You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

516 lines
19 KiB

/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// This approach to arenas overcomes many of the limitations described
// in the "Specialized allocators" section of
// http://www.pdos.lcs.mit.edu/~dm/c++-new.html
//
// A somewhat similar approach to Gladiator, but for heap-detection, was
// suggested by Ron van der Wal and Scott Meyers at
// http://www.aristeia.com/BookErrata/M27Comments_frames.html
#include "utils/base/arena.h"
#include "utils/base/logging.h"
#include "utils/base/macros.h"
namespace libtextclassifier3 {
#ifndef __cpp_aligned_new
static void *aligned_malloc(size_t size, int minimum_alignment) {
void *ptr = nullptr;
// posix_memalign requires that the requested alignment be at least
// sizeof(void*). In this case, fall back on malloc which should return memory
// aligned to at least the size of a pointer.
const int required_alignment = sizeof(void*);
if (minimum_alignment < required_alignment)
return malloc(size);
if (posix_memalign(&ptr, static_cast<size_t>(minimum_alignment), size) != 0)
return nullptr;
else
return ptr;
}
#endif // !__cpp_aligned_new
// The value here doesn't matter until page_aligned_ is supported.
static const int kPageSize = 8192; // should be getpagesize()
// We used to only keep track of how much space has been allocated in
// debug mode. Now we track this for optimized builds, as well. If you
// want to play with the old scheme to see if this helps performance,
// change this TC3_ARENASET() macro to a NOP. However, NOTE: some
// applications of arenas depend on this space information (exported
// via bytes_allocated()).
#define TC3_ARENASET(x) (x)
namespace {
#ifdef __cpp_aligned_new
char* AllocateBytes(size_t size) {
return static_cast<char*>(::operator new(size));
}
// REQUIRES: alignment > __STDCPP_DEFAULT_NEW_ALIGNMENT__
//
// For alignments <=__STDCPP_DEFAULT_NEW_ALIGNMENT__, AllocateBytes() will
// provide the correct alignment.
char* AllocateAlignedBytes(size_t size, size_t alignment) {
TC3_CHECK_GT(alignment, __STDCPP_DEFAULT_NEW_ALIGNMENT__);
return static_cast<char*>(::operator new(size, std::align_val_t(alignment)));
}
void DeallocateBytes(void* ptr, size_t size, size_t alignment) {
if (alignment > __STDCPP_DEFAULT_NEW_ALIGNMENT__) {
#ifdef __cpp_sized_deallocation
::operator delete(ptr, size, std::align_val_t(alignment));
#else // !__cpp_sized_deallocation
::operator delete(ptr, std::align_val_t(alignment));
#endif // !__cpp_sized_deallocation
} else {
#ifdef __cpp_sized_deallocation
::operator delete(ptr, size);
#else // !__cpp_sized_deallocation
::operator delete(ptr);
#endif // !__cpp_sized_deallocation
}
}
#else // !__cpp_aligned_new
char* AllocateBytes(size_t size) {
return static_cast<char*>(malloc(size));
}
char* AllocateAlignedBytes(size_t size, size_t alignment) {
return static_cast<char*>(aligned_malloc(size, alignment));
}
void DeallocateBytes(void* ptr, size_t size, size_t alignment) {
free(ptr);
}
#endif // !__cpp_aligned_new
} // namespace
const int BaseArena::kDefaultAlignment;
// ----------------------------------------------------------------------
// BaseArena::BaseArena()
// BaseArena::~BaseArena()
// Destroying the arena automatically calls Reset()
// ----------------------------------------------------------------------
BaseArena::BaseArena(char* first, const size_t orig_block_size,
bool align_to_page)
: remaining_(0),
block_size_(orig_block_size),
freestart_(nullptr), // set for real in Reset()
last_alloc_(nullptr),
overflow_blocks_(nullptr),
first_block_externally_owned_(first != nullptr),
page_aligned_(align_to_page),
blocks_alloced_(1) {
// Trivial check that aligned objects can actually be allocated.
TC3_CHECK_GT(block_size_, kDefaultAlignment)
<< "orig_block_size = " << orig_block_size;
if (page_aligned_) {
// kPageSize must be power of 2, so make sure of this.
TC3_CHECK(kPageSize > 0 && 0 == (kPageSize & (kPageSize - 1)))
<< "kPageSize[ " << kPageSize << "] is not "
<< "correctly initialized: not a power of 2.";
}
if (first) {
TC3_CHECK(!page_aligned_ ||
(reinterpret_cast<uintptr_t>(first) & (kPageSize - 1)) == 0);
first_blocks_[0].mem = first;
first_blocks_[0].size = orig_block_size;
} else {
if (page_aligned_) {
// Make sure the blocksize is page multiple, as we need to end on a page
// boundary.
TC3_CHECK_EQ(block_size_ & (kPageSize - 1), 0) << "block_size is not a"
<< "multiple of kPageSize";
first_blocks_[0].mem = AllocateAlignedBytes(block_size_, kPageSize);
first_blocks_[0].alignment = kPageSize;
TC3_CHECK(nullptr != first_blocks_[0].mem);
} else {
first_blocks_[0].mem = AllocateBytes(block_size_);
first_blocks_[0].alignment = 0;
}
first_blocks_[0].size = block_size_;
}
Reset();
}
BaseArena::~BaseArena() {
FreeBlocks();
assert(overflow_blocks_ == nullptr); // FreeBlocks() should do that
#ifdef ADDRESS_SANITIZER
if (first_block_externally_owned_) {
ASAN_UNPOISON_MEMORY_REGION(first_blocks_[0].mem, first_blocks_[0].size);
}
#endif
// The first X blocks stay allocated always by default. Delete them now.
for (int i = first_block_externally_owned_ ? 1 : 0;
i < blocks_alloced_; ++i) {
DeallocateBytes(first_blocks_[i].mem, first_blocks_[i].size,
first_blocks_[i].alignment);
}
}
// ----------------------------------------------------------------------
// BaseArena::block_count()
// Only reason this is in .cc file is because it involves STL.
// ----------------------------------------------------------------------
int BaseArena::block_count() const {
return (blocks_alloced_ +
(overflow_blocks_ ? static_cast<int>(overflow_blocks_->size()) : 0));
}
// Returns true iff it advances freestart_ to the first position
// satisfying alignment without exhausting the current block.
bool BaseArena::SatisfyAlignment(size_t alignment) {
const size_t overage =
reinterpret_cast<size_t>(freestart_) & (alignment - 1);
if (overage > 0) {
const size_t waste = alignment - overage;
if (waste >= remaining_) {
return false;
}
freestart_ += waste;
remaining_ -= waste;
}
TC3_DCHECK_EQ(0, reinterpret_cast<size_t>(freestart_) & (alignment - 1));
return true;
}
// ----------------------------------------------------------------------
// BaseArena::Reset()
// Clears all the memory an arena is using.
// ----------------------------------------------------------------------
void BaseArena::Reset() {
FreeBlocks();
freestart_ = first_blocks_[0].mem;
remaining_ = first_blocks_[0].size;
last_alloc_ = nullptr;
#ifdef ADDRESS_SANITIZER
ASAN_POISON_MEMORY_REGION(freestart_, remaining_);
#endif
TC3_ARENASET(status_.bytes_allocated_ = block_size_);
// There is no guarantee the first block is properly aligned, so
// enforce that now.
TC3_CHECK(SatisfyAlignment(kDefaultAlignment));
freestart_when_empty_ = freestart_;
}
// ----------------------------------------------------------------------
// BaseArena::MakeNewBlock()
// Our sbrk() equivalent. We always make blocks of the same size
// (though GetMemory() can also make a new block for really big
// data.
// ----------------------------------------------------------------------
void BaseArena::MakeNewBlock(const uint32 alignment) {
AllocatedBlock *block = AllocNewBlock(block_size_, alignment);
freestart_ = block->mem;
remaining_ = block->size;
TC3_CHECK(SatisfyAlignment(alignment));
}
// The following simple numeric routines also exist in util/math/mathutil.h
// but we don't want to depend on that library.
// Euclid's algorithm for Greatest Common Denominator.
static uint32 GCD(uint32 x, uint32 y) {
while (y != 0) {
uint32 r = x % y;
x = y;
y = r;
}
return x;
}
static uint32 LeastCommonMultiple(uint32 a, uint32 b) {
if (a > b) {
return (a / GCD(a, b)) * b;
} else if (a < b) {
return (b / GCD(b, a)) * a;
} else {
return a;
}
}
// -------------------------------------------------------------
// BaseArena::AllocNewBlock()
// Adds and returns an AllocatedBlock.
// The returned AllocatedBlock* is valid until the next call
// to AllocNewBlock or Reset. (i.e. anything that might
// affect overflow_blocks_).
// -------------------------------------------------------------
BaseArena::AllocatedBlock* BaseArena::AllocNewBlock(const size_t block_size,
const uint32 alignment) {
AllocatedBlock *block;
// Find the next block.
if (blocks_alloced_ < TC3_ARRAYSIZE(first_blocks_)) {
// Use one of the pre-allocated blocks
block = &first_blocks_[blocks_alloced_++];
} else { // oops, out of space, move to the vector
if (overflow_blocks_ == nullptr)
overflow_blocks_ = new std::vector<AllocatedBlock>;
// Adds another block to the vector.
overflow_blocks_->resize(overflow_blocks_->size()+1);
// block points to the last block of the vector.
block = &overflow_blocks_->back();
}
// NOTE(tucker): this utility is made slightly more complex by
// not disallowing the case where alignment > block_size.
// Can we, without breaking existing code?
// If page_aligned_, then alignment must be a multiple of page size.
// Otherwise, must be a multiple of kDefaultAlignment, unless
// requested alignment is 1, in which case we don't care at all.
const uint32 adjusted_alignment =
page_aligned_ ? LeastCommonMultiple(kPageSize, alignment)
: (alignment > 1 ? LeastCommonMultiple(alignment, kDefaultAlignment) : 1);
TC3_CHECK_LE(adjusted_alignment, 1 << 20)
<< "Alignment on boundaries greater than 1MB not supported.";
// If block_size > alignment we force block_size to be a multiple
// of alignment; if block_size < alignment we make no adjustment, unless
// page_aligned_ is true, in which case it must be a multiple of
// kPageSize because SetProtect() will assume that.
size_t adjusted_block_size = block_size;
#ifdef __STDCPP_DEFAULT_NEW_ALIGNMENT__
if (adjusted_alignment > __STDCPP_DEFAULT_NEW_ALIGNMENT__) {
#else
if (adjusted_alignment > 1) {
#endif
if (adjusted_block_size > adjusted_alignment) {
const uint32 excess = adjusted_block_size % adjusted_alignment;
adjusted_block_size += (excess > 0 ? adjusted_alignment - excess : 0);
}
if (page_aligned_) {
size_t num_pages = ((adjusted_block_size - 1)/kPageSize) + 1;
adjusted_block_size = num_pages * kPageSize;
}
block->mem = AllocateAlignedBytes(adjusted_block_size, adjusted_alignment);
} else {
block->mem = AllocateBytes(adjusted_block_size);
}
block->size = adjusted_block_size;
block->alignment = adjusted_alignment;
TC3_CHECK(nullptr != block->mem)
<< "block_size=" << block_size
<< " adjusted_block_size=" << adjusted_block_size
<< " alignment=" << alignment
<< " adjusted_alignment=" << adjusted_alignment;
TC3_ARENASET(status_.bytes_allocated_ += adjusted_block_size);
#ifdef ADDRESS_SANITIZER
ASAN_POISON_MEMORY_REGION(block->mem, block->size);
#endif
return block;
}
// ----------------------------------------------------------------------
// BaseArena::IndexToBlock()
// Index encoding is as follows:
// For blocks in the first_blocks_ array, we use index of the block in
// the array.
// For blocks in the overflow_blocks_ vector, we use the index of the
// block in iverflow_blocks_, plus the size of the first_blocks_ array.
// ----------------------------------------------------------------------
const BaseArena::AllocatedBlock *BaseArena::IndexToBlock(int index) const {
if (index < TC3_ARRAYSIZE(first_blocks_)) {
return &first_blocks_[index];
}
TC3_CHECK(overflow_blocks_ != nullptr);
int index_in_overflow_blocks = index - TC3_ARRAYSIZE(first_blocks_);
TC3_CHECK_GE(index_in_overflow_blocks, 0);
TC3_CHECK_LT(static_cast<size_t>(index_in_overflow_blocks),
overflow_blocks_->size());
return &(*overflow_blocks_)[index_in_overflow_blocks];
}
// ----------------------------------------------------------------------
// BaseArena::GetMemoryFallback()
// We take memory out of our pool, aligned on the byte boundary
// requested. If we don't have space in our current pool, we
// allocate a new block (wasting the remaining space in the
// current block) and give you that. If your memory needs are
// too big for a single block, we make a special your-memory-only
// allocation -- this is equivalent to not using the arena at all.
// ----------------------------------------------------------------------
void* BaseArena::GetMemoryFallback(const size_t size, const int alignment) {
if (0 == size) {
return nullptr; // stl/stl_alloc.h says this is okay
}
// alignment must be a positive power of 2.
TC3_CHECK(alignment > 0 && 0 == (alignment & (alignment - 1)));
// If the object is more than a quarter of the block size, allocate
// it separately to avoid wasting too much space in leftover bytes.
if (block_size_ == 0 || size > block_size_/4) {
// Use a block separate from all other allocations; in particular
// we don't update last_alloc_ so you can't reclaim space on this block.
AllocatedBlock* b = AllocNewBlock(size, alignment);
#ifdef ADDRESS_SANITIZER
ASAN_UNPOISON_MEMORY_REGION(b->mem, b->size);
#endif
return b->mem;
}
// Enforce alignment on freestart_ then check for adequate space,
// which may require starting a new block.
if (!SatisfyAlignment(alignment) || size > remaining_) {
MakeNewBlock(alignment);
}
TC3_CHECK_LE(size, remaining_);
remaining_ -= size;
last_alloc_ = freestart_;
freestart_ += size;
#ifdef ADDRESS_SANITIZER
ASAN_UNPOISON_MEMORY_REGION(last_alloc_, size);
#endif
return reinterpret_cast<void*>(last_alloc_);
}
// ----------------------------------------------------------------------
// BaseArena::ReturnMemoryFallback()
// BaseArena::FreeBlocks()
// Unlike GetMemory(), which does actual work, ReturnMemory() is a
// no-op: we don't "free" memory until Reset() is called. We do
// update some stats, though. Note we do no checking that the
// pointer you pass in was actually allocated by us, or that it
// was allocated for the size you say, so be careful here!
// FreeBlocks() does the work for Reset(), actually freeing all
// memory allocated in one fell swoop.
// ----------------------------------------------------------------------
void BaseArena::FreeBlocks() {
for ( int i = 1; i < blocks_alloced_; ++i ) { // keep first block alloced
DeallocateBytes(first_blocks_[i].mem, first_blocks_[i].size,
first_blocks_[i].alignment);
first_blocks_[i].mem = nullptr;
first_blocks_[i].size = 0;
}
blocks_alloced_ = 1;
if (overflow_blocks_ != nullptr) {
std::vector<AllocatedBlock>::iterator it;
for (it = overflow_blocks_->begin(); it != overflow_blocks_->end(); ++it) {
DeallocateBytes(it->mem, it->size, it->alignment);
}
delete overflow_blocks_; // These should be used very rarely
overflow_blocks_ = nullptr;
}
}
// ----------------------------------------------------------------------
// BaseArena::AdjustLastAlloc()
// If you realize you didn't want your last alloc to be for
// the size you asked, after all, you can fix it by calling
// this. We'll grow or shrink the last-alloc region if we
// can (we can always shrink, but we might not be able to
// grow if you want to grow too big.
// RETURNS true if we successfully modified the last-alloc
// region, false if the pointer you passed in wasn't actually
// the last alloc or if you tried to grow bigger than we could.
// ----------------------------------------------------------------------
bool BaseArena::AdjustLastAlloc(void *last_alloc, const size_t newsize) {
// It's only legal to call this on the last thing you alloced.
if (last_alloc == nullptr || last_alloc != last_alloc_) return false;
// last_alloc_ should never point into a "big" block, w/ size >= block_size_
assert(freestart_ >= last_alloc_ && freestart_ <= last_alloc_ + block_size_);
assert(remaining_ >= 0); // should be: it's a size_t!
if (newsize > (freestart_ - last_alloc_) + remaining_)
return false; // not enough room, even after we get back last_alloc_ space
const char* old_freestart = freestart_; // where last alloc used to end
freestart_ = last_alloc_ + newsize; // where last alloc ends now
remaining_ -= (freestart_ - old_freestart); // how much new space we've taken
#ifdef ADDRESS_SANITIZER
ASAN_UNPOISON_MEMORY_REGION(last_alloc_, newsize);
ASAN_POISON_MEMORY_REGION(freestart_, remaining_);
#endif
return true;
}
// ----------------------------------------------------------------------
// UnsafeArena::Realloc()
// SafeArena::Realloc()
// If you decide you want to grow -- or shrink -- a memory region,
// we'll do it for you here. Typically this will involve copying
// the existing memory to somewhere else on the arena that has
// more space reserved. But if you're reallocing the last-allocated
// block, we may be able to accommodate you just by updating a
// pointer. In any case, we return a pointer to the new memory
// location, which may be the same as the pointer you passed in.
// Here's an example of how you might use Realloc():
//
// compr_buf = arena->Alloc(uncompr_size); // get too-much space
// int compr_size;
// zlib.Compress(uncompr_buf, uncompr_size, compr_buf, &compr_size);
// compr_buf = arena->Realloc(compr_buf, uncompr_size, compr_size);
// ----------------------------------------------------------------------
char* UnsafeArena::Realloc(char* original, size_t oldsize, size_t newsize) {
assert(oldsize >= 0 && newsize >= 0);
// if original happens to be the last allocation we can avoid fragmentation.
if (AdjustLastAlloc(original, newsize)) {
return original;
}
char* resized = original;
if (newsize > oldsize) {
resized = Alloc(newsize);
memcpy(resized, original, oldsize);
} else {
// no need to do anything; we're ain't reclaiming any memory!
}
#ifdef ADDRESS_SANITIZER
// Alloc already returns unpoisoned memory, but handling both cases here
// allows us to poison the old memory without worrying about whether or not it
// overlaps with the new memory. Thus, we must poison the old memory first.
ASAN_POISON_MEMORY_REGION(original, oldsize);
ASAN_UNPOISON_MEMORY_REGION(resized, newsize);
#endif
return resized;
}
// Avoid weak vtables by defining a dummy key method.
void UnsafeArena::UnusedKeyMethod() {}
} // namespace libtextclassifier3