You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
129 lines
4.5 KiB
129 lines
4.5 KiB
/*
|
|
* Copyright (C) 2018 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "actions/tflite-sensitive-model.h"
|
|
|
|
#include <utility>
|
|
|
|
#include "actions/actions_model_generated.h"
|
|
#include "actions/types.h"
|
|
|
|
namespace libtextclassifier3 {
|
|
namespace {
|
|
const char kNotSensitive[] = "NOT_SENSITIVE";
|
|
} // namespace
|
|
|
|
std::unique_ptr<TFLiteSensitiveModel> TFLiteSensitiveModel::Create(
|
|
const TFLiteSensitiveClassifierConfig* model_config) {
|
|
auto result_model = std::unique_ptr<TFLiteSensitiveModel>(
|
|
new TFLiteSensitiveModel(model_config));
|
|
if (result_model->model_executor_ == nullptr) {
|
|
return nullptr;
|
|
}
|
|
return result_model;
|
|
}
|
|
|
|
std::pair<bool, float> TFLiteSensitiveModel::Eval(
|
|
const UnicodeText& text) const {
|
|
// Create a conversation with one message and classify it.
|
|
Conversation conversation;
|
|
conversation.messages.emplace_back();
|
|
conversation.messages.front().text = text.ToUTF8String();
|
|
|
|
return EvalConversation(conversation, 1);
|
|
}
|
|
|
|
std::pair<bool, float> TFLiteSensitiveModel::EvalConversation(
|
|
const Conversation& conversation, int num_messages) const {
|
|
if (model_executor_ == nullptr) {
|
|
return std::make_pair(false, 0.0f);
|
|
}
|
|
const auto interpreter = model_executor_->CreateInterpreter();
|
|
|
|
if (interpreter->AllocateTensors() != kTfLiteOk) {
|
|
// TODO(mgubin): report error that tensors can't be allocated.
|
|
return std::make_pair(false, 0.0f);
|
|
}
|
|
// The sensitive model is actually an ordinary TFLite model with Lingua API,
|
|
// prepare texts and user_ids similar way, it doesn't use timediffs.
|
|
std::vector<std::string> context;
|
|
std::vector<int> user_ids;
|
|
context.reserve(num_messages);
|
|
user_ids.reserve(num_messages);
|
|
|
|
// Gather last `num_messages` messages from the conversation.
|
|
for (int i = conversation.messages.size() - num_messages;
|
|
i < conversation.messages.size(); i++) {
|
|
const ConversationMessage& message = conversation.messages[i];
|
|
context.push_back(message.text);
|
|
user_ids.push_back(message.user_id);
|
|
}
|
|
|
|
// Allocate tensors.
|
|
//
|
|
|
|
if (model_config_->model_spec()->input_context() >= 0) {
|
|
if (model_config_->model_spec()->input_length_to_pad() > 0) {
|
|
context.resize(model_config_->model_spec()->input_length_to_pad());
|
|
}
|
|
model_executor_->SetInput<std::string>(
|
|
model_config_->model_spec()->input_context(), context,
|
|
interpreter.get());
|
|
}
|
|
if (model_config_->model_spec()->input_context_length() >= 0) {
|
|
model_executor_->SetInput<int>(
|
|
model_config_->model_spec()->input_context_length(), context.size(),
|
|
interpreter.get());
|
|
}
|
|
|
|
// Num suggestions is always locked to 3.
|
|
if (model_config_->model_spec()->input_num_suggestions() > 0) {
|
|
model_executor_->SetInput<int>(
|
|
model_config_->model_spec()->input_num_suggestions(), 3,
|
|
interpreter.get());
|
|
}
|
|
|
|
if (interpreter->Invoke() != kTfLiteOk) {
|
|
// TODO(mgubin): Report a error about invoke.
|
|
return std::make_pair(false, 0.0f);
|
|
}
|
|
|
|
// Check that the prediction is not-sensitive.
|
|
const std::vector<tflite::StringRef> replies =
|
|
model_executor_->Output<tflite::StringRef>(
|
|
model_config_->model_spec()->output_replies(), interpreter.get());
|
|
const TensorView<float> scores = model_executor_->OutputView<float>(
|
|
model_config_->model_spec()->output_replies_scores(), interpreter.get());
|
|
for (int i = 0; i < replies.size(); ++i) {
|
|
const auto reply = replies[i];
|
|
if (reply.len != sizeof(kNotSensitive) - 1 &&
|
|
0 != memcmp(reply.str, kNotSensitive, sizeof(kNotSensitive))) {
|
|
const auto score = scores.data()[i];
|
|
if (score >= model_config_->threshold()) {
|
|
return std::make_pair(true, score);
|
|
}
|
|
}
|
|
}
|
|
return std::make_pair(false, 1.0);
|
|
}
|
|
|
|
TFLiteSensitiveModel::TFLiteSensitiveModel(
|
|
const TFLiteSensitiveClassifierConfig* model_config)
|
|
: model_config_(model_config),
|
|
model_executor_(TfLiteModelExecutor::FromBuffer(
|
|
model_config->model_spec()->tflite_model())) {}
|
|
} // namespace libtextclassifier3
|