You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
100 lines
3.8 KiB
100 lines
3.8 KiB
/*
|
|
* Copyright (C) 2018 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef NLP_SAFT_COMPONENTS_COMMON_MOBILE_EMBEDDING_NETWORK_H_
|
|
#define NLP_SAFT_COMPONENTS_COMMON_MOBILE_EMBEDDING_NETWORK_H_
|
|
|
|
#include <vector>
|
|
|
|
#include "lang_id/common/embedding-network-params.h"
|
|
#include "lang_id/common/fel/feature-extractor.h"
|
|
|
|
namespace libtextclassifier3 {
|
|
namespace mobile {
|
|
|
|
// Classifier using a hand-coded feed-forward neural network.
|
|
//
|
|
// No gradient computation, just inference.
|
|
//
|
|
// Based on the more general nlp_saft::EmbeddingNetwork (without ::mobile).
|
|
//
|
|
// Classification works as follows:
|
|
//
|
|
// Discrete features -> Embeddings -> Concatenation -> Hidden+ -> Softmax
|
|
//
|
|
// In words: given some discrete features, this class extracts the embeddings
|
|
// for these features, concatenates them, passes them through one or more hidden
|
|
// layers (each layer uses Relu) and next through a softmax layer that computes
|
|
// an unnormalized score for each possible class. Note: there is always a
|
|
// softmax layer at the end.
|
|
class EmbeddingNetwork {
|
|
public:
|
|
// Constructs an embedding network using the parameters from model.
|
|
//
|
|
// Note: model should stay alive for at least the lifetime of this
|
|
// EmbeddingNetwork object.
|
|
explicit EmbeddingNetwork(const EmbeddingNetworkParams *model);
|
|
|
|
virtual ~EmbeddingNetwork() {}
|
|
|
|
// Runs forward computation to fill scores with unnormalized output unit
|
|
// scores. This is useful for making predictions.
|
|
void ComputeFinalScores(const std::vector<FeatureVector> &features,
|
|
std::vector<float> *scores) const;
|
|
|
|
// Same as above, but allows specification of extra extra neural network
|
|
// inputs that will be appended to the embedding vector build from features.
|
|
void ComputeFinalScores(const std::vector<FeatureVector> &features,
|
|
const std::vector<float> &extra_inputs,
|
|
std::vector<float> *scores) const;
|
|
|
|
private:
|
|
// Constructs the concatenated input embedding vector in place in output
|
|
// vector concat.
|
|
void ConcatEmbeddings(const std::vector<FeatureVector> &features,
|
|
std::vector<float> *concat) const;
|
|
|
|
// Pointer to the model object passed to the constructor. Not owned.
|
|
const EmbeddingNetworkParams *model_;
|
|
|
|
// Network parameters.
|
|
|
|
// One weight matrix for each embedding.
|
|
std::vector<EmbeddingNetworkParams::Matrix> embedding_matrices_;
|
|
|
|
// embedding_row_size_in_bytes_[i] is the size (in bytes) of a row from
|
|
// embedding_matrices_[i]. We precompute this in order to quickly find the
|
|
// beginning of the k-th row from an embedding matrix (which is stored in
|
|
// row-major order).
|
|
std::vector<int> embedding_row_size_in_bytes_;
|
|
|
|
// concat_offset_[i] is the input layer offset for i-th embedding space.
|
|
std::vector<int> concat_offset_;
|
|
|
|
// Size of the input ("concatenation") layer.
|
|
int concat_layer_size_ = 0;
|
|
|
|
// One weight matrix and one vector of bias weights for each layer of neurons.
|
|
// Last layer is the softmax layer, the previous ones are the hidden layers.
|
|
std::vector<EmbeddingNetworkParams::Matrix> layer_weights_;
|
|
std::vector<EmbeddingNetworkParams::Matrix> layer_bias_;
|
|
};
|
|
|
|
} // namespace mobile
|
|
} // namespace nlp_saft
|
|
|
|
#endif // NLP_SAFT_COMPONENTS_COMMON_MOBILE_EMBEDDING_NETWORK_H_
|