel = xfrmnl_sel_alloc ()) == NULL)
|
|
return;
|
|
|
|
if ((sa->lft = xfrmnl_ltime_cfg_alloc ()) == NULL)
|
|
return;
|
|
}
|
|
|
|
static void xfrm_sa_free_data(struct nl_object *c)
|
|
{
|
|
struct xfrmnl_sa* sa = nl_object_priv (c);
|
|
|
|
if (sa == NULL)
|
|
return;
|
|
|
|
xfrmnl_sel_put (sa->sel);
|
|
xfrmnl_ltime_cfg_put (sa->lft);
|
|
nl_addr_put (sa->id.daddr);
|
|
nl_addr_put (sa->saddr);
|
|
|
|
if (sa->aead)
|
|
free (sa->aead);
|
|
if (sa->auth)
|
|
free (sa->auth);
|
|
if (sa->crypt)
|
|
free (sa->crypt);
|
|
if (sa->comp)
|
|
free (sa->comp);
|
|
if (sa->encap) {
|
|
if (sa->encap->encap_oa)
|
|
nl_addr_put(sa->encap->encap_oa);
|
|
free(sa->encap);
|
|
}
|
|
if (sa->coaddr)
|
|
nl_addr_put (sa->coaddr);
|
|
if (sa->sec_ctx)
|
|
free (sa->sec_ctx);
|
|
if (sa->replay_state_esn)
|
|
free (sa->replay_state_esn);
|
|
}
|
|
|
|
static int xfrm_sa_clone(struct nl_object *_dst, struct nl_object *_src)
|
|
{
|
|
struct xfrmnl_sa* dst = nl_object_priv(_dst);
|
|
struct xfrmnl_sa* src = nl_object_priv(_src);
|
|
uint32_t len = 0;
|
|
|
|
if (src->sel)
|
|
if ((dst->sel = xfrmnl_sel_clone (src->sel)) == NULL)
|
|
return -NLE_NOMEM;
|
|
|
|
if (src->lft)
|
|
if ((dst->lft = xfrmnl_ltime_cfg_clone (src->lft)) == NULL)
|
|
return -NLE_NOMEM;
|
|
|
|
if (src->id.daddr)
|
|
if ((dst->id.daddr = nl_addr_clone (src->id.daddr)) == NULL)
|
|
return -NLE_NOMEM;
|
|
|
|
if (src->saddr)
|
|
if ((dst->saddr = nl_addr_clone (src->saddr)) == NULL)
|
|
return -NLE_NOMEM;
|
|
|
|
if (src->aead)
|
|
{
|
|
len = sizeof (struct xfrmnl_algo_aead) + ((src->aead->alg_key_len + 7) / 8);
|
|
if ((dst->aead = calloc (1, len)) == NULL)
|
|
return -NLE_NOMEM;
|
|
memcpy ((void *)dst->aead, (void *)src->aead, len);
|
|
}
|
|
|
|
if (src->auth)
|
|
{
|
|
len = sizeof (struct xfrmnl_algo_auth) + ((src->auth->alg_key_len + 7) / 8);
|
|
if ((dst->auth = calloc (1, len)) == NULL)
|
|
return -NLE_NOMEM;
|
|
memcpy ((void *)dst->auth, (void *)src->auth, len);
|
|
}
|
|
|
|
if (src->crypt)
|
|
{
|
|
len = sizeof (struct xfrmnl_algo) + ((src->crypt->alg_key_len + 7) / 8);
|
|
if ((dst->crypt = calloc (1, len)) == NULL)
|
|
return -NLE_NOMEM;
|
|
memcpy ((void *)dst->crypt, (void *)src->crypt, len);
|
|
}
|
|
|
|
if (src->comp)
|
|
{
|
|
len = sizeof (struct xfrmnl_algo) + ((src->comp->alg_key_len + 7) / 8);
|
|
if ((dst->comp = calloc (1, len)) == NULL)
|
|
return -NLE_NOMEM;
|
|
memcpy ((void *)dst->comp, (void *)src->comp, len);
|
|
}
|
|
|
|
if (src->encap)
|
|
{
|
|
len = sizeof (struct xfrmnl_encap_tmpl);
|
|
if ((dst->encap = calloc (1, len)) == NULL)
|
|
return -NLE_NOMEM;
|
|
memcpy ((void *)dst->encap, (void *)src->encap, len);
|
|
}
|
|
|
|
if (src->coaddr)
|
|
if ((dst->coaddr = nl_addr_clone (src->coaddr)) == NULL)
|
|
return -NLE_NOMEM;
|
|
|
|
if (src->sec_ctx)
|
|
{
|
|
len = sizeof (*src->sec_ctx) + src->sec_ctx->ctx_len;
|
|
if ((dst->sec_ctx = calloc (1, len)) == NULL)
|
|
return -NLE_NOMEM;
|
|
memcpy ((void *)dst->sec_ctx, (void *)src->sec_ctx, len);
|
|
}
|
|
|
|
if (src->replay_state_esn)
|
|
{
|
|
len = sizeof (struct xfrmnl_replay_state_esn) + (src->replay_state_esn->bmp_len * sizeof (uint32_t));
|
|
if ((dst->replay_state_esn = calloc (1, len)) == NULL)
|
|
return -NLE_NOMEM;
|
|
memcpy ((void *)dst->replay_state_esn, (void *)src->replay_state_esn, len);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint64_t xfrm_sa_compare(struct nl_object *_a, struct nl_object *_b,
|
|
uint64_t attrs, int flags)
|
|
{
|
|
struct xfrmnl_sa* a = (struct xfrmnl_sa *) _a;
|
|
struct xfrmnl_sa* b = (struct xfrmnl_sa *) _b;
|
|
uint64_t diff = 0;
|
|
int found = 0;
|
|
|
|
#define XFRM_SA_DIFF(ATTR, EXPR) ATTR_DIFF(attrs, XFRM_SA_ATTR_##ATTR, a, b, EXPR)
|
|
diff |= XFRM_SA_DIFF(SEL, xfrmnl_sel_cmp(a->sel, b->sel));
|
|
diff |= XFRM_SA_DIFF(DADDR, nl_addr_cmp(a->id.daddr, b->id.daddr));
|
|
diff |= XFRM_SA_DIFF(SPI, a->id.spi != b->id.spi);
|
|
diff |= XFRM_SA_DIFF(PROTO, a->id.proto != b->id.proto);
|
|
diff |= XFRM_SA_DIFF(SADDR, nl_addr_cmp(a->saddr, b->saddr));
|
|
diff |= XFRM_SA_DIFF(LTIME_CFG, xfrmnl_ltime_cfg_cmp(a->lft, b->lft));
|
|
diff |= XFRM_SA_DIFF(REQID, a->reqid != b->reqid);
|
|
diff |= XFRM_SA_DIFF(FAMILY,a->family != b->family);
|
|
diff |= XFRM_SA_DIFF(MODE,a->mode != b->mode);
|
|
diff |= XFRM_SA_DIFF(REPLAY_WIN,a->replay_window != b->replay_window);
|
|
diff |= XFRM_SA_DIFF(FLAGS,a->flags != b->flags);
|
|
diff |= XFRM_SA_DIFF(ALG_AEAD,(strcmp(a->aead->alg_name, b->aead->alg_name) ||
|
|
(a->aead->alg_key_len != b->aead->alg_key_len) ||
|
|
(a->aead->alg_icv_len != b->aead->alg_icv_len) ||
|
|
memcmp(a->aead->alg_key, b->aead->alg_key,
|
|
((a->aead->alg_key_len + 7)/8))));
|
|
diff |= XFRM_SA_DIFF(ALG_AUTH,(strcmp(a->auth->alg_name, b->auth->alg_name) ||
|
|
(a->auth->alg_key_len != b->auth->alg_key_len) ||
|
|
(a->auth->alg_trunc_len != b->auth->alg_trunc_len) ||
|
|
memcmp(a->auth->alg_key, b->auth->alg_key,
|
|
((a->auth->alg_key_len + 7)/8))));
|
|
diff |= XFRM_SA_DIFF(ALG_CRYPT,(strcmp(a->crypt->alg_name, b->crypt->alg_name) ||
|
|
(a->crypt->alg_key_len != b->crypt->alg_key_len) ||
|
|
memcmp(a->crypt->alg_key, b->crypt->alg_key,
|
|
((a->crypt->alg_key_len + 7)/8))));
|
|
diff |= XFRM_SA_DIFF(ALG_COMP,(strcmp(a->comp->alg_name, b->comp->alg_name) ||
|
|
(a->comp->alg_key_len != b->comp->alg_key_len) ||
|
|
memcmp(a->comp->alg_key, b->comp->alg_key,
|
|
((a->comp->alg_key_len + 7)/8))));
|
|
diff |= XFRM_SA_DIFF(ENCAP,((a->encap->encap_type != b->encap->encap_type) ||
|
|
(a->encap->encap_sport != b->encap->encap_sport) ||
|
|
(a->encap->encap_dport != b->encap->encap_dport) ||
|
|
nl_addr_cmp(a->encap->encap_oa, b->encap->encap_oa)));
|
|
diff |= XFRM_SA_DIFF(TFCPAD,a->tfcpad != b->tfcpad);
|
|
diff |= XFRM_SA_DIFF(COADDR,nl_addr_cmp(a->coaddr, b->coaddr));
|
|
diff |= XFRM_SA_DIFF(MARK,(a->mark.m != b->mark.m) ||
|
|
(a->mark.v != b->mark.v));
|
|
diff |= XFRM_SA_DIFF(SECCTX,((a->sec_ctx->ctx_doi != b->sec_ctx->ctx_doi) ||
|
|
(a->sec_ctx->ctx_alg != b->sec_ctx->ctx_alg) ||
|
|
(a->sec_ctx->ctx_len != b->sec_ctx->ctx_len) ||
|
|
strcmp(a->sec_ctx->ctx, b->sec_ctx->ctx)));
|
|
diff |= XFRM_SA_DIFF(REPLAY_MAXAGE,a->replay_maxage != b->replay_maxage);
|
|
diff |= XFRM_SA_DIFF(REPLAY_MAXDIFF,a->replay_maxdiff != b->replay_maxdiff);
|
|
diff |= XFRM_SA_DIFF(EXPIRE,a->hard != b->hard);
|
|
|
|
/* Compare replay states */
|
|
found = AVAILABLE_MISMATCH (a, b, XFRM_SA_ATTR_REPLAY_STATE);
|
|
if (found == 0) // attribute exists in both objects
|
|
{
|
|
if (((a->replay_state_esn != NULL) && (b->replay_state_esn == NULL)) ||
|
|
((a->replay_state_esn == NULL) && (b->replay_state_esn != NULL)))
|
|
found |= 1;
|
|
|
|
if (found == 0) // same replay type. compare actual values
|
|
{
|
|
if (a->replay_state_esn)
|
|
{
|
|
if (a->replay_state_esn->bmp_len != b->replay_state_esn->bmp_len)
|
|
diff |= 1;
|
|
else
|
|
{
|
|
uint32_t len = sizeof (struct xfrmnl_replay_state_esn) +
|
|
(a->replay_state_esn->bmp_len * sizeof (uint32_t));
|
|
diff |= memcmp (a->replay_state_esn, b->replay_state_esn, len);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if ((a->replay_state.oseq != b->replay_state.oseq) ||
|
|
(a->replay_state.seq != b->replay_state.seq) ||
|
|
(a->replay_state.bitmap != b->replay_state.bitmap))
|
|
diff |= 1;
|
|
}
|
|
}
|
|
}
|
|
#undef XFRM_SA_DIFF
|
|
|
|
return diff;
|
|
}
|
|
|
|
/**
|
|
* @name XFRM SA Attribute Translations
|
|
* @{
|
|
*/
|
|
static const struct trans_tbl sa_attrs[] = {
|
|
__ADD(XFRM_SA_ATTR_SEL, selector),
|
|
__ADD(XFRM_SA_ATTR_DADDR, daddr),
|
|
__ADD(XFRM_SA_ATTR_SPI, spi),
|
|
__ADD(XFRM_SA_ATTR_PROTO, proto),
|
|
__ADD(XFRM_SA_ATTR_SADDR, saddr),
|
|
__ADD(XFRM_SA_ATTR_LTIME_CFG, lifetime_cfg),
|
|
__ADD(XFRM_SA_ATTR_LTIME_CUR, lifetime_cur),
|
|
__ADD(XFRM_SA_ATTR_STATS, stats),
|
|
__ADD(XFRM_SA_ATTR_SEQ, seqnum),
|
|
__ADD(XFRM_SA_ATTR_REQID, reqid),
|
|
__ADD(XFRM_SA_ATTR_FAMILY, family),
|
|
__ADD(XFRM_SA_ATTR_MODE, mode),
|
|
__ADD(XFRM_SA_ATTR_REPLAY_WIN, replay_window),
|
|
__ADD(XFRM_SA_ATTR_FLAGS, flags),
|
|
__ADD(XFRM_SA_ATTR_ALG_AEAD, alg_aead),
|
|
__ADD(XFRM_SA_ATTR_ALG_AUTH, alg_auth),
|
|
__ADD(XFRM_SA_ATTR_ALG_CRYPT, alg_crypto),
|
|
__ADD(XFRM_SA_ATTR_ALG_COMP, alg_comp),
|
|
__ADD(XFRM_SA_ATTR_ENCAP, encap),
|
|
__ADD(XFRM_SA_ATTR_TFCPAD, tfcpad),
|
|
__ADD(XFRM_SA_ATTR_COADDR, coaddr),
|
|
__ADD(XFRM_SA_ATTR_MARK, mark),
|
|
__ADD(XFRM_SA_ATTR_SECCTX, sec_ctx),
|
|
__ADD(XFRM_SA_ATTR_REPLAY_MAXAGE, replay_maxage),
|
|
__ADD(XFRM_SA_ATTR_REPLAY_MAXDIFF, replay_maxdiff),
|
|
__ADD(XFRM_SA_ATTR_REPLAY_STATE, replay_state),
|
|
__ADD(XFRM_SA_ATTR_EXPIRE, expire),
|
|
};
|
|
|
|
static char* xfrm_sa_attrs2str(int attrs, char *buf, size_t len)
|
|
{
|
|
return __flags2str (attrs, buf, len, sa_attrs, ARRAY_SIZE(sa_attrs));
|
|
}
|
|
/** @} */
|
|
|
|
/**
|
|
* @name XFRM SA Flags Translations
|
|
* @{
|
|
*/
|
|
static const struct trans_tbl sa_flags[] = {
|
|
__ADD(XFRM_STATE_NOECN, no ecn),
|
|
__ADD(XFRM_STATE_DECAP_DSCP, decap dscp),
|
|
__ADD(XFRM_STATE_NOPMTUDISC, no pmtu discovery),
|
|
__ADD(XFRM_STATE_WILDRECV, wild receive),
|
|
__ADD(XFRM_STATE_ICMP, icmp),
|
|
__ADD(XFRM_STATE_AF_UNSPEC, unspecified),
|
|
__ADD(XFRM_STATE_ALIGN4, align4),
|
|
__ADD(XFRM_STATE_ESN, esn),
|
|
};
|
|
|
|
char* xfrmnl_sa_flags2str(int flags, char *buf, size_t len)
|
|
{
|
|
return __flags2str (flags, buf, len, sa_flags, ARRAY_SIZE(sa_flags));
|
|
}
|
|
|
|
int xfrmnl_sa_str2flag(const char *name)
|
|
{
|
|
return __str2flags (name, sa_flags, ARRAY_SIZE(sa_flags));
|
|
}
|
|
/** @} */
|
|
|
|
/**
|
|
* @name XFRM SA Mode Translations
|
|
* @{
|
|
*/
|
|
static const struct trans_tbl sa_modes[] = {
|
|
__ADD(XFRM_MODE_TRANSPORT, transport),
|
|
__ADD(XFRM_MODE_TUNNEL, tunnel),
|
|
__ADD(XFRM_MODE_ROUTEOPTIMIZATION, route optimization),
|
|
__ADD(XFRM_MODE_IN_TRIGGER, in trigger),
|
|
__ADD(XFRM_MODE_BEET, beet),
|
|
};
|
|
|
|
char* xfrmnl_sa_mode2str(int mode, char *buf, size_t len)
|
|
{
|
|
return __type2str (mode, buf, len, sa_modes, ARRAY_SIZE(sa_modes));
|
|
}
|
|
|
|
int xfrmnl_sa_str2mode(const char *name)
|
|
{
|
|
return __str2type (name, sa_modes, ARRAY_SIZE(sa_modes));
|
|
}
|
|
/** @} */
|
|
|
|
|
|
static void xfrm_sa_dump_line(struct nl_object *a, struct nl_dump_params *p)
|
|
{
|
|
char dst[INET6_ADDRSTRLEN+5], src[INET6_ADDRSTRLEN+5];
|
|
struct xfrmnl_sa* sa = (struct xfrmnl_sa *) a;
|
|
char flags[128], mode[128];
|
|
time_t add_time, use_time;
|
|
struct tm *add_time_tm, *use_time_tm;
|
|
|
|
nl_dump_line(p, "src %s dst %s family: %s\n", nl_addr2str(sa->saddr, src, sizeof(src)),
|
|
nl_addr2str(sa->id.daddr, dst, sizeof(dst)),
|
|
nl_af2str (sa->family, flags, sizeof (flags)));
|
|
|
|
nl_dump_line(p, "\tproto %s spi 0x%x reqid %u\n",
|
|
nl_ip_proto2str (sa->id.proto, flags, sizeof(flags)),
|
|
sa->id.spi, sa->reqid);
|
|
|
|
xfrmnl_sa_flags2str(sa->flags, flags, sizeof (flags));
|
|
xfrmnl_sa_mode2str(sa->mode, mode, sizeof (mode));
|
|
nl_dump_line(p, "\tmode: %s flags: %s (0x%x) seq: %u replay window: %u\n",
|
|
mode, flags, sa->flags, sa->seq, sa->replay_window);
|
|
|
|
nl_dump_line(p, "\tlifetime configuration: \n");
|
|
if (sa->lft->soft_byte_limit == XFRM_INF)
|
|
sprintf (flags, "INF");
|
|
else
|
|
sprintf (flags, "%" PRIu64, sa->lft->soft_byte_limit);
|
|
if (sa->lft->soft_packet_limit == XFRM_INF)
|
|
sprintf (mode, "INF");
|
|
else
|
|
sprintf (mode, "%" PRIu64, sa->lft->soft_packet_limit);
|
|
nl_dump_line(p, "\t\tsoft limit: %s (bytes), %s (packets)\n", flags, mode);
|
|
if (sa->lft->hard_byte_limit == XFRM_INF)
|
|
sprintf (flags, "INF");
|
|
else
|
|
sprintf (flags, "%" PRIu64, sa->lft->hard_byte_limit);
|
|
if (sa->lft->hard_packet_limit == XFRM_INF)
|
|
sprintf (mode, "INF");
|
|
else
|
|
sprintf (mode, "%" PRIu64, sa->lft->hard_packet_limit);
|
|
nl_dump_line(p, "\t\thard limit: %s (bytes), %s (packets)\n", flags, mode);
|
|
nl_dump_line(p, "\t\tsoft add_time: %llu (seconds), soft use_time: %llu (seconds) \n",
|
|
sa->lft->soft_add_expires_seconds, sa->lft->soft_use_expires_seconds);
|
|
nl_dump_line(p, "\t\thard add_time: %llu (seconds), hard use_time: %llu (seconds) \n",
|
|
sa->lft->hard_add_expires_seconds, sa->lft->hard_use_expires_seconds);
|
|
|
|
nl_dump_line(p, "\tlifetime current: \n");
|
|
nl_dump_line(p, "\t\t%llu bytes, %llu packets\n", sa->curlft.bytes, sa->curlft.packets);
|
|
if (sa->curlft.add_time != 0)
|
|
{
|
|
add_time = sa->curlft.add_time;
|
|
add_time_tm = gmtime (&add_time);
|
|
strftime (flags, 128, "%Y-%m-%d %H-%M-%S", add_time_tm);
|
|
}
|
|
else
|
|
{
|
|
sprintf (flags, "%s", "-");
|
|
}
|
|
|
|
if (sa->curlft.use_time != 0)
|
|
{
|
|
use_time = sa->curlft.use_time;
|
|
use_time_tm = gmtime (&use_time);
|
|
strftime (mode, 128, "%Y-%m-%d %H-%M-%S", use_time_tm);
|
|
}
|
|
else
|
|
{
|
|
sprintf (mode, "%s", "-");
|
|
}
|
|
nl_dump_line(p, "\t\tadd_time: %s, use_time: %s\n", flags, mode);
|
|
|
|
if (sa->aead)
|
|
{
|
|
nl_dump_line(p, "\tAEAD Algo: \n");
|
|
nl_dump_line(p, "\t\tName: %s Key len(bits): %u ICV Len(bits): %u\n",
|
|
sa->aead->alg_name, sa->aead->alg_key_len, sa->aead->alg_icv_len);
|
|
}
|
|
|
|
if (sa->auth)
|
|
{
|
|
nl_dump_line(p, "\tAuth Algo: \n");
|
|
nl_dump_line(p, "\t\tName: %s Key len(bits): %u Trunc len(bits): %u\n",
|
|
sa->auth->alg_name, sa->auth->alg_key_len, sa->auth->alg_trunc_len);
|
|
}
|
|
|
|
if (sa->crypt)
|
|
{
|
|
nl_dump_line(p, "\tEncryption Algo: \n");
|
|
nl_dump_line(p, "\t\tName: %s Key len(bits): %u\n",
|
|
sa->crypt->alg_name, sa->crypt->alg_key_len);
|
|
}
|
|
|
|
if (sa->comp)
|
|
{
|
|
nl_dump_line(p, "\tCompression Algo: \n");
|
|
nl_dump_line(p, "\t\tName: %s Key len(bits): %u\n",
|
|
sa->comp->alg_name, sa->comp->alg_key_len);
|
|
}
|
|
|
|
if (sa->encap)
|
|
{
|
|
nl_dump_line(p, "\tEncapsulation template: \n");
|
|
nl_dump_line(p, "\t\tType: %d Src port: %d Dst port: %d Encap addr: %s\n",
|
|
sa->encap->encap_type, sa->encap->encap_sport, sa->encap->encap_dport,
|
|
nl_addr2str (sa->encap->encap_oa, dst, sizeof (dst)));
|
|
}
|
|
|
|
if (sa->ce_mask & XFRM_SA_ATTR_TFCPAD)
|
|
nl_dump_line(p, "\tTFC Pad: %u\n", sa->tfcpad);
|
|
|
|
if (sa->ce_mask & XFRM_SA_ATTR_COADDR)
|
|
nl_dump_line(p, "\tCO Address: %s\n", nl_addr2str (sa->coaddr, dst, sizeof (dst)));
|
|
|
|
if (sa->ce_mask & XFRM_SA_ATTR_MARK)
|
|
nl_dump_line(p, "\tMark mask: 0x%x Mark value: 0x%x\n", sa->mark.m, sa->mark.v);
|
|
|
|
if (sa->ce_mask & XFRM_SA_ATTR_SECCTX)
|
|
nl_dump_line(p, "\tDOI: %d Algo: %d Len: %u ctx: %s\n", sa->sec_ctx->ctx_doi,
|
|
sa->sec_ctx->ctx_alg, sa->sec_ctx->ctx_len, sa->sec_ctx->ctx);
|
|
|
|
nl_dump_line(p, "\treplay info: \n");
|
|
nl_dump_line(p, "\t\tmax age %u max diff %u \n", sa->replay_maxage, sa->replay_maxdiff);
|
|
|
|
if (sa->ce_mask & XFRM_SA_ATTR_REPLAY_STATE)
|
|
{
|
|
nl_dump_line(p, "\treplay state info: \n");
|
|
if (sa->replay_state_esn)
|
|
{
|
|
nl_dump_line(p, "\t\toseq %u seq %u oseq_hi %u seq_hi %u replay window: %u \n",
|
|
sa->replay_state_esn->oseq, sa->replay_state_esn->seq,
|
|
sa->replay_state_esn->oseq_hi, sa->replay_state_esn->seq_hi,
|
|
sa->replay_state_esn->replay_window);
|
|
}
|
|
else
|
|
{
|
|
nl_dump_line(p, "\t\toseq %u seq %u bitmap: %u \n", sa->replay_state.oseq,
|
|
sa->replay_state.seq, sa->replay_state.bitmap);
|
|
}
|
|
}
|
|
|
|
nl_dump_line(p, "\tselector info: \n");
|
|
xfrmnl_sel_dump (sa->sel, p);
|
|
|
|
nl_dump_line(p, "\tHard: %d\n", sa->hard);
|
|
|
|
nl_dump(p, "\n");
|
|
}
|
|
|
|
static void xfrm_sa_dump_stats(struct nl_object *a, struct nl_dump_params *p)
|
|
{
|
|
struct xfrmnl_sa* sa = (struct xfrmnl_sa*)a;
|
|
|
|
nl_dump_line(p, "\tstats: \n");
|
|
nl_dump_line(p, "\t\treplay window: %u replay: %u integrity failed: %u \n",
|
|
sa->stats.replay_window, sa->stats.replay, sa->stats.integrity_failed);
|
|
|
|
return;
|
|
}
|
|
|
|
static void xfrm_sa_dump_details(struct nl_object *a, struct nl_dump_params *p)
|
|
{
|
|
xfrm_sa_dump_line(a, p);
|
|
xfrm_sa_dump_stats (a, p);
|
|
}
|
|
|
|
/**
|
|
* @name XFRM SA Object Allocation/Freeage
|
|
* @{
|
|
*/
|
|
|
|
struct xfrmnl_sa* xfrmnl_sa_alloc(void)
|
|
{
|
|
return (struct xfrmnl_sa*) nl_object_alloc(&xfrm_sa_obj_ops);
|
|
}
|
|
|
|
void xfrmnl_sa_put(struct xfrmnl_sa* sa)
|
|
{
|
|
nl_object_put((struct nl_object *) sa);
|
|
}
|
|
|
|
/** @} */
|
|
|
|
/**
|
|
* @name SA Cache Managament
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* Build a SA cache including all SAs currently configured in the kernel.
|
|
* @arg sock Netlink socket.
|
|
* @arg result Pointer to store resulting cache.
|
|
*
|
|
* Allocates a new SA cache, initializes it properly and updates it
|
|
* to include all SAs currently configured in the kernel.
|
|
*
|
|
* @return 0 on success or a negative error code.
|
|
*/
|
|
int xfrmnl_sa_alloc_cache(struct nl_sock *sock, struct nl_cache **result)
|
|
{
|
|
return nl_cache_alloc_and_fill(&xfrmnl_sa_ops, sock, result);
|
|
}
|
|
|
|
/**
|
|
* Look up a SA by destination address, SPI, protocol
|
|
* @arg cache SA cache
|
|
* @arg daddr destination address of the SA
|
|
* @arg spi SPI
|
|
* @arg proto protocol
|
|
* @return sa handle or NULL if no match was found.
|
|
*/
|
|
struct xfrmnl_sa* xfrmnl_sa_get(struct nl_cache* cache, struct nl_addr* daddr,
|
|
unsigned int spi, unsigned int proto)
|
|
{
|
|
struct xfrmnl_sa *sa;
|
|
|
|
//nl_list_for_each_entry(sa, &cache->c_items, ce_list) {
|
|
for (sa = (struct xfrmnl_sa*)nl_cache_get_first (cache);
|
|
sa != NULL;
|
|
sa = (struct xfrmnl_sa*)nl_cache_get_next ((struct nl_object*)sa))
|
|
{
|
|
if (sa->id.proto == proto &&
|
|
sa->id.spi == spi &&
|
|
!nl_addr_cmp(sa->id.daddr, daddr))
|
|
{
|
|
nl_object_get((struct nl_object *) sa);
|
|
return sa;
|
|
}
|
|
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/** @} */
|
|
|
|
|
|
static struct nla_policy xfrm_sa_policy[XFRMA_MAX+1] = {
|
|
[XFRMA_SA] = { .minlen = sizeof(struct xfrm_usersa_info)},
|
|
[XFRMA_ALG_AUTH_TRUNC] = { .minlen = sizeof(struct xfrm_algo_auth)},
|
|
[XFRMA_ALG_AEAD] = { .minlen = sizeof(struct xfrm_algo_aead) },
|
|
[XFRMA_ALG_AUTH] = { .minlen = sizeof(struct xfrm_algo) },
|
|
[XFRMA_ALG_CRYPT] = { .minlen = sizeof(struct xfrm_algo) },
|
|
[XFRMA_ALG_COMP] = { .minlen = sizeof(struct xfrm_algo) },
|
|
[XFRMA_ENCAP] = { .minlen = sizeof(struct xfrm_encap_tmpl) },
|
|
[XFRMA_TMPL] = { .minlen = sizeof(struct xfrm_user_tmpl) },
|
|
[XFRMA_SEC_CTX] = { .minlen = sizeof(struct xfrm_sec_ctx) },
|
|
[XFRMA_LTIME_VAL] = { .minlen = sizeof(struct xfrm_lifetime_cur) },
|
|
[XFRMA_REPLAY_VAL] = { .minlen = sizeof(struct xfrm_replay_state) },
|
|
[XFRMA_REPLAY_THRESH] = { .type = NLA_U32 },
|
|
[XFRMA_ETIMER_THRESH] = { .type = NLA_U32 },
|
|
[XFRMA_SRCADDR] = { .minlen = sizeof(xfrm_address_t) },
|
|
[XFRMA_COADDR] = { .minlen = sizeof(xfrm_address_t) },
|
|
[XFRMA_MARK] = { .minlen = sizeof(struct xfrm_mark) },
|
|
[XFRMA_TFCPAD] = { .type = NLA_U32 },
|
|
[XFRMA_REPLAY_ESN_VAL] = { .minlen = sizeof(struct xfrm_replay_state_esn) },
|
|
};
|
|
|
|
static int xfrm_sa_request_update(struct nl_cache *c, struct nl_sock *h)
|
|
{
|
|
struct xfrm_id sa_id;
|
|
|
|
memset (&sa_id, 0, sizeof (sa_id));
|
|
return nl_send_simple (h, XFRM_MSG_GETSA, NLM_F_DUMP,
|
|
&sa_id, sizeof (sa_id));
|
|
}
|
|
|
|
int xfrmnl_sa_parse(struct nlmsghdr *n, struct xfrmnl_sa **result)
|
|
{
|
|
struct xfrmnl_sa* sa;
|
|
struct nlattr *tb[XFRMA_MAX + 1];
|
|
struct xfrm_usersa_info* sa_info;
|
|
struct xfrm_user_expire* ue;
|
|
int len, err;
|
|
struct nl_addr* addr;
|
|
|
|
sa = xfrmnl_sa_alloc();
|
|
if (!sa) {
|
|
err = -NLE_NOMEM;
|
|
goto errout;
|
|
}
|
|
|
|
sa->ce_msgtype = n->nlmsg_type;
|
|
if (n->nlmsg_type == XFRM_MSG_EXPIRE)
|
|
{
|
|
ue = nlmsg_data(n);
|
|
sa_info = &ue->state;
|
|
sa->hard = ue->hard;
|
|
sa->ce_mask |= XFRM_SA_ATTR_EXPIRE;
|
|
}
|
|
else if (n->nlmsg_type == XFRM_MSG_DELSA)
|
|
{
|
|
sa_info = (struct xfrm_usersa_info*)((char *)nlmsg_data(n) + sizeof (struct xfrm_usersa_id) + NLA_HDRLEN);
|
|
}
|
|
else
|
|
{
|
|
sa_info = nlmsg_data(n);
|
|
}
|
|
|
|
err = nlmsg_parse(n, sizeof(struct xfrm_usersa_info), tb, XFRMA_MAX, xfrm_sa_policy);
|
|
if (err < 0)
|
|
goto errout;
|
|
|
|
if (sa_info->sel.family == AF_INET)
|
|
addr = nl_addr_build (sa_info->sel.family, &sa_info->sel.daddr.a4, sizeof (sa_info->sel.daddr.a4));
|
|
else
|
|
addr = nl_addr_build (sa_info->sel.family, &sa_info->sel.daddr.a6, sizeof (sa_info->sel.daddr.a6));
|
|
nl_addr_set_prefixlen (addr, sa_info->sel.prefixlen_d);
|
|
xfrmnl_sel_set_daddr (sa->sel, addr);
|
|
xfrmnl_sel_set_prefixlen_d (sa->sel, sa_info->sel.prefixlen_d);
|
|
|
|
if (sa_info->sel.family == AF_INET)
|
|
addr = nl_addr_build (sa_info->sel.family, &sa_info->sel.saddr.a4, sizeof (sa_info->sel.saddr.a4));
|
|
else
|
|
addr = nl_addr_build (sa_info->sel.family, &sa_info->sel.saddr.a6, sizeof (sa_info->sel.saddr.a6));
|
|
nl_addr_set_prefixlen (addr, sa_info->sel.prefixlen_s);
|
|
xfrmnl_sel_set_saddr (sa->sel, addr);
|
|
xfrmnl_sel_set_prefixlen_s (sa->sel, sa_info->sel.prefixlen_s);
|
|
|
|
xfrmnl_sel_set_dport (sa->sel, ntohs(sa_info->sel.dport));
|
|
xfrmnl_sel_set_dportmask (sa->sel, ntohs(sa_info->sel.dport_mask));
|
|
xfrmnl_sel_set_sport (sa->sel, ntohs(sa_info->sel.sport));
|
|
xfrmnl_sel_set_sportmask (sa->sel, ntohs(sa_info->sel.sport_mask));
|
|
xfrmnl_sel_set_family (sa->sel, sa_info->sel.family);
|
|
xfrmnl_sel_set_proto (sa->sel, sa_info->sel.proto);
|
|
xfrmnl_sel_set_ifindex (sa->sel, sa_info->sel.ifindex);
|
|
xfrmnl_sel_set_userid (sa->sel, sa_info->sel.user);
|
|
sa->ce_mask |= XFRM_SA_ATTR_SEL;
|
|
|
|
if (sa_info->family == AF_INET)
|
|
sa->id.daddr = nl_addr_build (sa_info->family, &sa_info->id.daddr.a4, sizeof (sa_info->id.daddr.a4));
|
|
else
|
|
sa->id.daddr = nl_addr_build (sa_info->family, &sa_info->id.daddr.a6, sizeof (sa_info->id.daddr.a6));
|
|
sa->id.spi = ntohl(sa_info->id.spi);
|
|
sa->id.proto = sa_info->id.proto;
|
|
sa->ce_mask |= (XFRM_SA_ATTR_DADDR | XFRM_SA_ATTR_SPI | XFRM_SA_ATTR_PROTO);
|
|
|
|
if (sa_info->family == AF_INET)
|
|
sa->saddr = nl_addr_build (sa_info->family, &sa_info->saddr.a4, sizeof (sa_info->saddr.a4));
|
|
else
|
|
sa->saddr = nl_addr_build (sa_info->family, &sa_info->saddr.a6, sizeof (sa_info->saddr.a6));
|
|
sa->ce_mask |= XFRM_SA_ATTR_SADDR;
|
|
|
|
sa->lft->soft_byte_limit = sa_info->lft.soft_byte_limit;
|
|
sa->lft->hard_byte_limit = sa_info->lft.hard_byte_limit;
|
|
sa->lft->soft_packet_limit = sa_info->lft.soft_packet_limit;
|
|
sa->lft->hard_packet_limit = sa_info->lft.hard_packet_limit;
|
|
sa->lft->soft_add_expires_seconds = sa_info->lft.soft_add_expires_seconds;
|
|
sa->lft->hard_add_expires_seconds = sa_info->lft.hard_add_expires_seconds;
|
|
sa->lft->soft_use_expires_seconds = sa_info->lft.soft_use_expires_seconds;
|
|
sa->lft->hard_use_expires_seconds = sa_info->lft.hard_use_expires_seconds;
|
|
sa->ce_mask |= XFRM_SA_ATTR_LTIME_CFG;
|
|
|
|
sa->curlft.bytes = sa_info->curlft.bytes;
|
|
sa->curlft.packets = sa_info->curlft.packets;
|
|
sa->curlft.add_time = sa_info->curlft.add_time;
|
|
sa->curlft.use_time = sa_info->curlft.use_time;
|
|
sa->ce_mask |= XFRM_SA_ATTR_LTIME_CUR;
|
|
|
|
sa->stats.replay_window = sa_info->stats.replay_window;
|
|
sa->stats.replay = sa_info->stats.replay;
|
|
sa->stats.integrity_failed = sa_info->stats.integrity_failed;
|
|
sa->ce_mask |= XFRM_SA_ATTR_STATS;
|
|
|
|
sa->seq = sa_info->seq;
|
|
sa->reqid = sa_info->reqid;
|
|
sa->family = sa_info->family;
|
|
sa->mode = sa_info->mode;
|
|
sa->replay_window = sa_info->replay_window;
|
|
sa->flags = sa_info->flags;
|
|
sa->ce_mask |= (XFRM_SA_ATTR_SEQ | XFRM_SA_ATTR_REQID |
|
|
XFRM_SA_ATTR_FAMILY | XFRM_SA_ATTR_MODE |
|
|
XFRM_SA_ATTR_REPLAY_WIN | XFRM_SA_ATTR_FLAGS);
|
|
|
|
if (tb[XFRMA_ALG_AEAD]) {
|
|
struct xfrm_algo_aead* aead = nla_data(tb[XFRMA_ALG_AEAD]);
|
|
len = sizeof (struct xfrmnl_algo_aead) + ((aead->alg_key_len + 7) / 8);
|
|
if ((sa->aead = calloc (1, len)) == NULL)
|
|
{
|
|
err = -NLE_NOMEM;
|
|
goto errout;
|
|
}
|
|
memcpy ((void *)sa->aead, (void *)aead, len);
|
|
sa->ce_mask |= XFRM_SA_ATTR_ALG_AEAD;
|
|
}
|
|
|
|
if (tb[XFRMA_ALG_AUTH_TRUNC]) {
|
|
struct xfrm_algo_auth* auth = nla_data(tb[XFRMA_ALG_AUTH_TRUNC]);
|
|
len = sizeof (struct xfrmnl_algo_auth) + ((auth->alg_key_len + 7) / 8);
|
|
if ((sa->auth = calloc (1, len)) == NULL)
|
|
{
|
|
err = -NLE_NOMEM;
|
|
goto errout;
|
|
}
|
|
memcpy ((void *)sa->auth, (void *)auth, len);
|
|
sa->ce_mask |= XFRM_SA_ATTR_ALG_AUTH;
|
|
}
|
|
|
|
if (tb[XFRMA_ALG_AUTH] && !sa->auth) {
|
|
struct xfrm_algo* auth = nla_data(tb[XFRMA_ALG_AUTH]);
|
|
len = sizeof (struct xfrmnl_algo_auth) + ((auth->alg_key_len + 7) / 8);
|
|
if ((sa->auth = calloc (1, len)) == NULL)
|
|
{
|
|
err = -NLE_NOMEM;
|
|
goto errout;
|
|
}
|
|
strcpy(sa->auth->alg_name, auth->alg_name);
|
|
memcpy(sa->auth->alg_key, auth->alg_key, (auth->alg_key_len + 7) / 8);
|
|
sa->auth->alg_key_len = auth->alg_key_len;
|
|
sa->ce_mask |= XFRM_SA_ATTR_ALG_AUTH;
|
|
}
|
|
|
|
if (tb[XFRMA_ALG_CRYPT]) {
|
|
struct xfrm_algo* crypt = nla_data(tb[XFRMA_ALG_CRYPT]);
|
|
len = sizeof (struct xfrmnl_algo) + ((crypt->alg_key_len + 7) / 8);
|
|
if ((sa->crypt = calloc (1, len)) == NULL)
|
|
{
|
|
err = -NLE_NOMEM;
|
|
goto errout;
|
|
}
|
|
memcpy ((void *)sa->crypt, (void *)crypt, len);
|
|
sa->ce_mask |= XFRM_SA_ATTR_ALG_CRYPT;
|
|
}
|
|
|
|
if (tb[XFRMA_ALG_COMP]) {
|
|
struct xfrm_algo* comp = nla_data(tb[XFRMA_ALG_COMP]);
|
|
len = sizeof (struct xfrmnl_algo) + ((comp->alg_key_len + 7) / 8);
|
|
if ((sa->comp = calloc (1, len)) == NULL)
|
|
{
|
|
err = -NLE_NOMEM;
|
|
goto errout;
|
|
}
|
|
memcpy ((void *)sa->comp, (void *)comp, len);
|
|
sa->ce_mask |= XFRM_SA_ATTR_ALG_COMP;
|
|
}
|
|
|
|
if (tb[XFRMA_ENCAP]) {
|
|
struct xfrm_encap_tmpl* encap = nla_data(tb[XFRMA_ENCAP]);
|
|
len = sizeof (struct xfrmnl_encap_tmpl);
|
|
if ((sa->encap = calloc (1, len)) == NULL)
|
|
{
|
|
err = -NLE_NOMEM;
|
|
goto errout;
|
|
}
|
|
sa->encap->encap_type = encap->encap_type;
|
|
sa->encap->encap_sport = ntohs(encap->encap_sport);
|
|
sa->encap->encap_dport = ntohs(encap->encap_dport);
|
|
if (sa_info->family == AF_INET)
|
|
sa->encap->encap_oa = nl_addr_build (sa_info->family, &encap->encap_oa.a4, sizeof (encap->encap_oa.a4));
|
|
else
|
|
sa->encap->encap_oa = nl_addr_build (sa_info->family, &encap->encap_oa.a6, sizeof (encap->encap_oa.a6));
|
|
sa->ce_mask |= XFRM_SA_ATTR_ENCAP;
|
|
}
|
|
|
|
if (tb[XFRMA_TFCPAD]) {
|
|
sa->tfcpad = *(uint32_t*)nla_data(tb[XFRMA_TFCPAD]);
|
|
sa->ce_mask |= XFRM_SA_ATTR_TFCPAD;
|
|
}
|
|
|
|
if (tb[XFRMA_COADDR]) {
|
|
if (sa_info->family == AF_INET)
|
|
{
|
|
sa->coaddr = nl_addr_build(sa_info->family, nla_data(tb[XFRMA_COADDR]),
|
|
sizeof (uint32_t));
|
|
}
|
|
else
|
|
{
|
|
sa->coaddr = nl_addr_build(sa_info->family, nla_data(tb[XFRMA_COADDR]),
|
|
sizeof (uint32_t) * 4);
|
|
}
|
|
sa->ce_mask |= XFRM_SA_ATTR_COADDR;
|
|
}
|
|
|
|
if (tb[XFRMA_MARK]) {
|
|
struct xfrm_mark* m = nla_data(tb[XFRMA_MARK]);
|
|
sa->mark.m = m->m;
|
|
sa->mark.v = m->v;
|
|
sa->ce_mask |= XFRM_SA_ATTR_MARK;
|
|
}
|
|
|
|
if (tb[XFRMA_SEC_CTX]) {
|
|
struct xfrm_user_sec_ctx* sec_ctx = nla_data(tb[XFRMA_SEC_CTX]);
|
|
len = sizeof (struct xfrmnl_user_sec_ctx) + sec_ctx->ctx_len;
|
|
if ((sa->sec_ctx = calloc (1, len)) == NULL)
|
|
{
|
|
err = -NLE_NOMEM;
|
|
goto errout;
|
|
}
|
|
memcpy (sa->sec_ctx, sec_ctx, len);
|
|
sa->ce_mask |= XFRM_SA_ATTR_SECCTX;
|
|
}
|
|
|
|
if (tb[XFRMA_ETIMER_THRESH]) {
|
|
sa->replay_maxage = *(uint32_t*)nla_data(tb[XFRMA_ETIMER_THRESH]);
|
|
sa->ce_mask |= XFRM_SA_ATTR_REPLAY_MAXAGE;
|
|
}
|
|
|
|
if (tb[XFRMA_REPLAY_THRESH]) {
|
|
sa->replay_maxdiff = *(uint32_t*)nla_data(tb[XFRMA_REPLAY_THRESH]);
|
|
sa->ce_mask |= XFRM_SA_ATTR_REPLAY_MAXDIFF;
|
|
}
|
|
|
|
if (tb[XFRMA_REPLAY_ESN_VAL]) {
|
|
struct xfrm_replay_state_esn* esn = nla_data (tb[XFRMA_REPLAY_ESN_VAL]);
|
|
len = sizeof (struct xfrmnl_replay_state_esn) + (sizeof (uint32_t) * esn->bmp_len);
|
|
if ((sa->replay_state_esn = calloc (1, len)) == NULL)
|
|
{
|
|
err = -NLE_NOMEM;
|
|
goto errout;
|
|
}
|
|
memcpy ((void *)sa->replay_state_esn, (void *)esn, len);
|
|
sa->ce_mask |= XFRM_SA_ATTR_REPLAY_STATE;
|
|
}
|
|
else if (tb[XFRMA_REPLAY_VAL])
|
|
{
|
|
struct xfrm_replay_state* replay_state = nla_data (tb[XFRMA_REPLAY_VAL]);
|
|
sa->replay_state.oseq = replay_state->oseq;
|
|
sa->replay_state.seq = replay_state->seq;
|
|
sa->replay_state.bitmap = replay_state->bitmap;
|
|
sa->ce_mask |= XFRM_SA_ATTR_REPLAY_STATE;
|
|
sa->replay_state_esn = NULL;
|
|
}
|
|
|
|
*result = sa;
|
|
return 0;
|
|
|
|
errout:
|
|
xfrmnl_sa_put(sa);
|
|
return err;
|
|
}
|
|
|
|
static int xfrm_sa_update_cache (struct nl_cache *cache, struct nl_object *obj,
|
|
change_func_t change_cb, change_func_v2_t change_cb_v2,
|
|
void *data)
|
|
{
|
|
struct nl_object* old_sa;
|
|
struct xfrmnl_sa* sa = (struct xfrmnl_sa*)obj;
|
|
|
|
if (nl_object_get_msgtype (obj) == XFRM_MSG_EXPIRE)
|
|
{
|
|
/* On hard expiry, the SA gets deleted too from the kernel state without any
|
|
* further delete event. On Expire message, we are only updating the cache with
|
|
* the SA object's new state. In absence of the explicit delete event, the cache will
|
|
* be out of sync with the kernel state. To get around this, expiry messages cache
|
|
* operations are handled here (installed with NL_ACT_UNSPEC action) instead of
|
|
* in Libnl Cache module. */
|
|
|
|
/* Do we already have this object in the cache? */
|
|
old_sa = nl_cache_search(cache, obj);
|
|
if (old_sa)
|
|
{
|
|
/* Found corresponding SA object in cache. Delete it */
|
|
nl_cache_remove (old_sa);
|
|
}
|
|
|
|
/* Handle the expiry event now */
|
|
if (sa->hard == 0)
|
|
{
|
|
/* Soft expiry event: Save the new object to the
|
|
* cache and notify application of the expiry event. */
|
|
nl_cache_move (cache, obj);
|
|
|
|
if (old_sa == NULL)
|
|
{
|
|
/* Application CB present, no previous instance of SA object present.
|
|
* Notify application CB as a NEW event */
|
|
if (change_cb_v2)
|
|
change_cb_v2(cache, NULL, obj, 0, NL_ACT_NEW, data);
|
|
else if (change_cb)
|
|
change_cb(cache, obj, NL_ACT_NEW, data);
|
|
}
|
|
else if (old_sa)
|
|
{
|
|
uint64_t diff = 0;
|
|
if (change_cb || change_cb_v2)
|
|
diff = nl_object_diff64(old_sa, obj);
|
|
|
|
/* Application CB present, a previous instance of SA object present.
|
|
* Notify application CB as a CHANGE1 event */
|
|
if (diff) {
|
|
if (change_cb_v2) {
|
|
change_cb_v2(cache, old_sa, obj, diff, NL_ACT_CHANGE, data);
|
|
} else if (change_cb)
|
|
change_cb(cache, obj, NL_ACT_CHANGE, data);
|
|
}
|
|
nl_object_put (old_sa);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Hard expiry event: Delete the object from the
|
|
* cache and notify application of the expiry event. */
|
|
if (change_cb_v2)
|
|
change_cb_v2(cache, obj, NULL, 0, NL_ACT_DEL, data);
|
|
else if (change_cb)
|
|
change_cb (cache, obj, NL_ACT_DEL, data);
|
|
nl_object_put (old_sa);
|
|
}
|
|
|
|
/* Done handling expire message */
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
/* All other messages other than Expire, let the standard Libnl cache
|
|
* module handle it. */
|
|
if (change_cb_v2)
|
|
return nl_cache_include_v2(cache, obj, change_cb_v2, data);
|
|
else
|
|
return nl_cache_include (cache, obj, change_cb, data);
|
|
}
|
|
}
|
|
|
|
static int xfrm_sa_msg_parser(struct nl_cache_ops *ops, struct sockaddr_nl *who,
|
|
struct nlmsghdr *n, struct nl_parser_param *pp)
|
|
{
|
|
struct xfrmnl_sa* sa;
|
|
int err;
|
|
|
|
if ((err = xfrmnl_sa_parse(n, &sa)) < 0)
|
|
return err;
|
|
|
|
err = pp->pp_cb((struct nl_object *) sa, pp);
|
|
|
|
xfrmnl_sa_put(sa);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* @name XFRM SA Get
|
|
* @{
|
|
*/
|
|
|
|
int xfrmnl_sa_build_get_request(struct nl_addr* daddr, unsigned int spi, unsigned int protocol, unsigned int mark_v, unsigned int mark_m, struct nl_msg **result)
|
|
{
|
|
struct nl_msg *msg;
|
|
struct xfrm_usersa_id sa_id;
|
|
struct xfrm_mark mark;
|
|
|
|
if (!daddr || !spi)
|
|
{
|
|
fprintf(stderr, "APPLICATION BUG: %s:%d:%s: A valid destination address, spi must be specified\n",
|
|
__FILE__, __LINE__, __func__);
|
|
assert(0);
|
|
return -NLE_MISSING_ATTR;
|
|
}
|
|
|
|
memset(&sa_id, 0, sizeof(sa_id));
|
|
memcpy (&sa_id.daddr, nl_addr_get_binary_addr (daddr), sizeof (uint8_t) * nl_addr_get_len (daddr));
|
|
sa_id.family = nl_addr_get_family (daddr);
|
|
sa_id.spi = htonl(spi);
|
|
sa_id.proto = protocol;
|
|
|
|
if (!(msg = nlmsg_alloc_simple(XFRM_MSG_GETSA, 0)))
|
|
return -NLE_NOMEM;
|
|
|
|
if (nlmsg_append(msg, &sa_id, sizeof(sa_id), NLMSG_ALIGNTO) < 0)
|
|
goto nla_put_failure;
|
|
|
|
if ((mark_m & mark_v) != 0)
|
|
{
|
|
memset(&mark, 0, sizeof(struct xfrm_mark));
|
|
mark.m = mark_m;
|
|
mark.v = mark_v;
|
|
|
|
NLA_PUT (msg, XFRMA_MARK, sizeof (struct xfrm_mark), &mark);
|
|
}
|
|
|
|
*result = msg;
|
|
return 0;
|
|
|
|
nla_put_failure:
|
|
nlmsg_free(msg);
|
|
return -NLE_MSGSIZE;
|
|
}
|
|
|
|
int xfrmnl_sa_get_kernel(struct nl_sock* sock, struct nl_addr* daddr, unsigned int spi, unsigned int protocol, unsigned int mark_v, unsigned int mark_m, struct xfrmnl_sa** result)
|
|
{
|
|
struct nl_msg *msg = NULL;
|
|
struct nl_object *obj;
|
|
int err;
|
|
|
|
if ((err = xfrmnl_sa_build_get_request(daddr, spi, protocol, mark_m, mark_v, &msg)) < 0)
|
|
return err;
|
|
|
|
err = nl_send_auto(sock, msg);
|
|
nlmsg_free(msg);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
if ((err = nl_pickup(sock, &xfrm_sa_msg_parser, &obj)) < 0)
|
|
return err;
|
|
|
|
/* We have used xfrm_sa_msg_parser(), object is definitely a xfrm sa */
|
|
*result = (struct xfrmnl_sa *) obj;
|
|
|
|
/* If an object has been returned, we also need to wait for the ACK */
|
|
if (err == 0 && obj)
|
|
nl_wait_for_ack(sock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** @} */
|
|
|
|
static int build_xfrm_sa_message(struct xfrmnl_sa *tmpl, int cmd, int flags, struct nl_msg **result)
|
|
{
|
|
struct nl_msg* msg;
|
|
struct xfrm_usersa_info sa_info;
|
|
uint32_t len;
|
|
struct nl_addr* addr;
|
|
|
|
if (!(tmpl->ce_mask & XFRM_SA_ATTR_DADDR) ||
|
|
!(tmpl->ce_mask & XFRM_SA_ATTR_SPI) ||
|
|
!(tmpl->ce_mask & XFRM_SA_ATTR_PROTO))
|
|
return -NLE_MISSING_ATTR;
|
|
|
|
memset ((void*)&sa_info, 0, sizeof (sa_info));
|
|
if (tmpl->ce_mask & XFRM_SA_ATTR_SEL)
|
|
{
|
|
addr = xfrmnl_sel_get_daddr (tmpl->sel);
|
|
memcpy ((void*)&sa_info.sel.daddr, (void*)nl_addr_get_binary_addr (addr), sizeof (uint8_t) * nl_addr_get_len (addr));
|
|
addr = xfrmnl_sel_get_saddr (tmpl->sel);
|
|
memcpy ((void*)&sa_info.sel.saddr, (void*)nl_addr_get_binary_addr (addr), sizeof (uint8_t) * nl_addr_get_len (addr));
|
|
sa_info.sel.dport = htons (xfrmnl_sel_get_dport (tmpl->sel));
|
|
sa_info.sel.dport_mask = htons (xfrmnl_sel_get_dportmask (tmpl->sel));
|
|
sa_info.sel.sport = htons (xfrmnl_sel_get_sport (tmpl->sel));
|
|
sa_info.sel.sport_mask = htons (xfrmnl_sel_get_sportmask (tmpl->sel));
|
|
sa_info.sel.family = xfrmnl_sel_get_family (tmpl->sel);
|
|
sa_info.sel.prefixlen_d = xfrmnl_sel_get_prefixlen_d (tmpl->sel);
|
|
sa_info.sel.prefixlen_s = xfrmnl_sel_get_prefixlen_s (tmpl->sel);
|
|
sa_info.sel.proto = xfrmnl_sel_get_proto (tmpl->sel);
|
|
sa_info.sel.ifindex = xfrmnl_sel_get_ifindex (tmpl->sel);
|
|
sa_info.sel.user = xfrmnl_sel_get_userid (tmpl->sel);
|
|
}
|
|
|
|
memcpy (&sa_info.id.daddr, nl_addr_get_binary_addr (tmpl->id.daddr), sizeof (uint8_t) * nl_addr_get_len (tmpl->id.daddr));
|
|
sa_info.id.spi = htonl(tmpl->id.spi);
|
|
sa_info.id.proto = tmpl->id.proto;
|
|
|
|
if (tmpl->ce_mask & XFRM_SA_ATTR_SADDR)
|
|
memcpy (&sa_info.saddr, nl_addr_get_binary_addr (tmpl->saddr), sizeof (uint8_t) * nl_addr_get_len (tmpl->saddr));
|
|
|
|
if (tmpl->ce_mask & XFRM_SA_ATTR_LTIME_CFG)
|
|
{
|
|
sa_info.lft.soft_byte_limit = xfrmnl_ltime_cfg_get_soft_bytelimit (tmpl->lft);
|
|
sa_info.lft.hard_byte_limit = xfrmnl_ltime_cfg_get_hard_bytelimit (tmpl->lft);
|
|
sa_info.lft.soft_packet_limit = xfrmnl_ltime_cfg_get_soft_packetlimit (tmpl->lft);
|
|
sa_info.lft.hard_packet_limit = xfrmnl_ltime_cfg_get_hard_packetlimit (tmpl->lft);
|
|
sa_info.lft.soft_add_expires_seconds = xfrmnl_ltime_cfg_get_soft_addexpires (tmpl->lft);
|
|
sa_info.lft.hard_add_expires_seconds = xfrmnl_ltime_cfg_get_hard_addexpires (tmpl->lft);
|
|
sa_info.lft.soft_use_expires_seconds = xfrmnl_ltime_cfg_get_soft_useexpires (tmpl->lft);
|
|
sa_info.lft.hard_use_expires_seconds = xfrmnl_ltime_cfg_get_hard_useexpires (tmpl->lft);
|
|
}
|
|
|
|
//Skip current lifetime: cur lifetime can be updated only via AE
|
|
//Skip stats: stats cant be updated
|
|
//Skip seq: seq cant be updated
|
|
|
|
if (tmpl->ce_mask & XFRM_SA_ATTR_REQID)
|
|
sa_info.reqid = tmpl->reqid;
|
|
|
|
if (tmpl->ce_mask & XFRM_SA_ATTR_FAMILY)
|
|
sa_info.family = tmpl->family;
|
|
|
|
if (tmpl->ce_mask & XFRM_SA_ATTR_MODE)
|
|
sa_info.mode = tmpl->mode;
|
|
|
|
if (tmpl->ce_mask & XFRM_SA_ATTR_REPLAY_WIN)
|
|
sa_info.replay_window = tmpl->replay_window;
|
|
|
|
if (tmpl->ce_mask & XFRM_SA_ATTR_FLAGS)
|
|
sa_info.flags = tmpl->flags;
|
|
|
|
msg = nlmsg_alloc_simple(cmd, flags);
|
|
if (!msg)
|
|
return -NLE_NOMEM;
|
|
|
|
if (nlmsg_append(msg, &sa_info, sizeof(sa_info), NLMSG_ALIGNTO) < 0)
|
|
goto nla_put_failure;
|
|
|
|
if (tmpl->ce_mask & XFRM_SA_ATTR_ALG_AEAD) {
|
|
len = sizeof (struct xfrm_algo_aead) + ((tmpl->aead->alg_key_len + 7) / 8);
|
|
NLA_PUT (msg, XFRMA_ALG_AEAD, len, tmpl->aead);
|
|
}
|
|
|
|
if (tmpl->ce_mask & XFRM_SA_ATTR_ALG_AUTH) {
|
|
/* kernel prefers XFRMA_ALG_AUTH_TRUNC over XFRMA_ALG_AUTH, so only
|
|
* one of the attributes needs to be present */
|
|
if (tmpl->auth->alg_trunc_len) {
|
|
len = sizeof (struct xfrm_algo_auth) + ((tmpl->auth->alg_key_len + 7) / 8);
|
|
NLA_PUT (msg, XFRMA_ALG_AUTH_TRUNC, len, tmpl->auth);
|
|
} else {
|
|
struct xfrm_algo *auth;
|
|
|
|
len = sizeof (struct xfrm_algo) + ((tmpl->auth->alg_key_len + 7) / 8);
|
|
auth = malloc(len);
|
|
if (!auth) {
|
|
nlmsg_free(msg);
|
|
return -NLE_NOMEM;
|
|
}
|
|
|
|
strncpy(auth->alg_name, tmpl->auth->alg_name, sizeof(auth->alg_name));
|
|
auth->alg_name[sizeof(auth->alg_name) - 1] = '\0';
|
|
auth->alg_key_len = tmpl->auth->alg_key_len;
|
|
memcpy(auth->alg_key, tmpl->auth->alg_key, (tmpl->auth->alg_key_len + 7) / 8);
|
|
if (nla_put(msg, XFRMA_ALG_AUTH, len, auth) < 0) {
|
|
free(auth);
|
|
goto nla_put_failure;
|
|
}
|
|
free(auth);
|
|
}
|
|
}
|
|
|
|
if (tmpl->ce_mask & XFRM_SA_ATTR_ALG_CRYPT) {
|
|
len = sizeof (struct xfrm_algo) + ((tmpl->crypt->alg_key_len + 7) / 8);
|
|
NLA_PUT (msg, XFRMA_ALG_CRYPT, len, tmpl->crypt);
|
|
}
|
|
|
|
if (tmpl->ce_mask & XFRM_SA_ATTR_ALG_COMP) {
|
|
len = sizeof (struct xfrm_algo) + ((tmpl->comp->alg_key_len + 7) / 8);
|
|
NLA_PUT (msg, XFRMA_ALG_COMP, len, tmpl->comp);
|
|
}
|
|
|
|
if (tmpl->ce_mask & XFRM_SA_ATTR_ENCAP) {
|
|
struct xfrm_encap_tmpl* encap_tmpl;
|
|
struct nlattr* encap_attr;
|
|
|
|
len = sizeof (struct xfrm_encap_tmpl);
|
|
encap_attr = nla_reserve(msg, XFRMA_ENCAP, len);
|
|
if (!encap_attr)
|
|
goto nla_put_failure;
|
|
encap_tmpl = nla_data (encap_attr);
|
|
encap_tmpl->encap_type = tmpl->encap->encap_type;
|
|
encap_tmpl->encap_sport = htons (tmpl->encap->encap_sport);
|
|
encap_tmpl->encap_dport = htons (tmpl->encap->encap_dport);
|
|
memcpy (&encap_tmpl->encap_oa, nl_addr_get_binary_addr (tmpl->encap->encap_oa), sizeof (uint8_t) * nl_addr_get_len (tmpl->encap->encap_oa));
|
|
}
|
|
|
|
if (tmpl->ce_mask & XFRM_SA_ATTR_TFCPAD) {
|
|
NLA_PUT_U32 (msg, XFRMA_TFCPAD, tmpl->tfcpad);
|
|
}
|
|
|
|
if (tmpl->ce_mask & XFRM_SA_ATTR_COADDR) {
|
|
NLA_PUT (msg, XFRMA_COADDR, sizeof (xfrm_address_t), tmpl->coaddr);
|
|
}
|
|
|
|
if (tmpl->ce_mask & XFRM_SA_ATTR_MARK) {
|
|
NLA_PUT (msg, XFRMA_MARK, sizeof (struct xfrm_mark), &tmpl->mark);
|
|
}
|
|
|
|
if (tmpl->ce_mask & XFRM_SA_ATTR_SECCTX) {
|
|
len = sizeof (struct xfrm_sec_ctx) + tmpl->sec_ctx->ctx_len;
|
|
NLA_PUT (msg, XFRMA_SEC_CTX, len, tmpl->sec_ctx);
|
|
}
|
|
|
|
if (tmpl->ce_mask & XFRM_SA_ATTR_REPLAY_MAXAGE) {
|
|
NLA_PUT_U32 (msg, XFRMA_ETIMER_THRESH, tmpl->replay_maxage);
|
|
}
|
|
|
|
if (tmpl->ce_mask & XFRM_SA_ATTR_REPLAY_MAXDIFF) {
|
|
NLA_PUT_U32 (msg, XFRMA_REPLAY_THRESH, tmpl->replay_maxdiff);
|
|
}
|
|
|
|
if (tmpl->ce_mask & XFRM_SA_ATTR_REPLAY_STATE) {
|
|
if (tmpl->replay_state_esn) {
|
|
len = sizeof (struct xfrm_replay_state_esn) + (sizeof (uint32_t) * tmpl->replay_state_esn->bmp_len);
|
|
NLA_PUT (msg, XFRMA_REPLAY_ESN_VAL, len, tmpl->replay_state_esn);
|
|
}
|
|
else {
|
|
NLA_PUT (msg, XFRMA_REPLAY_VAL, sizeof (struct xfrm_replay_state), &tmpl->replay_state);
|
|
}
|
|
}
|
|
|
|
*result = msg;
|
|
return 0;
|
|
|
|
nla_put_failure:
|
|
nlmsg_free(msg);
|
|
return -NLE_MSGSIZE;
|
|
}
|
|
|
|
/**
|
|
* @name XFRM SA Add
|
|
* @{
|
|
*/
|
|
|
|
int xfrmnl_sa_build_add_request(struct xfrmnl_sa* tmpl, int flags, struct nl_msg **result)
|
|
{
|
|
return build_xfrm_sa_message (tmpl, XFRM_MSG_NEWSA, flags, result);
|
|
}
|
|
|
|
int xfrmnl_sa_add(struct nl_sock* sk, struct xfrmnl_sa* tmpl, int flags)
|
|
{
|
|
int err;
|
|
struct nl_msg *msg;
|
|
|
|
if ((err = xfrmnl_sa_build_add_request(tmpl, flags, &msg)) < 0)
|
|
return err;
|
|
|
|
err = nl_send_auto_complete(sk, msg);
|
|
nlmsg_free(msg);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
return nl_wait_for_ack(sk);
|
|
}
|
|
|
|
/**
|
|
* @name XFRM SA Update
|
|
* @{
|
|
*/
|
|
|
|
int xfrmnl_sa_build_update_request(struct xfrmnl_sa* tmpl, int flags, struct nl_msg **result)
|
|
{
|
|
return build_xfrm_sa_message (tmpl, XFRM_MSG_UPDSA, flags, result);
|
|
}
|
|
|
|
int xfrmnl_sa_update(struct nl_sock* sk, struct xfrmnl_sa* tmpl, int flags)
|
|
{
|
|
int err;
|
|
struct nl_msg *msg;
|
|
|
|
if ((err = xfrmnl_sa_build_update_request(tmpl, flags, &msg)) < 0)
|
|
return err;
|
|
|
|
err = nl_send_auto_complete(sk, msg);
|
|
nlmsg_free(msg);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
return nl_wait_for_ack(sk);
|
|
}
|
|
|
|
/** @} */
|
|
|
|
static int build_xfrm_sa_delete_message(struct xfrmnl_sa *tmpl, int cmd, int flags, struct nl_msg **result)
|
|
{
|
|
struct nl_msg* msg;
|
|
struct xfrm_usersa_id sa_id;
|
|
|
|
if (!(tmpl->ce_mask & XFRM_SA_ATTR_DADDR) ||
|
|
!(tmpl->ce_mask & XFRM_SA_ATTR_SPI) ||
|
|
!(tmpl->ce_mask & XFRM_SA_ATTR_PROTO))
|
|
return -NLE_MISSING_ATTR;
|
|
|
|
memcpy (&sa_id.daddr, nl_addr_get_binary_addr (tmpl->id.daddr),
|
|
sizeof (uint8_t) * nl_addr_get_len (tmpl->id.daddr));
|
|
sa_id.family = nl_addr_get_family (tmpl->id.daddr);
|
|
sa_id.spi = htonl(tmpl->id.spi);
|
|
sa_id.proto = tmpl->id.proto;
|
|
|
|
msg = nlmsg_alloc_simple(cmd, flags);
|
|
if (!msg)
|
|
return -NLE_NOMEM;
|
|
|
|
if (nlmsg_append(msg, &sa_id, sizeof(sa_id), NLMSG_ALIGNTO) < 0)
|
|
goto nla_put_failure;
|
|
|
|
if (tmpl->ce_mask & XFRM_SA_ATTR_MARK) {
|
|
NLA_PUT (msg, XFRMA_MARK, sizeof (struct xfrm_mark), &tmpl->mark);
|
|
}
|
|
|
|
*result = msg;
|
|
return 0;
|
|
|
|
nla_put_failure:
|
|
nlmsg_free(msg);
|
|
return -NLE_MSGSIZE;
|
|
}
|
|
|
|
/**
|
|
* @name XFRM SA Delete
|
|
* @{
|
|
*/
|
|
|
|
int xfrmnl_sa_build_delete_request(struct xfrmnl_sa* tmpl, int flags, struct nl_msg **result)
|
|
{
|
|
return build_xfrm_sa_delete_message (tmpl, XFRM_MSG_DELSA, flags, result);
|
|
}
|
|
|
|
int xfrmnl_sa_delete(struct nl_sock* sk, struct xfrmnl_sa* tmpl, int flags)
|
|
{
|
|
int err;
|
|
struct nl_msg *msg;
|
|
|
|
if ((err = xfrmnl_sa_build_delete_request(tmpl, flags, &msg)) < 0)
|
|
return err;
|
|
|
|
err = nl_send_auto_complete(sk, msg);
|
|
nlmsg_free(msg);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
return nl_wait_for_ack(sk);
|
|
}
|
|
|
|
/** @} */
|
|
|
|
|
|
/**
|
|
* @name Attributes
|
|
* @{
|
|
*/
|
|
|
|
struct xfrmnl_sel* xfrmnl_sa_get_sel (struct xfrmnl_sa* sa)
|
|
{
|
|
if (sa->ce_mask & XFRM_SA_ATTR_SEL)
|
|
return sa->sel;
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
int xfrmnl_sa_set_sel (struct xfrmnl_sa* sa, struct xfrmnl_sel* sel)
|
|
{
|
|
/* Release any previously held selector object from the SA */
|
|
if (sa->sel)
|
|
xfrmnl_sel_put (sa->sel);
|
|
|
|
/* Increment ref count on new selector and save it in the SA */
|
|
xfrmnl_sel_get (sel);
|
|
sa->sel = sel;
|
|
sa->ce_mask |= XFRM_SA_ATTR_SEL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int __assign_addr(struct xfrmnl_sa* sa, struct nl_addr **pos,
|
|
struct nl_addr *new, int flag, int nocheck)
|
|
{
|
|
if (!nocheck)
|
|
{
|
|
if (sa->ce_mask & XFRM_SA_ATTR_FAMILY)
|
|
{
|
|
if (nl_addr_get_family (new) != sa->family)
|
|
return -NLE_AF_MISMATCH;
|
|
}
|
|
}
|
|
|
|
if (*pos)
|
|
nl_addr_put(*pos);
|
|
|
|
nl_addr_get(new);
|
|
*pos = new;
|
|
|
|
sa->ce_mask |= flag;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
struct nl_addr* xfrmnl_sa_get_daddr (struct xfrmnl_sa* sa)
|
|
{
|
|
if (sa->ce_mask & XFRM_SA_ATTR_DADDR)
|
|
return sa->id.daddr;
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
int xfrmnl_sa_set_daddr (struct xfrmnl_sa* sa, struct nl_addr* addr)
|
|
{
|
|
return __assign_addr(sa, &sa->id.daddr, addr, XFRM_SA_ATTR_DADDR, 0);
|
|
}
|
|
|
|
int xfrmnl_sa_get_spi (struct xfrmnl_sa* sa)
|
|
{
|
|
if (sa->ce_mask & XFRM_SA_ATTR_SPI)
|
|
return sa->id.spi;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
int xfrmnl_sa_set_spi (struct xfrmnl_sa* sa, unsigned int spi)
|
|
{
|
|
sa->id.spi = spi;
|
|
sa->ce_mask |= XFRM_SA_ATTR_SPI;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xfrmnl_sa_get_proto (struct xfrmnl_sa* sa)
|
|
{
|
|
if (sa->ce_mask & XFRM_SA_ATTR_PROTO)
|
|
return sa->id.proto;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
int xfrmnl_sa_set_proto (struct xfrmnl_sa* sa, unsigned int protocol)
|
|
{
|
|
sa->id.proto = protocol;
|
|
sa->ce_mask |= XFRM_SA_ATTR_PROTO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct nl_addr* xfrmnl_sa_get_saddr (struct xfrmnl_sa* sa)
|
|
{
|
|
if (sa->ce_mask & XFRM_SA_ATTR_SADDR)
|
|
return sa->saddr;
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
int xfrmnl_sa_set_saddr (struct xfrmnl_sa* sa, struct nl_addr* addr)
|
|
{
|
|
return __assign_addr(sa, &sa->saddr, addr, XFRM_SA_ATTR_SADDR, 1);
|
|
}
|
|
|
|
struct xfrmnl_ltime_cfg* xfrmnl_sa_get_lifetime_cfg (struct xfrmnl_sa* sa)
|
|
{
|
|
if (sa->ce_mask & XFRM_SA_ATTR_LTIME_CFG)
|
|
return sa->lft;
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
int xfrmnl_sa_set_lifetime_cfg (struct xfrmnl_sa* sa, struct xfrmnl_ltime_cfg* ltime)
|
|
{
|
|
/* Release any previously held lifetime cfg object from the SA */
|
|
if (sa->lft)
|
|
xfrmnl_ltime_cfg_put (sa->lft);
|
|
|
|
/* Increment ref count on new lifetime object and save it in the SA */
|
|
xfrmnl_ltime_cfg_get (ltime);
|
|
sa->lft = ltime;
|
|
sa->ce_mask |= XFRM_SA_ATTR_LTIME_CFG;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xfrmnl_sa_get_curlifetime (struct xfrmnl_sa* sa, unsigned long long int* curr_bytes,
|
|
unsigned long long int* curr_packets, unsigned long long int* curr_add_time, unsigned long long int* curr_use_time)
|
|
{
|
|
if (sa == NULL || curr_bytes == NULL || curr_packets == NULL || curr_add_time == NULL || curr_use_time == NULL)
|
|
return -1;
|
|
|
|
if (sa->ce_mask & XFRM_SA_ATTR_LTIME_CUR)
|
|
{
|
|
*curr_bytes = sa->curlft.bytes;
|
|
*curr_packets = sa->curlft.packets;
|
|
*curr_add_time = sa->curlft.add_time;
|
|
*curr_use_time = sa->curlft.use_time;
|
|
}
|
|
else
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xfrmnl_sa_get_stats (struct xfrmnl_sa* sa, unsigned long long int* replay_window,
|
|
unsigned long long int* replay, unsigned long long int* integrity_failed)
|
|
{
|
|
if (sa == NULL || replay_window == NULL || replay == NULL || integrity_failed == NULL)
|
|
return -1;
|
|
|
|
if (sa->ce_mask & XFRM_SA_ATTR_STATS)
|
|
{
|
|
*replay_window = sa->stats.replay_window;
|
|
*replay = sa->stats.replay;
|
|
*integrity_failed = sa->stats.integrity_failed;
|
|
}
|
|
else
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xfrmnl_sa_get_seq (struct xfrmnl_sa* sa)
|
|
{
|
|
if (sa->ce_mask & XFRM_SA_ATTR_SEQ)
|
|
return sa->seq;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
int xfrmnl_sa_get_reqid (struct xfrmnl_sa* sa)
|
|
{
|
|
if (sa->ce_mask & XFRM_SA_ATTR_REQID)
|
|
return sa->reqid;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
int xfrmnl_sa_set_reqid (struct xfrmnl_sa* sa, unsigned int reqid)
|
|
{
|
|
sa->reqid = reqid;
|
|
sa->ce_mask |= XFRM_SA_ATTR_REQID;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xfrmnl_sa_get_family (struct xfrmnl_sa* sa)
|
|
{
|
|
if (sa->ce_mask & XFRM_SA_ATTR_FAMILY)
|
|
return sa->family;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
int xfrmnl_sa_set_family (struct xfrmnl_sa* sa, unsigned int family)
|
|
{
|
|
sa->family = family;
|
|
sa->ce_mask |= XFRM_SA_ATTR_FAMILY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xfrmnl_sa_get_mode (struct xfrmnl_sa* sa)
|
|
{
|
|
if (sa->ce_mask & XFRM_SA_ATTR_MODE)
|
|
return sa->mode;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
int xfrmnl_sa_set_mode (struct xfrmnl_sa* sa, unsigned int mode)
|
|
{
|
|
sa->mode = mode;
|
|
sa->ce_mask |= XFRM_SA_ATTR_MODE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xfrmnl_sa_get_replay_window (struct xfrmnl_sa* sa)
|
|
{
|
|
if (sa->ce_mask & XFRM_SA_ATTR_REPLAY_WIN)
|
|
return sa->replay_window;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
int xfrmnl_sa_set_replay_window (struct xfrmnl_sa* sa, unsigned int replay_window)
|
|
{
|
|
sa->replay_window = replay_window;
|
|
sa->ce_mask |= XFRM_SA_ATTR_REPLAY_WIN;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xfrmnl_sa_get_flags (struct xfrmnl_sa* sa)
|
|
{
|
|
if (sa->ce_mask & XFRM_SA_ATTR_FLAGS)
|
|
return sa->flags;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
int xfrmnl_sa_set_flags (struct xfrmnl_sa* sa, unsigned int flags)
|
|
{
|
|
sa->flags = flags;
|
|
sa->ce_mask |= XFRM_SA_ATTR_FLAGS;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Get the aead-params
|
|
* @arg sa the xfrmnl_sa object
|
|
* @arg alg_name an optional output buffer for the algorithm name. Must be at least 64 bytes.
|
|
* @arg key_len an optional output value for the key length in bits.
|
|
* @arg icv_len an optional output value for the alt-icv-len.
|
|
* @arg key an optional buffer large enough for the key. It must contain at least
|
|
* ((@key_len + 7) / 8) bytes.
|
|
*
|
|
* Warning: you must ensure that @key is large enough. If you don't know the key_len before-hand,
|
|
* call xfrmnl_sa_get_aead_params() without @key argument to query only the required buffer size.
|
|
* This modified API is available in all versions of libnl3 that support the capability
|
|
* @def NL_CAPABILITY_XFRM_SA_KEY_SIZE (@see nl_has_capability for further information).
|
|
*
|
|
* @return 0 on success or a negative error code.
|
|
*/
|
|
int xfrmnl_sa_get_aead_params (struct xfrmnl_sa* sa, char* alg_name, unsigned int* key_len, unsigned int* icv_len, char* key)
|
|
{
|
|
if (sa->ce_mask & XFRM_SA_ATTR_ALG_AEAD)
|
|
{
|
|
if (alg_name)
|
|
strcpy (alg_name, sa->aead->alg_name);
|
|
if (key_len)
|
|
*key_len = sa->aead->alg_key_len;
|
|
if (icv_len)
|
|
*icv_len = sa->aead->alg_icv_len;
|
|
if (key)
|
|
memcpy (key, sa->aead->alg_key, ((sa->aead->alg_key_len + 7)/8));
|
|
}
|
|
else
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xfrmnl_sa_set_aead_params (struct xfrmnl_sa* sa, const char* alg_name, unsigned int key_len, unsigned int icv_len, const char* key)
|
|
{
|
|
_nl_auto_free struct xfrmnl_algo_aead *b = NULL;
|
|
size_t keysize = sizeof (uint8_t) * ((key_len + 7)/8);
|
|
uint32_t newlen = sizeof (struct xfrmnl_algo_aead) + keysize;
|
|
|
|
/* Free up the old key and allocate memory to hold new key */
|
|
if (strlen (alg_name) >= sizeof (sa->aead->alg_name))
|
|
return -1;
|
|
if (!(b = calloc (1, newlen)))
|
|
return -1;
|
|
|
|
strcpy (b->alg_name, alg_name);
|
|
b->alg_key_len = key_len;
|
|
b->alg_icv_len = icv_len;
|
|
memcpy (b->alg_key, key, keysize);
|
|
|
|
free (sa->aead);
|
|
sa->aead = _nl_steal_pointer (&b);
|
|
sa->ce_mask |= XFRM_SA_ATTR_ALG_AEAD;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Get the auth-params
|
|
* @arg sa the xfrmnl_sa object
|
|
* @arg alg_name an optional output buffer for the algorithm name. Must be at least 64 bytes.
|
|
* @arg key_len an optional output value for the key length in bits.
|
|
* @arg trunc_len an optional output value for the alg-trunc-len.
|
|
* @arg key an optional buffer large enough for the key. It must contain at least
|
|
* ((@key_len + 7) / 8) bytes.
|
|
*
|
|
* Warning: you must ensure that @key is large enough. If you don't know the key_len before-hand,
|
|
* call xfrmnl_sa_get_auth_params() without @key argument to query only the required buffer size.
|
|
* This modified API is available in all versions of libnl3 that support the capability
|
|
* @def NL_CAPABILITY_XFRM_SA_KEY_SIZE (@see nl_has_capability for further information).
|
|
*
|
|
* @return 0 on success or a negative error code.
|
|
*/
|
|
int xfrmnl_sa_get_auth_params (struct xfrmnl_sa* sa, char* alg_name, unsigned int* key_len, unsigned int* trunc_len, char* key)
|
|
{
|
|
if (sa->ce_mask & XFRM_SA_ATTR_ALG_AUTH)
|
|
{
|
|
if (alg_name)
|
|
strcpy (alg_name, sa->auth->alg_name);
|
|
if (key_len)
|
|
*key_len = sa->auth->alg_key_len;
|
|
if (trunc_len)
|
|
*trunc_len = sa->auth->alg_trunc_len;
|
|
if (key)
|
|
memcpy (key, sa->auth->alg_key, (sa->auth->alg_key_len + 7)/8);
|
|
}
|
|
else
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xfrmnl_sa_set_auth_params (struct xfrmnl_sa* sa, const char* alg_name, unsigned int key_len, unsigned int trunc_len, const char* key)
|
|
{
|
|
_nl_auto_free struct xfrmnl_algo_auth *b = NULL;
|
|
size_t keysize = sizeof (uint8_t) * ((key_len + 7)/8);
|
|
uint32_t newlen = sizeof (struct xfrmnl_algo_auth) + keysize;
|
|
|
|
if (strlen (alg_name) >= sizeof (sa->auth->alg_name))
|
|
return -1;
|
|
if (!(b = calloc (1, newlen)))
|
|
return -1;
|
|
|
|
strcpy (b->alg_name, alg_name);
|
|
b->alg_key_len = key_len;
|
|
b->alg_trunc_len = trunc_len;
|
|
memcpy (b->alg_key, key, keysize);
|
|
|
|
free (sa->auth);
|
|
sa->auth = _nl_steal_pointer (&b);
|
|
sa->ce_mask |= XFRM_SA_ATTR_ALG_AUTH;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Get the crypto-params
|
|
* @arg sa the xfrmnl_sa object
|
|
* @arg alg_name an optional output buffer for the algorithm name. Must be at least 64 bytes.
|
|
* @arg key_len an optional output value for the key length in bits.
|
|
* @arg key an optional buffer large enough for the key. It must contain at least
|
|
* ((@key_len + 7) / 8) bytes.
|
|
*
|
|
* Warning: you must ensure that @key is large enough. If you don't know the key_len before-hand,
|
|
* call xfrmnl_sa_get_crypto_params() without @key argument to query only the required buffer size.
|
|
* This modified API is available in all versions of libnl3 that support the capability
|
|
* @def NL_CAPABILITY_XFRM_SA_KEY_SIZE (@see nl_has_capability for further information).
|
|
*
|
|
* @return 0 on success or a negative error code.
|
|
*/
|
|
int xfrmnl_sa_get_crypto_params (struct xfrmnl_sa* sa, char* alg_name, unsigned int* key_len, char* key)
|
|
{
|
|
if (sa->ce_mask & XFRM_SA_ATTR_ALG_CRYPT)
|
|
{
|
|
if (alg_name)
|
|
strcpy (alg_name, sa->crypt->alg_name);
|
|
if (key_len)
|
|
*key_len = sa->crypt->alg_key_len;
|
|
if (key)
|
|
memcpy (key, sa->crypt->alg_key, ((sa->crypt->alg_key_len + 7)/8));
|
|
}
|
|
else
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xfrmnl_sa_set_crypto_params (struct xfrmnl_sa* sa, const char* alg_name, unsigned int key_len, const char* key)
|
|
{
|
|
_nl_auto_free struct xfrmnl_algo *b = NULL;
|
|
size_t keysize = sizeof (uint8_t) * ((key_len + 7)/8);
|
|
uint32_t newlen = sizeof (struct xfrmnl_algo) + keysize;
|
|
|
|
if (strlen (alg_name) >= sizeof (sa->crypt->alg_name))
|
|
return -1;
|
|
if (!(b = calloc (1, newlen)))
|
|
return -1;
|
|
|
|
strcpy (b->alg_name, alg_name);
|
|
b->alg_key_len = key_len;
|
|
memcpy (b->alg_key, key, keysize);
|
|
|
|
free(sa->crypt);
|
|
sa->crypt = _nl_steal_pointer(&b);
|
|
sa->ce_mask |= XFRM_SA_ATTR_ALG_CRYPT;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Get the comp-params
|
|
* @arg sa the xfrmnl_sa object
|
|
* @arg alg_name an optional output buffer for the algorithm name. Must be at least 64 bytes.
|
|
* @arg key_len an optional output value for the key length in bits.
|
|
* @arg key an optional buffer large enough for the key. It must contain at least
|
|
* ((@key_len + 7) / 8) bytes.
|
|
*
|
|
* Warning: you must ensure that @key is large enough. If you don't know the key_len before-hand,
|
|
* call xfrmnl_sa_get_comp_params() without @key argument to query only the required buffer size.
|
|
* This modified API is available in all versions of libnl3 that support the capability
|
|
* @def NL_CAPABILITY_XFRM_SA_KEY_SIZE (@see nl_has_capability for further information).
|
|
*
|
|
* @return 0 on success or a negative error code.
|
|
*/
|
|
int xfrmnl_sa_get_comp_params (struct xfrmnl_sa* sa, char* alg_name, unsigned int* key_len, char* key)
|
|
{
|
|
if (sa->ce_mask & XFRM_SA_ATTR_ALG_COMP)
|
|
{
|
|
if (alg_name)
|
|
strcpy (alg_name, sa->comp->alg_name);
|
|
if (key_len)
|
|
*key_len = sa->comp->alg_key_len;
|
|
if (key)
|
|
memcpy (key, sa->comp->alg_key, ((sa->comp->alg_key_len + 7)/8));
|
|
}
|
|
else
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xfrmnl_sa_set_comp_params (struct xfrmnl_sa* sa, const char* alg_name, unsigned int key_len, const char* key)
|
|
{
|
|
_nl_auto_free struct xfrmnl_algo *b = NULL;
|
|
size_t keysize = sizeof (uint8_t) * ((key_len + 7)/8);
|
|
uint32_t newlen = sizeof (struct xfrmnl_algo) + keysize;
|
|
|
|
if (strlen (alg_name) >= sizeof (sa->comp->alg_name))
|
|
return -1;
|
|
if (!(b = calloc (1, newlen)))
|
|
return -1;
|
|
|
|
strcpy (b->alg_name, alg_name);
|
|
b->alg_key_len = key_len;
|
|
memcpy (b->alg_key, key, keysize);
|
|
|
|
free(sa->comp);
|
|
sa->comp = _nl_steal_pointer(&b);
|
|
sa->ce_mask |= XFRM_SA_ATTR_ALG_COMP;
|
|
return 0;
|
|
}
|
|
|
|
int xfrmnl_sa_get_encap_tmpl (struct xfrmnl_sa* sa, unsigned int* encap_type, unsigned int* encap_sport, unsigned int* encap_dport, struct nl_addr** encap_oa)
|
|
{
|
|
if (sa->ce_mask & XFRM_SA_ATTR_ENCAP)
|
|
{
|
|
*encap_type = sa->encap->encap_type;
|
|
*encap_sport = sa->encap->encap_sport;
|
|
*encap_dport = sa->encap->encap_dport;
|
|
*encap_oa = nl_addr_clone (sa->encap->encap_oa);
|
|
}
|
|
else
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xfrmnl_sa_set_encap_tmpl (struct xfrmnl_sa* sa, unsigned int encap_type, unsigned int encap_sport, unsigned int encap_dport, struct nl_addr* encap_oa)
|
|
{
|
|
if (sa->encap) {
|
|
/* Free up the old encap OA */
|
|
if (sa->encap->encap_oa)
|
|
nl_addr_put(sa->encap->encap_oa);
|
|
memset(sa->encap, 0, sizeof (*sa->encap));
|
|
} else if ((sa->encap = calloc(1, sizeof(*sa->encap))) == NULL)
|
|
return -1;
|
|
|
|
/* Save the new info */
|
|
sa->encap->encap_type = encap_type;
|
|
sa->encap->encap_sport = encap_sport;
|
|
sa->encap->encap_dport = encap_dport;
|
|
nl_addr_get (encap_oa);
|
|
sa->encap->encap_oa = encap_oa;
|
|
|
|
sa->ce_mask |= XFRM_SA_ATTR_ENCAP;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xfrmnl_sa_get_tfcpad (struct xfrmnl_sa* sa)
|
|
{
|
|
if (sa->ce_mask & XFRM_SA_ATTR_TFCPAD)
|
|
return sa->tfcpad;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
int xfrmnl_sa_set_tfcpad (struct xfrmnl_sa* sa, unsigned int tfcpad)
|
|
{
|
|
sa->tfcpad = tfcpad;
|
|
sa->ce_mask |= XFRM_SA_ATTR_TFCPAD;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct nl_addr* xfrmnl_sa_get_coaddr (struct xfrmnl_sa* sa)
|
|
{
|
|
if (sa->ce_mask & XFRM_SA_ATTR_COADDR)
|
|
return sa->coaddr;
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
int xfrmnl_sa_set_coaddr (struct xfrmnl_sa* sa, struct nl_addr* coaddr)
|
|
{
|
|
/* Free up the old coaddr */
|
|
if (sa->coaddr)
|
|
nl_addr_put (sa->coaddr);
|
|
|
|
/* Save the new info */
|
|
nl_addr_get (coaddr);
|
|
sa->coaddr = coaddr;
|
|
|
|
sa->ce_mask |= XFRM_SA_ATTR_COADDR;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xfrmnl_sa_get_mark (struct xfrmnl_sa* sa, unsigned int* mark_mask, unsigned int* mark_value)
|
|
{
|
|
if (mark_mask == NULL || mark_value == NULL)
|
|
return -1;
|
|
|
|
if (sa->ce_mask & XFRM_SA_ATTR_MARK)
|
|
{
|
|
*mark_mask = sa->mark.m;
|
|
*mark_value = sa->mark.v;
|
|
|
|
return 0;
|
|
}
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
int xfrmnl_sa_set_mark (struct xfrmnl_sa* sa, unsigned int value, unsigned int mask)
|
|
{
|
|
sa->mark.v = value;
|
|
sa->mark.m = mask;
|
|
sa->ce_mask |= XFRM_SA_ATTR_MARK;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Get the security context.
|
|
*
|
|
* @arg sa The xfrmnl_sa object.
|
|
* @arg doi An optional output value for the security context domain of interpretation.
|
|
* @arg alg An optional output value for the security context algorithm.
|
|
* @arg len An optional output value for the security context length, including the
|
|
* terminating null byte ('\0').
|
|
* @arg sid Unused parameter.
|
|
* @arg ctx_str An optional buffer large enough for the security context string. It must
|
|
* contain at least @len bytes.
|
|
*
|
|
* Warning: you must ensure that @ctx_str is large enough. If you don't know the length before-hand,
|
|
* call xfrmnl_sa_get_sec_ctx() without @ctx_str argument to query only the required buffer size.
|
|
* This modified API is available in all versions of libnl3 that support the capability
|
|
* @def NL_CAPABILITY_XFRM_SEC_CTX_LEN (@see nl_has_capability for further information).
|
|
*
|
|
* @return 0 on success or a negative error code.
|
|
*/
|
|
int xfrmnl_sa_get_sec_ctx (struct xfrmnl_sa* sa, unsigned int* doi, unsigned int* alg,
|
|
unsigned int* len, unsigned int* sid, char* ctx_str)
|
|
{
|
|
if (sa->ce_mask & XFRM_SA_ATTR_SECCTX)
|
|
{
|
|
if (doi)
|
|
*doi = sa->sec_ctx->ctx_doi;
|
|
if (alg)
|
|
*alg = sa->sec_ctx->ctx_alg;
|
|
if (len)
|
|
*len = sa->sec_ctx->ctx_len;
|
|
if (ctx_str)
|
|
memcpy (ctx_str, sa->sec_ctx->ctx, sa->sec_ctx->ctx_len);
|
|
}
|
|
else
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Set the security context.
|
|
*
|
|
* @arg sa The xfrmnl_sa object.
|
|
* @arg doi Parameter for the security context domain of interpretation.
|
|
* @arg alg Parameter for the security context algorithm.
|
|
* @arg len Parameter for the length of the security context string containing
|
|
* the terminating null byte ('\0').
|
|
* @arg sid Unused parameter.
|
|
* @arg ctx_str Buffer containing the security context string.
|
|
*
|
|
* @return 0 on success or a negative error code.
|
|
*/
|
|
int xfrmnl_sa_set_sec_ctx (struct xfrmnl_sa* sa, unsigned int doi, unsigned int alg, unsigned int len,
|
|
unsigned int sid, const char* ctx_str)
|
|
{
|
|
_nl_auto_free struct xfrmnl_user_sec_ctx *b = NULL;
|
|
|
|
if (!(b = calloc(1, sizeof (struct xfrmnl_user_sec_ctx) + 1 + len)))
|
|
return -1;
|
|
|
|
b->len = sizeof(struct xfrmnl_user_sec_ctx) + len;
|
|
b->exttype = XFRMA_SEC_CTX;
|
|
b->ctx_alg = alg;
|
|
b->ctx_doi = doi;
|
|
b->ctx_len = len;
|
|
memcpy (b->ctx, ctx_str, len);
|
|
b->ctx[len] = '\0';
|
|
|
|
free(sa->sec_ctx);
|
|
sa->sec_ctx = _nl_steal_pointer(&b);
|
|
sa->ce_mask |= XFRM_SA_ATTR_SECCTX;
|
|
return 0;
|
|
}
|
|
|
|
|
|
int xfrmnl_sa_get_replay_maxage (struct xfrmnl_sa* sa)
|
|
{
|
|
if (sa->ce_mask & XFRM_SA_ATTR_REPLAY_MAXAGE)
|
|
return sa->replay_maxage;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
int xfrmnl_sa_set_replay_maxage (struct xfrmnl_sa* sa, unsigned int replay_maxage)
|
|
{
|
|
sa->replay_maxage = replay_maxage;
|
|
sa->ce_mask |= XFRM_SA_ATTR_REPLAY_MAXAGE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xfrmnl_sa_get_replay_maxdiff (struct xfrmnl_sa* sa)
|
|
{
|
|
if (sa->ce_mask & XFRM_SA_ATTR_REPLAY_MAXDIFF)
|
|
return sa->replay_maxdiff;
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
int xfrmnl_sa_set_replay_maxdiff (struct xfrmnl_sa* sa, unsigned int replay_maxdiff)
|
|
{
|
|
sa->replay_maxdiff = replay_maxdiff;
|
|
sa->ce_mask |= XFRM_SA_ATTR_REPLAY_MAXDIFF;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xfrmnl_sa_get_replay_state (struct xfrmnl_sa* sa, unsigned int* oseq, unsigned int* seq, unsigned int* bmp)
|
|
{
|
|
if (sa->ce_mask & XFRM_SA_ATTR_REPLAY_STATE)
|
|
{
|
|
if (sa->replay_state_esn == NULL)
|
|
{
|
|
*oseq = sa->replay_state.oseq;
|
|
*seq = sa->replay_state.seq;
|
|
*bmp = sa->replay_state.bitmap;
|
|
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
return -1;
|
|
}
|
|
}
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
int xfrmnl_sa_set_replay_state (struct xfrmnl_sa* sa, unsigned int oseq, unsigned int seq, unsigned int bitmap)
|
|
{
|
|
sa->replay_state.oseq = oseq;
|
|
sa->replay_state.seq = seq;
|
|
sa->replay_state.bitmap = bitmap;
|
|
sa->ce_mask |= XFRM_SA_ATTR_REPLAY_STATE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xfrmnl_sa_get_replay_state_esn (struct xfrmnl_sa* sa, unsigned int* oseq, unsigned int* seq, unsigned int* oseq_hi,
|
|
unsigned int* seq_hi, unsigned int* replay_window, unsigned int* bmp_len, unsigned int* bmp)
|
|
{
|
|
if (sa->ce_mask & XFRM_SA_ATTR_REPLAY_STATE)
|
|
{
|
|
if (sa->replay_state_esn)
|
|
{
|
|
*oseq = sa->replay_state_esn->oseq;
|
|
*seq = sa->replay_state_esn->seq;
|
|
*oseq_hi= sa->replay_state_esn->oseq_hi;
|
|
*seq_hi = sa->replay_state_esn->seq_hi;
|
|
*replay_window = sa->replay_state_esn->replay_window;
|
|
*bmp_len = sa->replay_state_esn->bmp_len; // In number of 32 bit words
|
|
memcpy (bmp, sa->replay_state_esn->bmp, sa->replay_state_esn->bmp_len * sizeof (uint32_t));
|
|
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
return -1;
|
|
}
|
|
}
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
int xfrmnl_sa_set_replay_state_esn (struct xfrmnl_sa* sa, unsigned int oseq, unsigned int seq,
|
|
unsigned int oseq_hi, unsigned int seq_hi, unsigned int replay_window,
|
|
unsigned int bmp_len, unsigned int* bmp)
|
|
{
|
|
_nl_auto_free struct xfrmnl_replay_state_esn *b = NULL;
|
|
|
|
if (!(b = calloc (1, sizeof (struct xfrmnl_replay_state_esn) + (sizeof (uint32_t) * bmp_len))))
|
|
return -1;
|
|
|
|
b->oseq = oseq;
|
|
b->seq = seq;
|
|
b->oseq_hi = oseq_hi;
|
|
b->seq_hi = seq_hi;
|
|
b->replay_window = replay_window;
|
|
b->bmp_len = bmp_len; // In number of 32 bit words
|
|
memcpy (b->bmp, bmp, bmp_len * sizeof (uint32_t));
|
|
|
|
free(sa->replay_state_esn);
|
|
sa->replay_state_esn = _nl_steal_pointer(&b);
|
|
sa->ce_mask |= XFRM_SA_ATTR_REPLAY_STATE;
|
|
return 0;
|
|
}
|
|
|
|
|
|
int xfrmnl_sa_is_hardexpiry_reached (struct xfrmnl_sa* sa)
|
|
{
|
|
if (sa->ce_mask & XFRM_SA_ATTR_EXPIRE)
|
|
return (sa->hard > 0 ? 1: 0);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
int xfrmnl_sa_is_expiry_reached (struct xfrmnl_sa* sa)
|
|
{
|
|
if (sa->ce_mask & XFRM_SA_ATTR_EXPIRE)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/** @} */
|
|
|
|
static struct nl_object_ops xfrm_sa_obj_ops = {
|
|
.oo_name = "xfrm/sa",
|
|
.oo_size = sizeof(struct xfrmnl_sa),
|
|
.oo_constructor = xfrm_sa_alloc_data,
|
|
.oo_free_data = xfrm_sa_free_data,
|
|
.oo_clone = xfrm_sa_clone,
|
|
.oo_dump = {
|
|
[NL_DUMP_LINE] = xfrm_sa_dump_line,
|
|
[NL_DUMP_DETAILS] = xfrm_sa_dump_details,
|
|
[NL_DUMP_STATS] = xfrm_sa_dump_stats,
|
|
},
|
|
.oo_compare = xfrm_sa_compare,
|
|
.oo_attrs2str = xfrm_sa_attrs2str,
|
|
.oo_id_attrs = (XFRM_SA_ATTR_DADDR | XFRM_SA_ATTR_SPI | XFRM_SA_ATTR_PROTO),
|
|
};
|
|
|
|
static struct nl_af_group xfrm_sa_groups[] = {
|
|
{ AF_UNSPEC, XFRMNLGRP_SA },
|
|
{ AF_UNSPEC, XFRMNLGRP_EXPIRE },
|
|
{ END_OF_GROUP_LIST },
|
|
};
|
|
|
|
static struct nl_cache_ops xfrmnl_sa_ops = {
|
|
.co_name = "xfrm/sa",
|
|
.co_hdrsize = sizeof(struct xfrm_usersa_info),
|
|
.co_msgtypes = {
|
|
{ XFRM_MSG_NEWSA, NL_ACT_NEW, "new" },
|
|
{ XFRM_MSG_DELSA, NL_ACT_DEL, "del" },
|
|
{ XFRM_MSG_GETSA, NL_ACT_GET, "get" },
|
|
{ XFRM_MSG_EXPIRE, NL_ACT_UNSPEC, "expire"},
|
|
{ XFRM_MSG_UPDSA, NL_ACT_NEW, "update"},
|
|
END_OF_MSGTYPES_LIST,
|
|
},
|
|
.co_protocol = NETLINK_XFRM,
|
|
.co_groups = xfrm_sa_groups,
|
|
.co_request_update = xfrm_sa_request_update,
|
|
.co_msg_parser = xfrm_sa_msg_parser,
|
|
.co_obj_ops = &xfrm_sa_obj_ops,
|
|
.co_include_event = &xfrm_sa_update_cache
|
|
};
|
|
|
|
/**
|
|
* @name XFRM SA Cache Managament
|
|
* @{
|
|
*/
|
|
|
|
static void __attribute__ ((constructor)) xfrm_sa_init(void)
|
|
{
|
|
nl_cache_mngt_register(&xfrmnl_sa_ops);
|
|
}
|
|
|
|
static void __attribute__ ((destructor)) xfrm_sa_exit(void)
|
|
{
|
|
nl_cache_mngt_unregister(&xfrmnl_sa_ops);
|
|
}
|
|
|
|
/** @} */
|