You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

241 lines
8.0 KiB

//===-- ArchitectureMips.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Plugins/Architecture/Mips/ArchitectureMips.h"
#include "lldb/Core/Address.h"
#include "lldb/Core/Disassembler.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Symbol/SymbolContext.h"
#include "lldb/Target/SectionLoadList.h"
#include "lldb/Target/Target.h"
#include "lldb/Utility/ArchSpec.h"
#include "lldb/Utility/Log.h"
using namespace lldb_private;
using namespace lldb;
LLDB_PLUGIN_DEFINE(ArchitectureMips)
ConstString ArchitectureMips::GetPluginNameStatic() {
return ConstString("mips");
}
void ArchitectureMips::Initialize() {
PluginManager::RegisterPlugin(GetPluginNameStatic(),
"Mips-specific algorithms",
&ArchitectureMips::Create);
}
void ArchitectureMips::Terminate() {
PluginManager::UnregisterPlugin(&ArchitectureMips::Create);
}
std::unique_ptr<Architecture> ArchitectureMips::Create(const ArchSpec &arch) {
return arch.IsMIPS() ?
std::unique_ptr<Architecture>(new ArchitectureMips(arch)) : nullptr;
}
ConstString ArchitectureMips::GetPluginName() { return GetPluginNameStatic(); }
uint32_t ArchitectureMips::GetPluginVersion() { return 1; }
addr_t ArchitectureMips::GetCallableLoadAddress(addr_t code_addr,
AddressClass addr_class) const {
bool is_alternate_isa = false;
switch (addr_class) {
case AddressClass::eData:
case AddressClass::eDebug:
return LLDB_INVALID_ADDRESS;
case AddressClass::eCodeAlternateISA:
is_alternate_isa = true;
break;
default: break;
}
if ((code_addr & 2ull) || is_alternate_isa)
return code_addr | 1u;
return code_addr;
}
addr_t ArchitectureMips::GetOpcodeLoadAddress(addr_t opcode_addr,
AddressClass addr_class) const {
switch (addr_class) {
case AddressClass::eData:
case AddressClass::eDebug:
return LLDB_INVALID_ADDRESS;
default: break;
}
return opcode_addr & ~(1ull);
}
lldb::addr_t ArchitectureMips::GetBreakableLoadAddress(lldb::addr_t addr,
Target &target) const {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
Address resolved_addr;
SectionLoadList &section_load_list = target.GetSectionLoadList();
if (section_load_list.IsEmpty())
// No sections are loaded, so we must assume we are not running yet and
// need to operate only on file address.
target.ResolveFileAddress(addr, resolved_addr);
else
target.ResolveLoadAddress(addr, resolved_addr);
addr_t current_offset = 0;
// Get the function boundaries to make sure we don't scan back before the
// beginning of the current function.
ModuleSP temp_addr_module_sp(resolved_addr.GetModule());
if (temp_addr_module_sp) {
SymbolContext sc;
SymbolContextItem resolve_scope =
eSymbolContextFunction | eSymbolContextSymbol;
temp_addr_module_sp->ResolveSymbolContextForAddress(resolved_addr,
resolve_scope, sc);
Address sym_addr;
if (sc.function)
sym_addr = sc.function->GetAddressRange().GetBaseAddress();
else if (sc.symbol)
sym_addr = sc.symbol->GetAddress();
addr_t function_start = sym_addr.GetLoadAddress(&target);
if (function_start == LLDB_INVALID_ADDRESS)
function_start = sym_addr.GetFileAddress();
if (function_start)
current_offset = addr - function_start;
}
// If breakpoint address is start of function then we dont have to do
// anything.
if (current_offset == 0)
return addr;
auto insn = GetInstructionAtAddress(target, current_offset, addr);
if (nullptr == insn || !insn->HasDelaySlot())
return addr;
// Adjust the breakable address
uint64_t breakable_addr = addr - insn->GetOpcode().GetByteSize();
LLDB_LOGF(log,
"Target::%s Breakpoint at 0x%8.8" PRIx64
" is adjusted to 0x%8.8" PRIx64 " due to delay slot\n",
__FUNCTION__, addr, breakable_addr);
return breakable_addr;
}
Instruction *ArchitectureMips::GetInstructionAtAddress(
Target &target, const Address &resolved_addr, addr_t symbol_offset) const {
auto loop_count = symbol_offset / 2;
uint32_t arch_flags = m_arch.GetFlags();
bool IsMips16 = arch_flags & ArchSpec::eMIPSAse_mips16;
bool IsMicromips = arch_flags & ArchSpec::eMIPSAse_micromips;
if (loop_count > 3) {
// Scan previous 6 bytes
if (IsMips16 | IsMicromips)
loop_count = 3;
// For mips-only, instructions are always 4 bytes, so scan previous 4
// bytes only.
else
loop_count = 2;
}
// Create Disassembler Instance
lldb::DisassemblerSP disasm_sp(
Disassembler::FindPlugin(m_arch, nullptr, nullptr));
InstructionList instruction_list;
InstructionSP prev_insn;
bool prefer_file_cache = true; // Read from file
uint32_t inst_to_choose = 0;
Address addr = resolved_addr;
for (uint32_t i = 1; i <= loop_count; i++) {
// Adjust the address to read from.
addr.Slide(-2);
uint32_t insn_size = 0;
disasm_sp->ParseInstructions(target, addr,
{Disassembler::Limit::Bytes, i * 2}, nullptr,
prefer_file_cache);
uint32_t num_insns = disasm_sp->GetInstructionList().GetSize();
if (num_insns) {
prev_insn = disasm_sp->GetInstructionList().GetInstructionAtIndex(0);
insn_size = prev_insn->GetOpcode().GetByteSize();
if (i == 1 && insn_size == 2) {
// This looks like a valid 2-byte instruction (but it could be a part
// of upper 4 byte instruction).
instruction_list.Append(prev_insn);
inst_to_choose = 1;
}
else if (i == 2) {
// Here we may get one 4-byte instruction or two 2-byte instructions.
if (num_insns == 2) {
// Looks like there are two 2-byte instructions above our
// breakpoint target address. Now the upper 2-byte instruction is
// either a valid 2-byte instruction or could be a part of it's
// upper 4-byte instruction. In both cases we don't care because in
// this case lower 2-byte instruction is definitely a valid
// instruction and whatever i=1 iteration has found out is true.
inst_to_choose = 1;
break;
}
else if (insn_size == 4) {
// This instruction claims its a valid 4-byte instruction. But it
// could be a part of it's upper 4-byte instruction. Lets try
// scanning upper 2 bytes to verify this.
instruction_list.Append(prev_insn);
inst_to_choose = 2;
}
}
else if (i == 3) {
if (insn_size == 4)
// FIXME: We reached here that means instruction at [target - 4] has
// already claimed to be a 4-byte instruction, and now instruction
// at [target - 6] is also claiming that it's a 4-byte instruction.
// This can not be true. In this case we can not decide the valid
// previous instruction so we let lldb set the breakpoint at the
// address given by user.
inst_to_choose = 0;
else
// This is straight-forward
inst_to_choose = 2;
break;
}
}
else {
// Decode failed, bytes do not form a valid instruction. So whatever
// previous iteration has found out is true.
if (i > 1) {
inst_to_choose = i - 1;
break;
}
}
}
// Check if we are able to find any valid instruction.
if (inst_to_choose) {
if (inst_to_choose > instruction_list.GetSize())
inst_to_choose--;
return instruction_list.GetInstructionAtIndex(inst_to_choose - 1).get();
}
return nullptr;
}