You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

105 lines
3.6 KiB

/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "utils/math/softmax.h"
#include <limits>
#include "utils/base/logging.h"
#include "utils/math/fastexp.h"
namespace libtextclassifier3 {
float ComputeSoftmaxProbability(const std::vector<float> &scores, int label) {
if ((label < 0) || (label >= scores.size())) {
TC3_LOG(ERROR) << "label " << label << " outside range "
<< "[0, " << scores.size() << ")";
return 0.0f;
}
// Standard softmax formula for label's probability is
//
// exp(scores[label]) / sum_i exp(scores[i])
//
// We compute the mathematically equivalent
//
// 1 / (1 + sum_{i != label} exp(scores[i] - scores[label]))
//
// which saves two calls to exp().
const float label_score = scores[label];
float denominator = 1.0f; // Contribution of i == label.
for (int i = 0; i < scores.size(); ++i) {
if (i == label) continue;
const float delta_score = scores[i] - label_score;
// TODO(salcianu): one can optimize the test below, to avoid any float
// operation: extract exponent (via bit mask + shift) and check it's >= 4.
if (fabs(delta_score) >= 16.0f) {
if (delta_score > 0.0f) {
// If delta_score >= 16, the denominator (e^delta_score + other positive
// terms) is very big and its inverse can be approximated with 0.
return 0.0f;
} else {
// If delta_score <= -16, then e^delta_score < 1.2e-7. Even if we have
// 1000 such labels i, their sum is < 1.2e-4 (which gets summed with
// 1.0f for i == label). Hence, we can approximate each such label with
// 0 and skip the call to VeryFastExp and the update to denominator.
continue;
}
}
// At this point, delta_score is in (-16.0, 16.0). For such values, vfexp
// works fine: no under/overflows (we have tests for that in fastexp_test).
// Also, even for 1000 labels, denominator will not overflow.
denominator += VeryFastExp(delta_score);
}
return 1.0f / denominator;
}
std::vector<float> ComputeSoftmax(const std::vector<float> &scores) {
return ComputeSoftmax(scores.data(), scores.size());
}
std::vector<float> ComputeSoftmax(const float *scores, int scores_size) {
std::vector<float> softmax;
std::vector<float> exp_scores;
exp_scores.reserve(scores_size);
softmax.reserve(scores_size);
// Find max value in "scores" vector and rescale to avoid overflows.
float max = std::numeric_limits<float>::min();
for (int i = 0; i < scores_size; ++i) {
const float score = scores[i];
if (score > max) max = score;
}
float denominator = 0;
for (int i = 0; i < scores_size; ++i) {
const float score = scores[i];
// See comments above in ComputeSoftmaxProbability for the reasoning behind
// this approximation.
const float exp_score = score - max < -16.0f ? 0 : VeryFastExp(score - max);
exp_scores.push_back(exp_score);
denominator += exp_score;
}
for (int i = 0; i < scores_size; ++i) {
softmax.push_back(exp_scores[i] / denominator);
}
return softmax;
}
} // namespace libtextclassifier3