You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1234 lines
43 KiB
1234 lines
43 KiB
//===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// The AMDGPU target machine contains all of the hardware specific
|
|
/// information needed to emit code for R600 and SI GPUs.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPUTargetMachine.h"
|
|
#include "AMDGPU.h"
|
|
#include "AMDGPUAliasAnalysis.h"
|
|
#include "AMDGPUCallLowering.h"
|
|
#include "AMDGPUExportClustering.h"
|
|
#include "AMDGPUInstructionSelector.h"
|
|
#include "AMDGPULegalizerInfo.h"
|
|
#include "AMDGPUMacroFusion.h"
|
|
#include "AMDGPUTargetObjectFile.h"
|
|
#include "AMDGPUTargetTransformInfo.h"
|
|
#include "GCNIterativeScheduler.h"
|
|
#include "GCNSchedStrategy.h"
|
|
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
|
|
#include "R600MachineScheduler.h"
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "SIMachineScheduler.h"
|
|
#include "TargetInfo/AMDGPUTargetInfo.h"
|
|
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
|
|
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
|
|
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
|
|
#include "llvm/CodeGen/GlobalISel/Localizer.h"
|
|
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
|
|
#include "llvm/CodeGen/MIRParser/MIParser.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/LegacyPassManager.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Target/TargetLoweringObjectFile.h"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/Transforms/IPO/AlwaysInliner.h"
|
|
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Scalar/GVN.h"
|
|
#include "llvm/Transforms/Utils.h"
|
|
#include "llvm/Transforms/Vectorize.h"
|
|
#include <memory>
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool> EnableR600StructurizeCFG(
|
|
"r600-ir-structurize",
|
|
cl::desc("Use StructurizeCFG IR pass"),
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool> EnableSROA(
|
|
"amdgpu-sroa",
|
|
cl::desc("Run SROA after promote alloca pass"),
|
|
cl::ReallyHidden,
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool>
|
|
EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden,
|
|
cl::desc("Run early if-conversion"),
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool>
|
|
OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden,
|
|
cl::desc("Run pre-RA exec mask optimizations"),
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool> EnableR600IfConvert(
|
|
"r600-if-convert",
|
|
cl::desc("Use if conversion pass"),
|
|
cl::ReallyHidden,
|
|
cl::init(true));
|
|
|
|
// Option to disable vectorizer for tests.
|
|
static cl::opt<bool> EnableLoadStoreVectorizer(
|
|
"amdgpu-load-store-vectorizer",
|
|
cl::desc("Enable load store vectorizer"),
|
|
cl::init(true),
|
|
cl::Hidden);
|
|
|
|
// Option to control global loads scalarization
|
|
static cl::opt<bool> ScalarizeGlobal(
|
|
"amdgpu-scalarize-global-loads",
|
|
cl::desc("Enable global load scalarization"),
|
|
cl::init(true),
|
|
cl::Hidden);
|
|
|
|
// Option to run internalize pass.
|
|
static cl::opt<bool> InternalizeSymbols(
|
|
"amdgpu-internalize-symbols",
|
|
cl::desc("Enable elimination of non-kernel functions and unused globals"),
|
|
cl::init(false),
|
|
cl::Hidden);
|
|
|
|
// Option to inline all early.
|
|
static cl::opt<bool> EarlyInlineAll(
|
|
"amdgpu-early-inline-all",
|
|
cl::desc("Inline all functions early"),
|
|
cl::init(false),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<bool> EnableSDWAPeephole(
|
|
"amdgpu-sdwa-peephole",
|
|
cl::desc("Enable SDWA peepholer"),
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool> EnableDPPCombine(
|
|
"amdgpu-dpp-combine",
|
|
cl::desc("Enable DPP combiner"),
|
|
cl::init(true));
|
|
|
|
// Enable address space based alias analysis
|
|
static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden,
|
|
cl::desc("Enable AMDGPU Alias Analysis"),
|
|
cl::init(true));
|
|
|
|
// Option to run late CFG structurizer
|
|
static cl::opt<bool, true> LateCFGStructurize(
|
|
"amdgpu-late-structurize",
|
|
cl::desc("Enable late CFG structurization"),
|
|
cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt(
|
|
"amdgpu-function-calls",
|
|
cl::desc("Enable AMDGPU function call support"),
|
|
cl::location(AMDGPUTargetMachine::EnableFunctionCalls),
|
|
cl::init(true),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt(
|
|
"amdgpu-fixed-function-abi",
|
|
cl::desc("Enable all implicit function arguments"),
|
|
cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI),
|
|
cl::init(false),
|
|
cl::Hidden);
|
|
|
|
// Enable lib calls simplifications
|
|
static cl::opt<bool> EnableLibCallSimplify(
|
|
"amdgpu-simplify-libcall",
|
|
cl::desc("Enable amdgpu library simplifications"),
|
|
cl::init(true),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<bool> EnableLowerKernelArguments(
|
|
"amdgpu-ir-lower-kernel-arguments",
|
|
cl::desc("Lower kernel argument loads in IR pass"),
|
|
cl::init(true),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<bool> EnableRegReassign(
|
|
"amdgpu-reassign-regs",
|
|
cl::desc("Enable register reassign optimizations on gfx10+"),
|
|
cl::init(true),
|
|
cl::Hidden);
|
|
|
|
// Enable atomic optimization
|
|
static cl::opt<bool> EnableAtomicOptimizations(
|
|
"amdgpu-atomic-optimizations",
|
|
cl::desc("Enable atomic optimizations"),
|
|
cl::init(false),
|
|
cl::Hidden);
|
|
|
|
// Enable Mode register optimization
|
|
static cl::opt<bool> EnableSIModeRegisterPass(
|
|
"amdgpu-mode-register",
|
|
cl::desc("Enable mode register pass"),
|
|
cl::init(true),
|
|
cl::Hidden);
|
|
|
|
// Option is used in lit tests to prevent deadcoding of patterns inspected.
|
|
static cl::opt<bool>
|
|
EnableDCEInRA("amdgpu-dce-in-ra",
|
|
cl::init(true), cl::Hidden,
|
|
cl::desc("Enable machine DCE inside regalloc"));
|
|
|
|
static cl::opt<bool> EnableScalarIRPasses(
|
|
"amdgpu-scalar-ir-passes",
|
|
cl::desc("Enable scalar IR passes"),
|
|
cl::init(true),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<bool> EnableStructurizerWorkarounds(
|
|
"amdgpu-enable-structurizer-workarounds",
|
|
cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true),
|
|
cl::Hidden);
|
|
|
|
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() {
|
|
// Register the target
|
|
RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget());
|
|
RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget());
|
|
|
|
PassRegistry *PR = PassRegistry::getPassRegistry();
|
|
initializeR600ClauseMergePassPass(*PR);
|
|
initializeR600ControlFlowFinalizerPass(*PR);
|
|
initializeR600PacketizerPass(*PR);
|
|
initializeR600ExpandSpecialInstrsPassPass(*PR);
|
|
initializeR600VectorRegMergerPass(*PR);
|
|
initializeGlobalISel(*PR);
|
|
initializeAMDGPUDAGToDAGISelPass(*PR);
|
|
initializeGCNDPPCombinePass(*PR);
|
|
initializeSILowerI1CopiesPass(*PR);
|
|
initializeSILowerSGPRSpillsPass(*PR);
|
|
initializeSIFixSGPRCopiesPass(*PR);
|
|
initializeSIFixVGPRCopiesPass(*PR);
|
|
initializeSIFoldOperandsPass(*PR);
|
|
initializeSIPeepholeSDWAPass(*PR);
|
|
initializeSIShrinkInstructionsPass(*PR);
|
|
initializeSIOptimizeExecMaskingPreRAPass(*PR);
|
|
initializeSILoadStoreOptimizerPass(*PR);
|
|
initializeAMDGPUFixFunctionBitcastsPass(*PR);
|
|
initializeAMDGPUAlwaysInlinePass(*PR);
|
|
initializeAMDGPUAnnotateKernelFeaturesPass(*PR);
|
|
initializeAMDGPUAnnotateUniformValuesPass(*PR);
|
|
initializeAMDGPUArgumentUsageInfoPass(*PR);
|
|
initializeAMDGPUAtomicOptimizerPass(*PR);
|
|
initializeAMDGPULowerKernelArgumentsPass(*PR);
|
|
initializeAMDGPULowerKernelAttributesPass(*PR);
|
|
initializeAMDGPULowerIntrinsicsPass(*PR);
|
|
initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR);
|
|
initializeAMDGPUPostLegalizerCombinerPass(*PR);
|
|
initializeAMDGPUPreLegalizerCombinerPass(*PR);
|
|
initializeAMDGPUPromoteAllocaPass(*PR);
|
|
initializeAMDGPUPromoteAllocaToVectorPass(*PR);
|
|
initializeAMDGPUCodeGenPreparePass(*PR);
|
|
initializeAMDGPULateCodeGenPreparePass(*PR);
|
|
initializeAMDGPUPropagateAttributesEarlyPass(*PR);
|
|
initializeAMDGPUPropagateAttributesLatePass(*PR);
|
|
initializeAMDGPURewriteOutArgumentsPass(*PR);
|
|
initializeAMDGPUUnifyMetadataPass(*PR);
|
|
initializeSIAnnotateControlFlowPass(*PR);
|
|
initializeSIInsertHardClausesPass(*PR);
|
|
initializeSIInsertWaitcntsPass(*PR);
|
|
initializeSIModeRegisterPass(*PR);
|
|
initializeSIWholeQuadModePass(*PR);
|
|
initializeSILowerControlFlowPass(*PR);
|
|
initializeSIRemoveShortExecBranchesPass(*PR);
|
|
initializeSIPreEmitPeepholePass(*PR);
|
|
initializeSIInsertSkipsPass(*PR);
|
|
initializeSIMemoryLegalizerPass(*PR);
|
|
initializeSIOptimizeExecMaskingPass(*PR);
|
|
initializeSIPreAllocateWWMRegsPass(*PR);
|
|
initializeSIFormMemoryClausesPass(*PR);
|
|
initializeSIPostRABundlerPass(*PR);
|
|
initializeAMDGPUUnifyDivergentExitNodesPass(*PR);
|
|
initializeAMDGPUAAWrapperPassPass(*PR);
|
|
initializeAMDGPUExternalAAWrapperPass(*PR);
|
|
initializeAMDGPUUseNativeCallsPass(*PR);
|
|
initializeAMDGPUSimplifyLibCallsPass(*PR);
|
|
initializeAMDGPUInlinerPass(*PR);
|
|
initializeAMDGPUPrintfRuntimeBindingPass(*PR);
|
|
initializeGCNRegBankReassignPass(*PR);
|
|
initializeGCNNSAReassignPass(*PR);
|
|
initializeSIAddIMGInitPass(*PR);
|
|
}
|
|
|
|
static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
|
|
return std::make_unique<AMDGPUTargetObjectFile>();
|
|
}
|
|
|
|
static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) {
|
|
return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>());
|
|
}
|
|
|
|
static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) {
|
|
return new SIScheduleDAGMI(C);
|
|
}
|
|
|
|
static ScheduleDAGInstrs *
|
|
createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
|
|
ScheduleDAGMILive *DAG =
|
|
new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C));
|
|
DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
|
|
DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
|
|
DAG->addMutation(createAMDGPUExportClusteringDAGMutation());
|
|
return DAG;
|
|
}
|
|
|
|
static ScheduleDAGInstrs *
|
|
createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
|
|
auto DAG = new GCNIterativeScheduler(C,
|
|
GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY);
|
|
DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
|
|
return DAG;
|
|
}
|
|
|
|
static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) {
|
|
return new GCNIterativeScheduler(C,
|
|
GCNIterativeScheduler::SCHEDULE_MINREGFORCED);
|
|
}
|
|
|
|
static ScheduleDAGInstrs *
|
|
createIterativeILPMachineScheduler(MachineSchedContext *C) {
|
|
auto DAG = new GCNIterativeScheduler(C,
|
|
GCNIterativeScheduler::SCHEDULE_ILP);
|
|
DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
|
|
DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
|
|
return DAG;
|
|
}
|
|
|
|
static MachineSchedRegistry
|
|
R600SchedRegistry("r600", "Run R600's custom scheduler",
|
|
createR600MachineScheduler);
|
|
|
|
static MachineSchedRegistry
|
|
SISchedRegistry("si", "Run SI's custom scheduler",
|
|
createSIMachineScheduler);
|
|
|
|
static MachineSchedRegistry
|
|
GCNMaxOccupancySchedRegistry("gcn-max-occupancy",
|
|
"Run GCN scheduler to maximize occupancy",
|
|
createGCNMaxOccupancyMachineScheduler);
|
|
|
|
static MachineSchedRegistry
|
|
IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental",
|
|
"Run GCN scheduler to maximize occupancy (experimental)",
|
|
createIterativeGCNMaxOccupancyMachineScheduler);
|
|
|
|
static MachineSchedRegistry
|
|
GCNMinRegSchedRegistry("gcn-minreg",
|
|
"Run GCN iterative scheduler for minimal register usage (experimental)",
|
|
createMinRegScheduler);
|
|
|
|
static MachineSchedRegistry
|
|
GCNILPSchedRegistry("gcn-ilp",
|
|
"Run GCN iterative scheduler for ILP scheduling (experimental)",
|
|
createIterativeILPMachineScheduler);
|
|
|
|
static StringRef computeDataLayout(const Triple &TT) {
|
|
if (TT.getArch() == Triple::r600) {
|
|
// 32-bit pointers.
|
|
return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
|
|
"-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1";
|
|
}
|
|
|
|
// 32-bit private, local, and region pointers. 64-bit global, constant and
|
|
// flat, non-integral buffer fat pointers.
|
|
return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32"
|
|
"-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
|
|
"-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"
|
|
"-ni:7";
|
|
}
|
|
|
|
LLVM_READNONE
|
|
static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) {
|
|
if (!GPU.empty())
|
|
return GPU;
|
|
|
|
// Need to default to a target with flat support for HSA.
|
|
if (TT.getArch() == Triple::amdgcn)
|
|
return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic";
|
|
|
|
return "r600";
|
|
}
|
|
|
|
static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
|
|
// The AMDGPU toolchain only supports generating shared objects, so we
|
|
// must always use PIC.
|
|
return Reloc::PIC_;
|
|
}
|
|
|
|
AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT,
|
|
StringRef CPU, StringRef FS,
|
|
TargetOptions Options,
|
|
Optional<Reloc::Model> RM,
|
|
Optional<CodeModel::Model> CM,
|
|
CodeGenOpt::Level OptLevel)
|
|
: LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU),
|
|
FS, Options, getEffectiveRelocModel(RM),
|
|
getEffectiveCodeModel(CM, CodeModel::Small), OptLevel),
|
|
TLOF(createTLOF(getTargetTriple())) {
|
|
initAsmInfo();
|
|
if (TT.getArch() == Triple::amdgcn) {
|
|
if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64"))
|
|
MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64));
|
|
else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32"))
|
|
MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32));
|
|
}
|
|
}
|
|
|
|
bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false;
|
|
bool AMDGPUTargetMachine::EnableFunctionCalls = false;
|
|
bool AMDGPUTargetMachine::EnableFixedFunctionABI = false;
|
|
|
|
AMDGPUTargetMachine::~AMDGPUTargetMachine() = default;
|
|
|
|
StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const {
|
|
Attribute GPUAttr = F.getFnAttribute("target-cpu");
|
|
return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU();
|
|
}
|
|
|
|
StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const {
|
|
Attribute FSAttr = F.getFnAttribute("target-features");
|
|
|
|
return FSAttr.isValid() ? FSAttr.getValueAsString()
|
|
: getTargetFeatureString();
|
|
}
|
|
|
|
/// Predicate for Internalize pass.
|
|
static bool mustPreserveGV(const GlobalValue &GV) {
|
|
if (const Function *F = dyn_cast<Function>(&GV))
|
|
return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv());
|
|
|
|
return !GV.use_empty();
|
|
}
|
|
|
|
void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) {
|
|
Builder.DivergentTarget = true;
|
|
|
|
bool EnableOpt = getOptLevel() > CodeGenOpt::None;
|
|
bool Internalize = InternalizeSymbols;
|
|
bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls;
|
|
bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt;
|
|
bool LibCallSimplify = EnableLibCallSimplify && EnableOpt;
|
|
|
|
if (EnableFunctionCalls) {
|
|
delete Builder.Inliner;
|
|
Builder.Inliner = createAMDGPUFunctionInliningPass();
|
|
}
|
|
|
|
Builder.addExtension(
|
|
PassManagerBuilder::EP_ModuleOptimizerEarly,
|
|
[Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &,
|
|
legacy::PassManagerBase &PM) {
|
|
if (AMDGPUAA) {
|
|
PM.add(createAMDGPUAAWrapperPass());
|
|
PM.add(createAMDGPUExternalAAWrapperPass());
|
|
}
|
|
PM.add(createAMDGPUUnifyMetadataPass());
|
|
PM.add(createAMDGPUPrintfRuntimeBinding());
|
|
if (Internalize)
|
|
PM.add(createInternalizePass(mustPreserveGV));
|
|
PM.add(createAMDGPUPropagateAttributesLatePass(this));
|
|
if (Internalize)
|
|
PM.add(createGlobalDCEPass());
|
|
if (EarlyInline)
|
|
PM.add(createAMDGPUAlwaysInlinePass(false));
|
|
});
|
|
|
|
Builder.addExtension(
|
|
PassManagerBuilder::EP_EarlyAsPossible,
|
|
[AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &,
|
|
legacy::PassManagerBase &PM) {
|
|
if (AMDGPUAA) {
|
|
PM.add(createAMDGPUAAWrapperPass());
|
|
PM.add(createAMDGPUExternalAAWrapperPass());
|
|
}
|
|
PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this));
|
|
PM.add(llvm::createAMDGPUUseNativeCallsPass());
|
|
if (LibCallSimplify)
|
|
PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this));
|
|
});
|
|
|
|
Builder.addExtension(
|
|
PassManagerBuilder::EP_CGSCCOptimizerLate,
|
|
[EnableOpt](const PassManagerBuilder &, legacy::PassManagerBase &PM) {
|
|
// Add infer address spaces pass to the opt pipeline after inlining
|
|
// but before SROA to increase SROA opportunities.
|
|
PM.add(createInferAddressSpacesPass());
|
|
|
|
// This should run after inlining to have any chance of doing anything,
|
|
// and before other cleanup optimizations.
|
|
PM.add(createAMDGPULowerKernelAttributesPass());
|
|
|
|
// Promote alloca to vector before SROA and loop unroll. If we manage
|
|
// to eliminate allocas before unroll we may choose to unroll less.
|
|
if (EnableOpt)
|
|
PM.add(createAMDGPUPromoteAllocaToVector());
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// R600 Target Machine (R600 -> Cayman)
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT,
|
|
StringRef CPU, StringRef FS,
|
|
TargetOptions Options,
|
|
Optional<Reloc::Model> RM,
|
|
Optional<CodeModel::Model> CM,
|
|
CodeGenOpt::Level OL, bool JIT)
|
|
: AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {
|
|
setRequiresStructuredCFG(true);
|
|
|
|
// Override the default since calls aren't supported for r600.
|
|
if (EnableFunctionCalls &&
|
|
EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0)
|
|
EnableFunctionCalls = false;
|
|
}
|
|
|
|
const R600Subtarget *R600TargetMachine::getSubtargetImpl(
|
|
const Function &F) const {
|
|
StringRef GPU = getGPUName(F);
|
|
StringRef FS = getFeatureString(F);
|
|
|
|
SmallString<128> SubtargetKey(GPU);
|
|
SubtargetKey.append(FS);
|
|
|
|
auto &I = SubtargetMap[SubtargetKey];
|
|
if (!I) {
|
|
// This needs to be done before we create a new subtarget since any
|
|
// creation will depend on the TM and the code generation flags on the
|
|
// function that reside in TargetOptions.
|
|
resetTargetOptions(F);
|
|
I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this);
|
|
}
|
|
|
|
return I.get();
|
|
}
|
|
|
|
bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS,
|
|
unsigned DestAS) const {
|
|
return AMDGPU::isFlatGlobalAddrSpace(SrcAS) &&
|
|
AMDGPU::isFlatGlobalAddrSpace(DestAS);
|
|
}
|
|
|
|
unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const {
|
|
const auto *LD = dyn_cast<LoadInst>(V);
|
|
if (!LD)
|
|
return AMDGPUAS::UNKNOWN_ADDRESS_SPACE;
|
|
|
|
// It must be a generic pointer loaded.
|
|
assert(V->getType()->isPointerTy() &&
|
|
V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS);
|
|
|
|
const auto *Ptr = LD->getPointerOperand();
|
|
if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
|
|
return AMDGPUAS::UNKNOWN_ADDRESS_SPACE;
|
|
// For a generic pointer loaded from the constant memory, it could be assumed
|
|
// as a global pointer since the constant memory is only populated on the
|
|
// host side. As implied by the offload programming model, only global
|
|
// pointers could be referenced on the host side.
|
|
return AMDGPUAS::GLOBAL_ADDRESS;
|
|
}
|
|
|
|
TargetTransformInfo
|
|
R600TargetMachine::getTargetTransformInfo(const Function &F) {
|
|
return TargetTransformInfo(R600TTIImpl(this, F));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GCN Target Machine (SI+)
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT,
|
|
StringRef CPU, StringRef FS,
|
|
TargetOptions Options,
|
|
Optional<Reloc::Model> RM,
|
|
Optional<CodeModel::Model> CM,
|
|
CodeGenOpt::Level OL, bool JIT)
|
|
: AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {}
|
|
|
|
const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const {
|
|
StringRef GPU = getGPUName(F);
|
|
StringRef FS = getFeatureString(F);
|
|
|
|
SmallString<128> SubtargetKey(GPU);
|
|
SubtargetKey.append(FS);
|
|
|
|
auto &I = SubtargetMap[SubtargetKey];
|
|
if (!I) {
|
|
// This needs to be done before we create a new subtarget since any
|
|
// creation will depend on the TM and the code generation flags on the
|
|
// function that reside in TargetOptions.
|
|
resetTargetOptions(F);
|
|
I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this);
|
|
}
|
|
|
|
I->setScalarizeGlobalBehavior(ScalarizeGlobal);
|
|
|
|
return I.get();
|
|
}
|
|
|
|
TargetTransformInfo
|
|
GCNTargetMachine::getTargetTransformInfo(const Function &F) {
|
|
return TargetTransformInfo(GCNTTIImpl(this, F));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AMDGPU Pass Setup
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class AMDGPUPassConfig : public TargetPassConfig {
|
|
public:
|
|
AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
|
|
: TargetPassConfig(TM, PM) {
|
|
// Exceptions and StackMaps are not supported, so these passes will never do
|
|
// anything.
|
|
disablePass(&StackMapLivenessID);
|
|
disablePass(&FuncletLayoutID);
|
|
}
|
|
|
|
AMDGPUTargetMachine &getAMDGPUTargetMachine() const {
|
|
return getTM<AMDGPUTargetMachine>();
|
|
}
|
|
|
|
ScheduleDAGInstrs *
|
|
createMachineScheduler(MachineSchedContext *C) const override {
|
|
ScheduleDAGMILive *DAG = createGenericSchedLive(C);
|
|
DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
|
|
return DAG;
|
|
}
|
|
|
|
void addEarlyCSEOrGVNPass();
|
|
void addStraightLineScalarOptimizationPasses();
|
|
void addIRPasses() override;
|
|
void addCodeGenPrepare() override;
|
|
bool addPreISel() override;
|
|
bool addInstSelector() override;
|
|
bool addGCPasses() override;
|
|
|
|
std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
|
|
};
|
|
|
|
std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const {
|
|
return getStandardCSEConfigForOpt(TM->getOptLevel());
|
|
}
|
|
|
|
class R600PassConfig final : public AMDGPUPassConfig {
|
|
public:
|
|
R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
|
|
: AMDGPUPassConfig(TM, PM) {}
|
|
|
|
ScheduleDAGInstrs *createMachineScheduler(
|
|
MachineSchedContext *C) const override {
|
|
return createR600MachineScheduler(C);
|
|
}
|
|
|
|
bool addPreISel() override;
|
|
bool addInstSelector() override;
|
|
void addPreRegAlloc() override;
|
|
void addPreSched2() override;
|
|
void addPreEmitPass() override;
|
|
};
|
|
|
|
class GCNPassConfig final : public AMDGPUPassConfig {
|
|
public:
|
|
GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
|
|
: AMDGPUPassConfig(TM, PM) {
|
|
// It is necessary to know the register usage of the entire call graph. We
|
|
// allow calls without EnableAMDGPUFunctionCalls if they are marked
|
|
// noinline, so this is always required.
|
|
setRequiresCodeGenSCCOrder(true);
|
|
}
|
|
|
|
GCNTargetMachine &getGCNTargetMachine() const {
|
|
return getTM<GCNTargetMachine>();
|
|
}
|
|
|
|
ScheduleDAGInstrs *
|
|
createMachineScheduler(MachineSchedContext *C) const override;
|
|
|
|
bool addPreISel() override;
|
|
void addMachineSSAOptimization() override;
|
|
bool addILPOpts() override;
|
|
bool addInstSelector() override;
|
|
bool addIRTranslator() override;
|
|
void addPreLegalizeMachineIR() override;
|
|
bool addLegalizeMachineIR() override;
|
|
void addPreRegBankSelect() override;
|
|
bool addRegBankSelect() override;
|
|
bool addGlobalInstructionSelect() override;
|
|
void addFastRegAlloc() override;
|
|
void addOptimizedRegAlloc() override;
|
|
void addPreRegAlloc() override;
|
|
bool addPreRewrite() override;
|
|
void addPostRegAlloc() override;
|
|
void addPreSched2() override;
|
|
void addPreEmitPass() override;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
void AMDGPUPassConfig::addEarlyCSEOrGVNPass() {
|
|
if (getOptLevel() == CodeGenOpt::Aggressive)
|
|
addPass(createGVNPass());
|
|
else
|
|
addPass(createEarlyCSEPass());
|
|
}
|
|
|
|
void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() {
|
|
addPass(createLICMPass());
|
|
addPass(createSeparateConstOffsetFromGEPPass());
|
|
addPass(createSpeculativeExecutionPass());
|
|
// ReassociateGEPs exposes more opportunites for SLSR. See
|
|
// the example in reassociate-geps-and-slsr.ll.
|
|
addPass(createStraightLineStrengthReducePass());
|
|
// SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
|
|
// EarlyCSE can reuse.
|
|
addEarlyCSEOrGVNPass();
|
|
// Run NaryReassociate after EarlyCSE/GVN to be more effective.
|
|
addPass(createNaryReassociatePass());
|
|
// NaryReassociate on GEPs creates redundant common expressions, so run
|
|
// EarlyCSE after it.
|
|
addPass(createEarlyCSEPass());
|
|
}
|
|
|
|
void AMDGPUPassConfig::addIRPasses() {
|
|
const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine();
|
|
|
|
// There is no reason to run these.
|
|
disablePass(&StackMapLivenessID);
|
|
disablePass(&FuncletLayoutID);
|
|
disablePass(&PatchableFunctionID);
|
|
|
|
addPass(createAMDGPUPrintfRuntimeBinding());
|
|
|
|
// This must occur before inlining, as the inliner will not look through
|
|
// bitcast calls.
|
|
addPass(createAMDGPUFixFunctionBitcastsPass());
|
|
|
|
// A call to propagate attributes pass in the backend in case opt was not run.
|
|
addPass(createAMDGPUPropagateAttributesEarlyPass(&TM));
|
|
|
|
addPass(createAtomicExpandPass());
|
|
|
|
|
|
addPass(createAMDGPULowerIntrinsicsPass());
|
|
|
|
// Function calls are not supported, so make sure we inline everything.
|
|
addPass(createAMDGPUAlwaysInlinePass());
|
|
addPass(createAlwaysInlinerLegacyPass());
|
|
// We need to add the barrier noop pass, otherwise adding the function
|
|
// inlining pass will cause all of the PassConfigs passes to be run
|
|
// one function at a time, which means if we have a nodule with two
|
|
// functions, then we will generate code for the first function
|
|
// without ever running any passes on the second.
|
|
addPass(createBarrierNoopPass());
|
|
|
|
// Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments.
|
|
if (TM.getTargetTriple().getArch() == Triple::r600)
|
|
addPass(createR600OpenCLImageTypeLoweringPass());
|
|
|
|
// Replace OpenCL enqueued block function pointers with global variables.
|
|
addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass());
|
|
|
|
if (TM.getOptLevel() > CodeGenOpt::None) {
|
|
addPass(createInferAddressSpacesPass());
|
|
addPass(createAMDGPUPromoteAlloca());
|
|
|
|
if (EnableSROA)
|
|
addPass(createSROAPass());
|
|
|
|
if (EnableScalarIRPasses)
|
|
addStraightLineScalarOptimizationPasses();
|
|
|
|
if (EnableAMDGPUAliasAnalysis) {
|
|
addPass(createAMDGPUAAWrapperPass());
|
|
addPass(createExternalAAWrapperPass([](Pass &P, Function &,
|
|
AAResults &AAR) {
|
|
if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>())
|
|
AAR.addAAResult(WrapperPass->getResult());
|
|
}));
|
|
}
|
|
}
|
|
|
|
if (TM.getTargetTriple().getArch() == Triple::amdgcn) {
|
|
// TODO: May want to move later or split into an early and late one.
|
|
addPass(createAMDGPUCodeGenPreparePass());
|
|
}
|
|
|
|
TargetPassConfig::addIRPasses();
|
|
|
|
// EarlyCSE is not always strong enough to clean up what LSR produces. For
|
|
// example, GVN can combine
|
|
//
|
|
// %0 = add %a, %b
|
|
// %1 = add %b, %a
|
|
//
|
|
// and
|
|
//
|
|
// %0 = shl nsw %a, 2
|
|
// %1 = shl %a, 2
|
|
//
|
|
// but EarlyCSE can do neither of them.
|
|
if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses)
|
|
addEarlyCSEOrGVNPass();
|
|
}
|
|
|
|
void AMDGPUPassConfig::addCodeGenPrepare() {
|
|
if (TM->getTargetTriple().getArch() == Triple::amdgcn)
|
|
addPass(createAMDGPUAnnotateKernelFeaturesPass());
|
|
|
|
if (TM->getTargetTriple().getArch() == Triple::amdgcn &&
|
|
EnableLowerKernelArguments)
|
|
addPass(createAMDGPULowerKernelArgumentsPass());
|
|
|
|
addPass(&AMDGPUPerfHintAnalysisID);
|
|
|
|
TargetPassConfig::addCodeGenPrepare();
|
|
|
|
if (EnableLoadStoreVectorizer)
|
|
addPass(createLoadStoreVectorizerPass());
|
|
|
|
// LowerSwitch pass may introduce unreachable blocks that can
|
|
// cause unexpected behavior for subsequent passes. Placing it
|
|
// here seems better that these blocks would get cleaned up by
|
|
// UnreachableBlockElim inserted next in the pass flow.
|
|
addPass(createLowerSwitchPass());
|
|
}
|
|
|
|
bool AMDGPUPassConfig::addPreISel() {
|
|
addPass(createFlattenCFGPass());
|
|
return false;
|
|
}
|
|
|
|
bool AMDGPUPassConfig::addInstSelector() {
|
|
// Defer the verifier until FinalizeISel.
|
|
addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false);
|
|
return false;
|
|
}
|
|
|
|
bool AMDGPUPassConfig::addGCPasses() {
|
|
// Do nothing. GC is not supported.
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// R600 Pass Setup
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool R600PassConfig::addPreISel() {
|
|
AMDGPUPassConfig::addPreISel();
|
|
|
|
if (EnableR600StructurizeCFG)
|
|
addPass(createStructurizeCFGPass());
|
|
return false;
|
|
}
|
|
|
|
bool R600PassConfig::addInstSelector() {
|
|
addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel()));
|
|
return false;
|
|
}
|
|
|
|
void R600PassConfig::addPreRegAlloc() {
|
|
addPass(createR600VectorRegMerger());
|
|
}
|
|
|
|
void R600PassConfig::addPreSched2() {
|
|
addPass(createR600EmitClauseMarkers(), false);
|
|
if (EnableR600IfConvert)
|
|
addPass(&IfConverterID, false);
|
|
addPass(createR600ClauseMergePass(), false);
|
|
}
|
|
|
|
void R600PassConfig::addPreEmitPass() {
|
|
addPass(createAMDGPUCFGStructurizerPass(), false);
|
|
addPass(createR600ExpandSpecialInstrsPass(), false);
|
|
addPass(&FinalizeMachineBundlesID, false);
|
|
addPass(createR600Packetizer(), false);
|
|
addPass(createR600ControlFlowFinalizer(), false);
|
|
}
|
|
|
|
TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) {
|
|
return new R600PassConfig(*this, PM);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GCN Pass Setup
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler(
|
|
MachineSchedContext *C) const {
|
|
const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
|
|
if (ST.enableSIScheduler())
|
|
return createSIMachineScheduler(C);
|
|
return createGCNMaxOccupancyMachineScheduler(C);
|
|
}
|
|
|
|
bool GCNPassConfig::addPreISel() {
|
|
AMDGPUPassConfig::addPreISel();
|
|
|
|
addPass(createAMDGPULateCodeGenPreparePass());
|
|
if (EnableAtomicOptimizations) {
|
|
addPass(createAMDGPUAtomicOptimizerPass());
|
|
}
|
|
|
|
// FIXME: We need to run a pass to propagate the attributes when calls are
|
|
// supported.
|
|
|
|
// Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit
|
|
// regions formed by them.
|
|
addPass(&AMDGPUUnifyDivergentExitNodesID);
|
|
if (!LateCFGStructurize) {
|
|
if (EnableStructurizerWorkarounds) {
|
|
addPass(createFixIrreduciblePass());
|
|
addPass(createUnifyLoopExitsPass());
|
|
}
|
|
addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions
|
|
}
|
|
addPass(createSinkingPass());
|
|
addPass(createAMDGPUAnnotateUniformValues());
|
|
if (!LateCFGStructurize) {
|
|
addPass(createSIAnnotateControlFlowPass());
|
|
}
|
|
addPass(createLCSSAPass());
|
|
|
|
return false;
|
|
}
|
|
|
|
void GCNPassConfig::addMachineSSAOptimization() {
|
|
TargetPassConfig::addMachineSSAOptimization();
|
|
|
|
// We want to fold operands after PeepholeOptimizer has run (or as part of
|
|
// it), because it will eliminate extra copies making it easier to fold the
|
|
// real source operand. We want to eliminate dead instructions after, so that
|
|
// we see fewer uses of the copies. We then need to clean up the dead
|
|
// instructions leftover after the operands are folded as well.
|
|
//
|
|
// XXX - Can we get away without running DeadMachineInstructionElim again?
|
|
addPass(&SIFoldOperandsID);
|
|
if (EnableDPPCombine)
|
|
addPass(&GCNDPPCombineID);
|
|
addPass(&DeadMachineInstructionElimID);
|
|
addPass(&SILoadStoreOptimizerID);
|
|
if (EnableSDWAPeephole) {
|
|
addPass(&SIPeepholeSDWAID);
|
|
addPass(&EarlyMachineLICMID);
|
|
addPass(&MachineCSEID);
|
|
addPass(&SIFoldOperandsID);
|
|
addPass(&DeadMachineInstructionElimID);
|
|
}
|
|
addPass(createSIShrinkInstructionsPass());
|
|
}
|
|
|
|
bool GCNPassConfig::addILPOpts() {
|
|
if (EnableEarlyIfConversion)
|
|
addPass(&EarlyIfConverterID);
|
|
|
|
TargetPassConfig::addILPOpts();
|
|
return false;
|
|
}
|
|
|
|
bool GCNPassConfig::addInstSelector() {
|
|
AMDGPUPassConfig::addInstSelector();
|
|
addPass(&SIFixSGPRCopiesID);
|
|
addPass(createSILowerI1CopiesPass());
|
|
addPass(createSIAddIMGInitPass());
|
|
return false;
|
|
}
|
|
|
|
bool GCNPassConfig::addIRTranslator() {
|
|
addPass(new IRTranslator(getOptLevel()));
|
|
return false;
|
|
}
|
|
|
|
void GCNPassConfig::addPreLegalizeMachineIR() {
|
|
bool IsOptNone = getOptLevel() == CodeGenOpt::None;
|
|
addPass(createAMDGPUPreLegalizeCombiner(IsOptNone));
|
|
addPass(new Localizer());
|
|
}
|
|
|
|
bool GCNPassConfig::addLegalizeMachineIR() {
|
|
addPass(new Legalizer());
|
|
return false;
|
|
}
|
|
|
|
void GCNPassConfig::addPreRegBankSelect() {
|
|
bool IsOptNone = getOptLevel() == CodeGenOpt::None;
|
|
addPass(createAMDGPUPostLegalizeCombiner(IsOptNone));
|
|
}
|
|
|
|
bool GCNPassConfig::addRegBankSelect() {
|
|
addPass(new RegBankSelect());
|
|
return false;
|
|
}
|
|
|
|
bool GCNPassConfig::addGlobalInstructionSelect() {
|
|
addPass(new InstructionSelect());
|
|
return false;
|
|
}
|
|
|
|
void GCNPassConfig::addPreRegAlloc() {
|
|
if (LateCFGStructurize) {
|
|
addPass(createAMDGPUMachineCFGStructurizerPass());
|
|
}
|
|
}
|
|
|
|
void GCNPassConfig::addFastRegAlloc() {
|
|
// FIXME: We have to disable the verifier here because of PHIElimination +
|
|
// TwoAddressInstructions disabling it.
|
|
|
|
// This must be run immediately after phi elimination and before
|
|
// TwoAddressInstructions, otherwise the processing of the tied operand of
|
|
// SI_ELSE will introduce a copy of the tied operand source after the else.
|
|
insertPass(&PHIEliminationID, &SILowerControlFlowID, false);
|
|
|
|
insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID);
|
|
insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID);
|
|
|
|
TargetPassConfig::addFastRegAlloc();
|
|
}
|
|
|
|
void GCNPassConfig::addOptimizedRegAlloc() {
|
|
// Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation
|
|
// instructions that cause scheduling barriers.
|
|
insertPass(&MachineSchedulerID, &SIWholeQuadModeID);
|
|
insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID);
|
|
|
|
if (OptExecMaskPreRA)
|
|
insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID);
|
|
insertPass(&MachineSchedulerID, &SIFormMemoryClausesID);
|
|
|
|
// This must be run immediately after phi elimination and before
|
|
// TwoAddressInstructions, otherwise the processing of the tied operand of
|
|
// SI_ELSE will introduce a copy of the tied operand source after the else.
|
|
insertPass(&PHIEliminationID, &SILowerControlFlowID, false);
|
|
|
|
if (EnableDCEInRA)
|
|
insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID);
|
|
|
|
TargetPassConfig::addOptimizedRegAlloc();
|
|
}
|
|
|
|
bool GCNPassConfig::addPreRewrite() {
|
|
if (EnableRegReassign) {
|
|
addPass(&GCNNSAReassignID);
|
|
addPass(&GCNRegBankReassignID);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void GCNPassConfig::addPostRegAlloc() {
|
|
addPass(&SIFixVGPRCopiesID);
|
|
if (getOptLevel() > CodeGenOpt::None)
|
|
addPass(&SIOptimizeExecMaskingID);
|
|
TargetPassConfig::addPostRegAlloc();
|
|
|
|
// Equivalent of PEI for SGPRs.
|
|
addPass(&SILowerSGPRSpillsID);
|
|
}
|
|
|
|
void GCNPassConfig::addPreSched2() {
|
|
addPass(&SIPostRABundlerID);
|
|
}
|
|
|
|
void GCNPassConfig::addPreEmitPass() {
|
|
addPass(createSIMemoryLegalizerPass());
|
|
addPass(createSIInsertWaitcntsPass());
|
|
addPass(createSIShrinkInstructionsPass());
|
|
addPass(createSIModeRegisterPass());
|
|
|
|
if (getOptLevel() > CodeGenOpt::None)
|
|
addPass(&SIInsertHardClausesID);
|
|
|
|
addPass(&SIRemoveShortExecBranchesID);
|
|
addPass(&SIInsertSkipsPassID);
|
|
addPass(&SIPreEmitPeepholeID);
|
|
// The hazard recognizer that runs as part of the post-ra scheduler does not
|
|
// guarantee to be able handle all hazards correctly. This is because if there
|
|
// are multiple scheduling regions in a basic block, the regions are scheduled
|
|
// bottom up, so when we begin to schedule a region we don't know what
|
|
// instructions were emitted directly before it.
|
|
//
|
|
// Here we add a stand-alone hazard recognizer pass which can handle all
|
|
// cases.
|
|
addPass(&PostRAHazardRecognizerID);
|
|
addPass(&BranchRelaxationPassID);
|
|
}
|
|
|
|
TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) {
|
|
return new GCNPassConfig(*this, PM);
|
|
}
|
|
|
|
yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const {
|
|
return new yaml::SIMachineFunctionInfo();
|
|
}
|
|
|
|
yaml::MachineFunctionInfo *
|
|
GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const {
|
|
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
return new yaml::SIMachineFunctionInfo(*MFI,
|
|
*MF.getSubtarget().getRegisterInfo());
|
|
}
|
|
|
|
bool GCNTargetMachine::parseMachineFunctionInfo(
|
|
const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS,
|
|
SMDiagnostic &Error, SMRange &SourceRange) const {
|
|
const yaml::SIMachineFunctionInfo &YamlMFI =
|
|
reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_);
|
|
MachineFunction &MF = PFS.MF;
|
|
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
|
|
MFI->initializeBaseYamlFields(YamlMFI);
|
|
|
|
auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) {
|
|
Register TempReg;
|
|
if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) {
|
|
SourceRange = RegName.SourceRange;
|
|
return true;
|
|
}
|
|
RegVal = TempReg;
|
|
|
|
return false;
|
|
};
|
|
|
|
auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) {
|
|
// Create a diagnostic for a the register string literal.
|
|
const MemoryBuffer &Buffer =
|
|
*PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID());
|
|
Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
|
|
RegName.Value.size(), SourceMgr::DK_Error,
|
|
"incorrect register class for field", RegName.Value,
|
|
None, None);
|
|
SourceRange = RegName.SourceRange;
|
|
return true;
|
|
};
|
|
|
|
if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) ||
|
|
parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) ||
|
|
parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg))
|
|
return true;
|
|
|
|
if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG &&
|
|
!AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) {
|
|
return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg);
|
|
}
|
|
|
|
if (MFI->FrameOffsetReg != AMDGPU::FP_REG &&
|
|
!AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) {
|
|
return diagnoseRegisterClass(YamlMFI.FrameOffsetReg);
|
|
}
|
|
|
|
if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG &&
|
|
!AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) {
|
|
return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg);
|
|
}
|
|
|
|
auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A,
|
|
const TargetRegisterClass &RC,
|
|
ArgDescriptor &Arg, unsigned UserSGPRs,
|
|
unsigned SystemSGPRs) {
|
|
// Skip parsing if it's not present.
|
|
if (!A)
|
|
return false;
|
|
|
|
if (A->IsRegister) {
|
|
Register Reg;
|
|
if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) {
|
|
SourceRange = A->RegisterName.SourceRange;
|
|
return true;
|
|
}
|
|
if (!RC.contains(Reg))
|
|
return diagnoseRegisterClass(A->RegisterName);
|
|
Arg = ArgDescriptor::createRegister(Reg);
|
|
} else
|
|
Arg = ArgDescriptor::createStack(A->StackOffset);
|
|
// Check and apply the optional mask.
|
|
if (A->Mask)
|
|
Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue());
|
|
|
|
MFI->NumUserSGPRs += UserSGPRs;
|
|
MFI->NumSystemSGPRs += SystemSGPRs;
|
|
return false;
|
|
};
|
|
|
|
if (YamlMFI.ArgInfo &&
|
|
(parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer,
|
|
AMDGPU::SGPR_128RegClass,
|
|
MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr,
|
|
AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr,
|
|
2, 0) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass,
|
|
MFI->ArgInfo.QueuePtr, 2, 0) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr,
|
|
AMDGPU::SReg_64RegClass,
|
|
MFI->ArgInfo.KernargSegmentPtr, 2, 0) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID,
|
|
AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID,
|
|
2, 0) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit,
|
|
AMDGPU::SReg_64RegClass,
|
|
MFI->ArgInfo.FlatScratchInit, 2, 0) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize,
|
|
AMDGPU::SGPR_32RegClass,
|
|
MFI->ArgInfo.PrivateSegmentSize, 0, 0) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX,
|
|
AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX,
|
|
0, 1) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY,
|
|
AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY,
|
|
0, 1) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ,
|
|
AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ,
|
|
0, 1) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo,
|
|
AMDGPU::SGPR_32RegClass,
|
|
MFI->ArgInfo.WorkGroupInfo, 0, 1) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset,
|
|
AMDGPU::SGPR_32RegClass,
|
|
MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr,
|
|
AMDGPU::SReg_64RegClass,
|
|
MFI->ArgInfo.ImplicitArgPtr, 0, 0) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr,
|
|
AMDGPU::SReg_64RegClass,
|
|
MFI->ArgInfo.ImplicitBufferPtr, 2, 0) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX,
|
|
AMDGPU::VGPR_32RegClass,
|
|
MFI->ArgInfo.WorkItemIDX, 0, 0) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY,
|
|
AMDGPU::VGPR_32RegClass,
|
|
MFI->ArgInfo.WorkItemIDY, 0, 0) ||
|
|
parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ,
|
|
AMDGPU::VGPR_32RegClass,
|
|
MFI->ArgInfo.WorkItemIDZ, 0, 0)))
|
|
return true;
|
|
|
|
MFI->Mode.IEEE = YamlMFI.Mode.IEEE;
|
|
MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp;
|
|
MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals;
|
|
MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals;
|
|
MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals;
|
|
MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals;
|
|
|
|
return false;
|
|
}
|