You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

764 lines
27 KiB

//===--- CallAndMessageChecker.cpp ------------------------------*- C++ -*--==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This defines CallAndMessageChecker, a builtin checker that checks for various
// errors of call and objc message expressions.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ParentMap.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
using namespace ento;
namespace {
class CallAndMessageChecker
: public Checker<check::PreObjCMessage, check::ObjCMessageNil,
check::PreCall> {
mutable std::unique_ptr<BugType> BT_call_null;
mutable std::unique_ptr<BugType> BT_call_undef;
mutable std::unique_ptr<BugType> BT_cxx_call_null;
mutable std::unique_ptr<BugType> BT_cxx_call_undef;
mutable std::unique_ptr<BugType> BT_call_arg;
mutable std::unique_ptr<BugType> BT_cxx_delete_undef;
mutable std::unique_ptr<BugType> BT_msg_undef;
mutable std::unique_ptr<BugType> BT_objc_prop_undef;
mutable std::unique_ptr<BugType> BT_objc_subscript_undef;
mutable std::unique_ptr<BugType> BT_msg_arg;
mutable std::unique_ptr<BugType> BT_msg_ret;
mutable std::unique_ptr<BugType> BT_call_few_args;
public:
// These correspond with the checker options. Looking at other checkers such
// as MallocChecker and CStringChecker, this is similar as to how they pull
// off having a modeling class, but emitting diagnostics under a smaller
// checker's name that can be safely disabled without disturbing the
// underlaying modeling engine.
// The reason behind having *checker options* rather then actual *checkers*
// here is that CallAndMessage is among the oldest checkers out there, and can
// be responsible for the majority of the reports on any given project. This
// is obviously not ideal, but changing checker name has the consequence of
// changing the issue hashes associated with the reports, and databases
// relying on this (CodeChecker, for instance) would suffer greatly.
// If we ever end up making changes to the issue hash generation algorithm, or
// the warning messages here, we should totally jump on the opportunity to
// convert these to actual checkers.
enum CheckKind {
CK_FunctionPointer,
CK_ParameterCount,
CK_CXXThisMethodCall,
CK_CXXDeallocationArg,
CK_ArgInitializedness,
CK_ArgPointeeInitializedness,
CK_NilReceiver,
CK_UndefReceiver,
CK_NumCheckKinds
};
DefaultBool ChecksEnabled[CK_NumCheckKinds];
// The original core.CallAndMessage checker name. This should rather be an
// array, as seen in MallocChecker and CStringChecker.
CheckerNameRef OriginalName;
void checkPreObjCMessage(const ObjCMethodCall &msg, CheckerContext &C) const;
/// Fill in the return value that results from messaging nil based on the
/// return type and architecture and diagnose if the return value will be
/// garbage.
void checkObjCMessageNil(const ObjCMethodCall &msg, CheckerContext &C) const;
void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
ProgramStateRef checkFunctionPointerCall(const CallExpr *CE,
CheckerContext &C,
ProgramStateRef State) const;
ProgramStateRef checkCXXMethodCall(const CXXInstanceCall *CC,
CheckerContext &C,
ProgramStateRef State) const;
ProgramStateRef checkParameterCount(const CallEvent &Call, CheckerContext &C,
ProgramStateRef State) const;
ProgramStateRef checkCXXDeallocation(const CXXDeallocatorCall *DC,
CheckerContext &C,
ProgramStateRef State) const;
ProgramStateRef checkArgInitializedness(const CallEvent &Call,
CheckerContext &C,
ProgramStateRef State) const;
private:
bool PreVisitProcessArg(CheckerContext &C, SVal V, SourceRange ArgRange,
const Expr *ArgEx, int ArgumentNumber,
bool CheckUninitFields, const CallEvent &Call,
std::unique_ptr<BugType> &BT,
const ParmVarDecl *ParamDecl) const;
static void emitBadCall(BugType *BT, CheckerContext &C, const Expr *BadE);
void emitNilReceiverBug(CheckerContext &C, const ObjCMethodCall &msg,
ExplodedNode *N) const;
void HandleNilReceiver(CheckerContext &C,
ProgramStateRef state,
const ObjCMethodCall &msg) const;
void LazyInit_BT(const char *desc, std::unique_ptr<BugType> &BT) const {
if (!BT)
BT.reset(new BuiltinBug(OriginalName, desc));
}
bool uninitRefOrPointer(CheckerContext &C, const SVal &V,
SourceRange ArgRange, const Expr *ArgEx,
std::unique_ptr<BugType> &BT,
const ParmVarDecl *ParamDecl, const char *BD,
int ArgumentNumber) const;
};
} // end anonymous namespace
void CallAndMessageChecker::emitBadCall(BugType *BT, CheckerContext &C,
const Expr *BadE) {
ExplodedNode *N = C.generateErrorNode();
if (!N)
return;
auto R = std::make_unique<PathSensitiveBugReport>(*BT, BT->getDescription(), N);
if (BadE) {
R->addRange(BadE->getSourceRange());
if (BadE->isGLValue())
BadE = bugreporter::getDerefExpr(BadE);
bugreporter::trackExpressionValue(N, BadE, *R);
}
C.emitReport(std::move(R));
}
static void describeUninitializedArgumentInCall(const CallEvent &Call,
int ArgumentNumber,
llvm::raw_svector_ostream &Os) {
switch (Call.getKind()) {
case CE_ObjCMessage: {
const ObjCMethodCall &Msg = cast<ObjCMethodCall>(Call);
switch (Msg.getMessageKind()) {
case OCM_Message:
Os << (ArgumentNumber + 1) << llvm::getOrdinalSuffix(ArgumentNumber + 1)
<< " argument in message expression is an uninitialized value";
return;
case OCM_PropertyAccess:
assert(Msg.isSetter() && "Getters have no args");
Os << "Argument for property setter is an uninitialized value";
return;
case OCM_Subscript:
if (Msg.isSetter() && (ArgumentNumber == 0))
Os << "Argument for subscript setter is an uninitialized value";
else
Os << "Subscript index is an uninitialized value";
return;
}
llvm_unreachable("Unknown message kind.");
}
case CE_Block:
Os << (ArgumentNumber + 1) << llvm::getOrdinalSuffix(ArgumentNumber + 1)
<< " block call argument is an uninitialized value";
return;
default:
Os << (ArgumentNumber + 1) << llvm::getOrdinalSuffix(ArgumentNumber + 1)
<< " function call argument is an uninitialized value";
return;
}
}
bool CallAndMessageChecker::uninitRefOrPointer(
CheckerContext &C, const SVal &V, SourceRange ArgRange, const Expr *ArgEx,
std::unique_ptr<BugType> &BT, const ParmVarDecl *ParamDecl, const char *BD,
int ArgumentNumber) const {
// The pointee being uninitialized is a sign of code smell, not a bug, no need
// to sink here.
if (!ChecksEnabled[CK_ArgPointeeInitializedness])
return false;
// No parameter declaration available, i.e. variadic function argument.
if(!ParamDecl)
return false;
// If parameter is declared as pointer to const in function declaration,
// then check if corresponding argument in function call is
// pointing to undefined symbol value (uninitialized memory).
SmallString<200> Buf;
llvm::raw_svector_ostream Os(Buf);
if (ParamDecl->getType()->isPointerType()) {
Os << (ArgumentNumber + 1) << llvm::getOrdinalSuffix(ArgumentNumber + 1)
<< " function call argument is a pointer to uninitialized value";
} else if (ParamDecl->getType()->isReferenceType()) {
Os << (ArgumentNumber + 1) << llvm::getOrdinalSuffix(ArgumentNumber + 1)
<< " function call argument is an uninitialized value";
} else
return false;
if(!ParamDecl->getType()->getPointeeType().isConstQualified())
return false;
if (const MemRegion *SValMemRegion = V.getAsRegion()) {
const ProgramStateRef State = C.getState();
const SVal PSV = State->getSVal(SValMemRegion, C.getASTContext().CharTy);
if (PSV.isUndef()) {
if (ExplodedNode *N = C.generateErrorNode()) {
LazyInit_BT(BD, BT);
auto R = std::make_unique<PathSensitiveBugReport>(*BT, Os.str(), N);
R->addRange(ArgRange);
if (ArgEx)
bugreporter::trackExpressionValue(N, ArgEx, *R);
C.emitReport(std::move(R));
}
return true;
}
}
return false;
}
namespace {
class FindUninitializedField {
public:
SmallVector<const FieldDecl *, 10> FieldChain;
private:
StoreManager &StoreMgr;
MemRegionManager &MrMgr;
Store store;
public:
FindUninitializedField(StoreManager &storeMgr, MemRegionManager &mrMgr,
Store s)
: StoreMgr(storeMgr), MrMgr(mrMgr), store(s) {}
bool Find(const TypedValueRegion *R) {
QualType T = R->getValueType();
if (const RecordType *RT = T->getAsStructureType()) {
const RecordDecl *RD = RT->getDecl()->getDefinition();
assert(RD && "Referred record has no definition");
for (const auto *I : RD->fields()) {
const FieldRegion *FR = MrMgr.getFieldRegion(I, R);
FieldChain.push_back(I);
T = I->getType();
if (T->getAsStructureType()) {
if (Find(FR))
return true;
} else {
const SVal &V = StoreMgr.getBinding(store, loc::MemRegionVal(FR));
if (V.isUndef())
return true;
}
FieldChain.pop_back();
}
}
return false;
}
};
} // namespace
bool CallAndMessageChecker::PreVisitProcessArg(CheckerContext &C,
SVal V,
SourceRange ArgRange,
const Expr *ArgEx,
int ArgumentNumber,
bool CheckUninitFields,
const CallEvent &Call,
std::unique_ptr<BugType> &BT,
const ParmVarDecl *ParamDecl
) const {
const char *BD = "Uninitialized argument value";
if (uninitRefOrPointer(C, V, ArgRange, ArgEx, BT, ParamDecl, BD,
ArgumentNumber))
return true;
if (V.isUndef()) {
if (!ChecksEnabled[CK_ArgInitializedness]) {
C.addSink();
return true;
}
if (ExplodedNode *N = C.generateErrorNode()) {
LazyInit_BT(BD, BT);
// Generate a report for this bug.
SmallString<200> Buf;
llvm::raw_svector_ostream Os(Buf);
describeUninitializedArgumentInCall(Call, ArgumentNumber, Os);
auto R = std::make_unique<PathSensitiveBugReport>(*BT, Os.str(), N);
R->addRange(ArgRange);
if (ArgEx)
bugreporter::trackExpressionValue(N, ArgEx, *R);
C.emitReport(std::move(R));
}
return true;
}
if (!CheckUninitFields)
return false;
if (auto LV = V.getAs<nonloc::LazyCompoundVal>()) {
const LazyCompoundValData *D = LV->getCVData();
FindUninitializedField F(C.getState()->getStateManager().getStoreManager(),
C.getSValBuilder().getRegionManager(),
D->getStore());
if (F.Find(D->getRegion())) {
if (!ChecksEnabled[CK_ArgInitializedness]) {
C.addSink();
return true;
}
if (ExplodedNode *N = C.generateErrorNode()) {
LazyInit_BT(BD, BT);
SmallString<512> Str;
llvm::raw_svector_ostream os(Str);
os << "Passed-by-value struct argument contains uninitialized data";
if (F.FieldChain.size() == 1)
os << " (e.g., field: '" << *F.FieldChain[0] << "')";
else {
os << " (e.g., via the field chain: '";
bool first = true;
for (SmallVectorImpl<const FieldDecl *>::iterator
DI = F.FieldChain.begin(), DE = F.FieldChain.end(); DI!=DE;++DI){
if (first)
first = false;
else
os << '.';
os << **DI;
}
os << "')";
}
// Generate a report for this bug.
auto R = std::make_unique<PathSensitiveBugReport>(*BT, os.str(), N);
R->addRange(ArgRange);
if (ArgEx)
bugreporter::trackExpressionValue(N, ArgEx, *R);
// FIXME: enhance track back for uninitialized value for arbitrary
// memregions
C.emitReport(std::move(R));
}
return true;
}
}
return false;
}
ProgramStateRef CallAndMessageChecker::checkFunctionPointerCall(
const CallExpr *CE, CheckerContext &C, ProgramStateRef State) const {
const Expr *Callee = CE->getCallee()->IgnoreParens();
const LocationContext *LCtx = C.getLocationContext();
SVal L = State->getSVal(Callee, LCtx);
if (L.isUndef()) {
if (!ChecksEnabled[CK_FunctionPointer]) {
C.addSink(State);
return nullptr;
}
if (!BT_call_undef)
BT_call_undef.reset(new BuiltinBug(
OriginalName,
"Called function pointer is an uninitialized pointer value"));
emitBadCall(BT_call_undef.get(), C, Callee);
return nullptr;
}
ProgramStateRef StNonNull, StNull;
std::tie(StNonNull, StNull) = State->assume(L.castAs<DefinedOrUnknownSVal>());
if (StNull && !StNonNull) {
if (!ChecksEnabled[CK_FunctionPointer]) {
C.addSink(StNull);
return nullptr;
}
if (!BT_call_null)
BT_call_null.reset(new BuiltinBug(
OriginalName, "Called function pointer is null (null dereference)"));
emitBadCall(BT_call_null.get(), C, Callee);
return nullptr;
}
return StNonNull;
}
ProgramStateRef CallAndMessageChecker::checkParameterCount(
const CallEvent &Call, CheckerContext &C, ProgramStateRef State) const {
// If we have a function or block declaration, we can make sure we pass
// enough parameters.
unsigned Params = Call.parameters().size();
if (Call.getNumArgs() >= Params)
return State;
if (!ChecksEnabled[CK_ParameterCount]) {
C.addSink(State);
return nullptr;
}
ExplodedNode *N = C.generateErrorNode();
if (!N)
return nullptr;
LazyInit_BT("Function call with too few arguments", BT_call_few_args);
SmallString<512> Str;
llvm::raw_svector_ostream os(Str);
if (isa<AnyFunctionCall>(Call)) {
os << "Function ";
} else {
assert(isa<BlockCall>(Call));
os << "Block ";
}
os << "taking " << Params << " argument" << (Params == 1 ? "" : "s")
<< " is called with fewer (" << Call.getNumArgs() << ")";
C.emitReport(
std::make_unique<PathSensitiveBugReport>(*BT_call_few_args, os.str(), N));
return nullptr;
}
ProgramStateRef CallAndMessageChecker::checkCXXMethodCall(
const CXXInstanceCall *CC, CheckerContext &C, ProgramStateRef State) const {
SVal V = CC->getCXXThisVal();
if (V.isUndef()) {
if (!ChecksEnabled[CK_CXXThisMethodCall]) {
C.addSink(State);
return nullptr;
}
if (!BT_cxx_call_undef)
BT_cxx_call_undef.reset(new BuiltinBug(
OriginalName, "Called C++ object pointer is uninitialized"));
emitBadCall(BT_cxx_call_undef.get(), C, CC->getCXXThisExpr());
return nullptr;
}
ProgramStateRef StNonNull, StNull;
std::tie(StNonNull, StNull) = State->assume(V.castAs<DefinedOrUnknownSVal>());
if (StNull && !StNonNull) {
if (!ChecksEnabled[CK_CXXThisMethodCall]) {
C.addSink(StNull);
return nullptr;
}
if (!BT_cxx_call_null)
BT_cxx_call_null.reset(
new BuiltinBug(OriginalName, "Called C++ object pointer is null"));
emitBadCall(BT_cxx_call_null.get(), C, CC->getCXXThisExpr());
return nullptr;
}
return StNonNull;
}
ProgramStateRef
CallAndMessageChecker::checkCXXDeallocation(const CXXDeallocatorCall *DC,
CheckerContext &C,
ProgramStateRef State) const {
const CXXDeleteExpr *DE = DC->getOriginExpr();
assert(DE);
SVal Arg = C.getSVal(DE->getArgument());
if (!Arg.isUndef())
return State;
if (!ChecksEnabled[CK_CXXDeallocationArg]) {
C.addSink(State);
return nullptr;
}
StringRef Desc;
ExplodedNode *N = C.generateErrorNode();
if (!N)
return nullptr;
if (!BT_cxx_delete_undef)
BT_cxx_delete_undef.reset(
new BuiltinBug(OriginalName, "Uninitialized argument value"));
if (DE->isArrayFormAsWritten())
Desc = "Argument to 'delete[]' is uninitialized";
else
Desc = "Argument to 'delete' is uninitialized";
BugType *BT = BT_cxx_delete_undef.get();
auto R = std::make_unique<PathSensitiveBugReport>(*BT, Desc, N);
bugreporter::trackExpressionValue(N, DE, *R);
C.emitReport(std::move(R));
return nullptr;
}
ProgramStateRef CallAndMessageChecker::checkArgInitializedness(
const CallEvent &Call, CheckerContext &C, ProgramStateRef State) const {
const Decl *D = Call.getDecl();
// Don't check for uninitialized field values in arguments if the
// caller has a body that is available and we have the chance to inline it.
// This is a hack, but is a reasonable compromise betweens sometimes warning
// and sometimes not depending on if we decide to inline a function.
const bool checkUninitFields =
!(C.getAnalysisManager().shouldInlineCall() && (D && D->getBody()));
std::unique_ptr<BugType> *BT;
if (isa<ObjCMethodCall>(Call))
BT = &BT_msg_arg;
else
BT = &BT_call_arg;
const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
for (unsigned i = 0, e = Call.getNumArgs(); i != e; ++i) {
const ParmVarDecl *ParamDecl = nullptr;
if (FD && i < FD->getNumParams())
ParamDecl = FD->getParamDecl(i);
if (PreVisitProcessArg(C, Call.getArgSVal(i), Call.getArgSourceRange(i),
Call.getArgExpr(i), i, checkUninitFields, Call, *BT,
ParamDecl))
return nullptr;
}
return State;
}
void CallAndMessageChecker::checkPreCall(const CallEvent &Call,
CheckerContext &C) const {
ProgramStateRef State = C.getState();
if (const CallExpr *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr()))
State = checkFunctionPointerCall(CE, C, State);
if (!State)
return;
if (Call.getDecl())
State = checkParameterCount(Call, C, State);
if (!State)
return;
if (const auto *CC = dyn_cast<CXXInstanceCall>(&Call))
State = checkCXXMethodCall(CC, C, State);
if (!State)
return;
if (const auto *DC = dyn_cast<CXXDeallocatorCall>(&Call))
State = checkCXXDeallocation(DC, C, State);
if (!State)
return;
State = checkArgInitializedness(Call, C, State);
// If we make it here, record our assumptions about the callee.
C.addTransition(State);
}
void CallAndMessageChecker::checkPreObjCMessage(const ObjCMethodCall &msg,
CheckerContext &C) const {
SVal recVal = msg.getReceiverSVal();
if (recVal.isUndef()) {
if (!ChecksEnabled[CK_UndefReceiver]) {
C.addSink();
return;
}
if (ExplodedNode *N = C.generateErrorNode()) {
BugType *BT = nullptr;
switch (msg.getMessageKind()) {
case OCM_Message:
if (!BT_msg_undef)
BT_msg_undef.reset(new BuiltinBug(OriginalName,
"Receiver in message expression "
"is an uninitialized value"));
BT = BT_msg_undef.get();
break;
case OCM_PropertyAccess:
if (!BT_objc_prop_undef)
BT_objc_prop_undef.reset(new BuiltinBug(
OriginalName,
"Property access on an uninitialized object pointer"));
BT = BT_objc_prop_undef.get();
break;
case OCM_Subscript:
if (!BT_objc_subscript_undef)
BT_objc_subscript_undef.reset(new BuiltinBug(
OriginalName,
"Subscript access on an uninitialized object pointer"));
BT = BT_objc_subscript_undef.get();
break;
}
assert(BT && "Unknown message kind.");
auto R = std::make_unique<PathSensitiveBugReport>(*BT, BT->getDescription(), N);
const ObjCMessageExpr *ME = msg.getOriginExpr();
R->addRange(ME->getReceiverRange());
// FIXME: getTrackNullOrUndefValueVisitor can't handle "super" yet.
if (const Expr *ReceiverE = ME->getInstanceReceiver())
bugreporter::trackExpressionValue(N, ReceiverE, *R);
C.emitReport(std::move(R));
}
return;
}
}
void CallAndMessageChecker::checkObjCMessageNil(const ObjCMethodCall &msg,
CheckerContext &C) const {
HandleNilReceiver(C, C.getState(), msg);
}
void CallAndMessageChecker::emitNilReceiverBug(CheckerContext &C,
const ObjCMethodCall &msg,
ExplodedNode *N) const {
if (!ChecksEnabled[CK_NilReceiver]) {
C.addSink();
return;
}
if (!BT_msg_ret)
BT_msg_ret.reset(new BuiltinBug(OriginalName,
"Receiver in message expression is 'nil'"));
const ObjCMessageExpr *ME = msg.getOriginExpr();
QualType ResTy = msg.getResultType();
SmallString<200> buf;
llvm::raw_svector_ostream os(buf);
os << "The receiver of message '";
ME->getSelector().print(os);
os << "' is nil";
if (ResTy->isReferenceType()) {
os << ", which results in forming a null reference";
} else {
os << " and returns a value of type '";
msg.getResultType().print(os, C.getLangOpts());
os << "' that will be garbage";
}
auto report =
std::make_unique<PathSensitiveBugReport>(*BT_msg_ret, os.str(), N);
report->addRange(ME->getReceiverRange());
// FIXME: This won't track "self" in messages to super.
if (const Expr *receiver = ME->getInstanceReceiver()) {
bugreporter::trackExpressionValue(N, receiver, *report);
}
C.emitReport(std::move(report));
}
static bool supportsNilWithFloatRet(const llvm::Triple &triple) {
return (triple.getVendor() == llvm::Triple::Apple &&
(triple.isiOS() || triple.isWatchOS() ||
!triple.isMacOSXVersionLT(10,5)));
}
void CallAndMessageChecker::HandleNilReceiver(CheckerContext &C,
ProgramStateRef state,
const ObjCMethodCall &Msg) const {
ASTContext &Ctx = C.getASTContext();
static CheckerProgramPointTag Tag(this, "NilReceiver");
// Check the return type of the message expression. A message to nil will
// return different values depending on the return type and the architecture.
QualType RetTy = Msg.getResultType();
CanQualType CanRetTy = Ctx.getCanonicalType(RetTy);
const LocationContext *LCtx = C.getLocationContext();
if (CanRetTy->isStructureOrClassType()) {
// Structure returns are safe since the compiler zeroes them out.
SVal V = C.getSValBuilder().makeZeroVal(RetTy);
C.addTransition(state->BindExpr(Msg.getOriginExpr(), LCtx, V), &Tag);
return;
}
// Other cases: check if sizeof(return type) > sizeof(void*)
if (CanRetTy != Ctx.VoidTy && C.getLocationContext()->getParentMap()
.isConsumedExpr(Msg.getOriginExpr())) {
// Compute: sizeof(void *) and sizeof(return type)
const uint64_t voidPtrSize = Ctx.getTypeSize(Ctx.VoidPtrTy);
const uint64_t returnTypeSize = Ctx.getTypeSize(CanRetTy);
if (CanRetTy.getTypePtr()->isReferenceType()||
(voidPtrSize < returnTypeSize &&
!(supportsNilWithFloatRet(Ctx.getTargetInfo().getTriple()) &&
(Ctx.FloatTy == CanRetTy ||
Ctx.DoubleTy == CanRetTy ||
Ctx.LongDoubleTy == CanRetTy ||
Ctx.LongLongTy == CanRetTy ||
Ctx.UnsignedLongLongTy == CanRetTy)))) {
if (ExplodedNode *N = C.generateErrorNode(state, &Tag))
emitNilReceiverBug(C, Msg, N);
return;
}
// Handle the safe cases where the return value is 0 if the
// receiver is nil.
//
// FIXME: For now take the conservative approach that we only
// return null values if we *know* that the receiver is nil.
// This is because we can have surprises like:
//
// ... = [[NSScreens screens] objectAtIndex:0];
//
// What can happen is that [... screens] could return nil, but
// it most likely isn't nil. We should assume the semantics
// of this case unless we have *a lot* more knowledge.
//
SVal V = C.getSValBuilder().makeZeroVal(RetTy);
C.addTransition(state->BindExpr(Msg.getOriginExpr(), LCtx, V), &Tag);
return;
}
C.addTransition(state);
}
void ento::registerCallAndMessageModeling(CheckerManager &mgr) {
mgr.registerChecker<CallAndMessageChecker>();
}
bool ento::shouldRegisterCallAndMessageModeling(const CheckerManager &mgr) {
return true;
}
void ento::registerCallAndMessageChecker(CheckerManager &mgr) {
CallAndMessageChecker *checker = mgr.getChecker<CallAndMessageChecker>();
checker->OriginalName = mgr.getCurrentCheckerName();
#define QUERY_CHECKER_OPTION(OPTION) \
checker->ChecksEnabled[CallAndMessageChecker::CK_##OPTION] = \
mgr.getAnalyzerOptions().getCheckerBooleanOption( \
mgr.getCurrentCheckerName(), #OPTION);
QUERY_CHECKER_OPTION(FunctionPointer)
QUERY_CHECKER_OPTION(ParameterCount)
QUERY_CHECKER_OPTION(CXXThisMethodCall)
QUERY_CHECKER_OPTION(CXXDeallocationArg)
QUERY_CHECKER_OPTION(ArgInitializedness)
QUERY_CHECKER_OPTION(ArgPointeeInitializedness)
QUERY_CHECKER_OPTION(NilReceiver)
QUERY_CHECKER_OPTION(UndefReceiver)
}
bool ento::shouldRegisterCallAndMessageChecker(const CheckerManager &mgr) {
return true;
}